
1

LPSAT: A UnifiedApproachto RTL Satisfiability
ZhihongZeng, PriyankKalla, Maciej Ciesielski

Departmentof ElectricalandComputerEngineering
Universityof MassachusettsAmherst,MA-01003,USA�

zzeng,pkalla,ciesiel� @ecs.umass.edu

Abstract
LPSAT is an LP-basedcomprehensiveinfrastructure designed
to solve the satisfiability (SAT) problem for complex RTL
designscontainingboth word-level arithmeticoperators and
bit-level Booleanlogic. Thepresentedtechniqueusesa mixed
integer linear programto modeltheconstraintscorresponding
to both domainsof the design. Our technique renders the
constraint propagation betweenthe two domainsimplicit to
the MILP solver, thusenhancingthe overall efficiencyof the
SAT framework. Theexperimentalresultsare quitepromising
whencomparedwith genericCNF-basedandBDD-basedSAT
algorithms.

I . INTRODUCTION

The Booleansatisfiabilityproblem(SAT) hasmany direct
applicationsin theelectronicdesignautomation(EDA) arena,
includingtestpatterngeneration,timing analysis,logic verifi-
cation,functionaltesting,etc.SAT belongsto theclassof NP-
completeproblems,with algorithmic solutionshaving expo-
nentialworst-casecomplexity. This problemhasbeenwidely
investigated,andcontinuesto besobecauseefficientSAT tech-
niquescangreatlyimpacttheperformanceof many EDA tools.

With respectto applicationsin VLSI CAD, most instances
of SAT formulationsstartfrom anabstractcircuit description,
for which a requiredoutputvalueneedsto be validated. The
resultingformulationis thenmappedontoaninstanceof SAT,
typically using Conjunctive Normal Form (CNF) formulae.
Classicalapproachesto SAT are basedon variationsof the
well known Davis andPutnamprocedure[1]. Typical versions
of this procedureincorporatea chronologicalbacktrack-based
search[2] [3] [4] [5]; at eachnodein thesearchtree,it selects
an assignmentandprunesthe subsequentsearchby iterative
applicationof the unit clauseand pure literal rules [6]. Re-
centapproachesincorporatelearningtechniquesandothercon-
flict analysisprocedureswith non-chronological backtracksto
prunethesearchspace[7] [8].

Anotherpopularapproachto solving the Booleansatisfia-
bility problemsis basedonBinaryDecisionDiagrams(BDDs)
[9], [10]. Given a circuit for which a SAT instanceneedsto
be solved,a setof BDDs canbe constructedrepresentingthe
outputvalueconstraints.Theconjunctionof all theconstraints
expressedas a Booleanproductof the correspondingBDDs
(referredto asa productBDD) representsthe setof all satis-
fying solutions. Any elementof the resultingconstraintset,
i.e. any pathfrom theroot to theterminalvertex 1 in theprod-
uct BDD, givesa feasibleSAT solution [11][12][13]. How-

ever, a majorlimitation of this approachis thememoryexplo-
sion problemassociatedwith the constructionof the product
BDD. Recently, Kalla et al. [14] proposeda BDD-basedSAT
techniquethat overcomesthe problemsrelatedto BDD size
by exploiting elementsof theunaterecursiveparadigm. This
techniquesearchesfor SAT solutionsin the cofactors of the
individual constraintBDDs, thusrestrictingthegrowth of the
entireBDD searchspace.

Let us briefly discussthe SAT problemasit appearsin the
context of our work andanalyzethe limitationsof contempo-
rary SAT approaches.Considerthe circuit shown in Fig. 1
which representsablockdiagramof aRegister-TransferLevel
(RTL) design.It containsinstancesof arithmeticblocks(such
as adders,multipliers and comparators)as well as Boolean
logic. Given a setof valuerequirementsat the outputs,how
do we find the input assignmentsthat satisfytheseoutputre-
quirements?

A

B

A

B

0

1

>

<+

*inb[15:0]

wc

wb

D E

we

wd

in
a[

7:
0]

in
b[

15
:8

]

inb[7:0]

out2[7:0]

ina[7:0]

w
b2

[7
:0

]

wc2[7:0]

Fig. 1. An examplecircuit

CNF-basedSAT solvers can be directly applied to the
above circuit by transforming the entire circuit into CNF
formulas. However, sincepracticalgate-level circuits canbe
quite large, dealing with substantiallylarge CNF formulas
resultsin unacceptableCPUruntime.At thesametime,BDD-
basedtechniquessuffer from size explosion problems. It is
often thecasethat theproductBDD for a largecircuit cannot
beconstructedbecauseof its prohibitivesize- widemultipliers
area casein point.

To overcomethesedrawbacks,Fallah et al. [15] proposed
a hybrid satisfiabilityapproach,HSAT, to generatefunctional
testvectorsfor HDL designs.Working on the RTL descrip-
tions, the hybrid methodgeneratesCNF clausesfor random
Booleanlogic, andlinear arithmeticconstraintsfor arithmetic
blocksin thedesign.Then,a 3-SAT solver is appliedto solve
SAT for CNFclausesfor Booleanlogic, while linear program-
ming(LP) techniquesareusedto checkthefeasibilityof linear

2

constraintsfor arithmeticblocks. A point to notehereis that
3-SAT checkingfor Booleanlogic andLP techniquesfor arith-
metic blocksareperformedseparately, in differentdomains.
That is, for variablesthatcorrespondto the interfacebetween
the Booleanandarithmeticdomainsof the design,an assign-
mentis selectedfrom theCNF-clauses,andtheresultingcon-
straintsarepropagatedto thearithmeticdomainfor the linear
programto checkfor consistency. In sucha framework, back-
tracksbetweenthe two enginesare inevitable andperformed
explicitly. If the selectedbinary elementsfrom the Boolean
domain (variableassignmentsthat satisfy the CNF clauses)
causetheLP constraintsin thearithmeticdomainto be infea-
sible,backtrackingis neededto selectanothersetof Boolean
assignments.Sincethesetwo enginesoperatein separatedo-
mains,the performanceof HSAT is limited by the heuristics
thatchoosethesetof assignmentsto Booleanvariables.

Constraintpropagationtechniquesbetweendifferent do-
mainshavebeenexploredto generatefunctionaltestsandhigh-
level ATPGvectorsonHDL descriptions[15] [16] [17]. How-
ever, it wouldbedesirableto useaninfrastructurethatcanrep-
resentbothBooleanaswell asarithmeticconstraintsin asingle
unifieddomain. By doingso,constraintpropagationbetween
thearithmeticandBooleanpartscanbehandledimplicitly and
efficiently, withoutany lossof information.

Thispaperpresentsanew LP-basedSAT engine,calledLP-
SAT. It providesa comprehensive approachto solving satisfi-
ability problemsfor RTL designscontaininginstancesof both
arithmeticblocksandBooleanlogic. Linear arithmeticcon-
straintsareusedto modelthearithmeticblocksof thedesign,
asin [15] TheSAT constraintsfor theBooleanlogic part,how-
ever, arerepresentedusingan integer-linear program(ILP), in
contrastto theCNFformulasusedin [15]. For thispurpose,we
maptheBooleanlogic into a network of AND-OR-NOT gates,
andrepresentthe satisfiabilityconstraintsby a systemof in-
teger/linearequations.The constraintsrepresentingboth the
Booleanandarithmeticpartsarecombinedtogetherto form a
mixedinteger linear program(MILP). An MILP solver is then
usedto solve thesatisfiabilityproblemfor theentiredesign.

By representingthe satisfiability constraintsfor both do-
mainsin a singleMILP domain,weobviatethedrawbacksas-
sociatedwith theuseof two differentSAT enginesoperatingin
isolation.Furthermore,our techniquerendersconstraintprop-
agationbetweenthe arithmeticandBooleandomainsimplicit
to theMILP solver. This,in turn,helpsavoid theexplicit back-
trackingbetweendifferentSAT engines.This seamlessunifi-
cationof SAT constraintsfor arithmeticandBooleanpartsof
thedesignblocksinto asingleunifiedMILP domain,allowsto
solve SAT problemquickly andefficiently for complex digital
designsasverifiedby extensiveexperimentation.

I I . PARTITIONING INTO ARITHMETIC AND BOOLEAN

PARTS

Thecriterion for partitioningthecircuit into arithmeticand
Booleanpartsis dictatedby thegeneralstructureof thecircuit.
Such a partitioning is not unique and different partitioning

schemesmay result in different CPU time of the resulting
MILP program.Thegeneralrule is to put asmuchaspossible
into arithmeticportion, and avoid expandingthe word-level
signalsinto bits, unlessnecessary. A notableexceptionis “bit
nibbling” which requiresextractionof aportionof thewordas
a bit vectorto interfaceswith theBooleanlogic.

In the example in Figure 1, the adder, the multiplier,
the mux, and the two comparatorsbelong to the arithmetic
domain;theshadedpart,containinglogic gates,belongsto the
Booleanpart. In principle,themultiplexor canbemodeledin
either form. However, sinceoneof the multiplexor’s inputs
ina � 7 : 0� is alsoan input to otherarithmeticblocks,it will be
treatedasanarithmeticoperatorhere.

The signalsin the partitionedcircuit canbe classifiedinto
thefollowing threetypes:� Word-level signals. Thesesignalsare declaredas integer
variablesin theMILP problem.In Figure1, ina � 7 : 0� , wb and
wc are integer variables. (It shouldbe notedthat, depending
on their interactionwith othersignals,someof thosevariables
canbe declaredascontinuouswith integer bounds;they will
assumeintegervaluesautomatically).� World-level signalswith bit-level expansion.Signalsof this
type typically exist at the interfaceof arithmeticandBoolean
parts.Dependingon the typeof interface,theexpansionmay
befull or partial. If theentirewordinterfaceswith theBoolean
logic, it mustbe fully expandedinto individual bits, eachbit
beingdeclaredasa binary variable. For example,signalwc2
in Figure1, interfacingwith theadder, will befully expanded
asfollows:

wc2 � wc2 � 0��� 21 � wc2 � 1���
	�	�	� 27 � wc2 � 7��
were wc2 � i � , i=1,...,7, are binary variables,and wc2 is an
implicit integervariable.
Partial expansionis alsopossiblein caseof bit nibbling. In
this case,a word is broken into several parts in the places
definedby thenibbling bits. Eachportionof thewordcanstill
be expressedasan integer, with bits beingdeclaredasbinary
variables.� Single-bitsignals. Theseare typically control or decision
signals,andassuchthey aredeclaredasbinary variables.For
example,weandwd in Figure1 arebinarydecisionvariables.
It shouldbenotedthattheirnatureis differentthantheBoolean
variablesdescribedabove, and typically they are the ones
responsiblefor high computationalcomplexity of the MILP
program.

In our systemthe circuit partitioning into arithmetic and
Booleanpartsandthegenerationof the respective constraints
is fully automaticanddoesnot requireany userintervention.

I I I . MODELING OF ARITHMETIC OPERATORS

Basicarithmeticword-level operatorsinclude: adders,sub-
tractors,comparators,multiplexers,shifters,and multipliers.
Any otherword-level operatorscanberepresentedin termsof
theseusingBooleanconnectors(AND, OR, NOT). Most of the
following linearizationtechniquesof theword-level operators
canbefoundin [15] [18].

3

A. Adder/Subtractor

Addition andsubtractionareboth linear operatorsandcan
be trivially representedas equality constraints:C � A � B,
whereA � B � C areall word-level variables.

B. Comparator

Thereare6 typesof comparisonoperators:� , � , � , � , �� ,
and � . Consider, asanexample,s � A � B, wherethes is a
binaryBooleanvariable.It canbemodeledasfollows:

A � B � L ��� 1 � s����� 1 (1)

A � B � L � s � 0 (2)

Here L is a constant,L � max� A � B� . All other types of
comparisonoperatorscanbederivedsimilarly.

C. Multiplexor

In principle, the multiplexor can be treatedas part of a
Booleanlogic. However, if the inputs to the multiplexor are
word-level signals, it is more efficient to representit as an
arithmeticoperator. ConsiderZ � MUX � A � B � s� , whereA,
B andZ areword-level variablesandtheselectionsignals is a
Booleanvariable.For s = 1, Z = A, otherwiseZ = B. TheILP
constraintsfor themultiplexer are:

Z � A � L ��� 1 � s��� 0 (3)

A � Z � L ��� 1 � s��� 0 (4)

Z � B � L � s � 0 (5)

B � Z � L � s � 0 (6)

with constantL � max� A � B� ,
D. Multiplier: Z � X � Y

Sincemultiplicationis anon-linearoperator, oneof its input
word-level operands,X or Y, hasto be expandedin termsof
Booleanvariables. The choiceof which operandto expand
is dictatedby its interactionwith the restof the circuit. The
bestcandidateis theonewhich is drivenby theBooleanpart,
suchasport B of themultiplier in Figure1. In the following,
let X be an n-bit variableto be expandedandPi � Xi � Y be
a partial product. Note that Xi hasto be declaredasa binary
variable,but Pi is left asa continuousvariablebecausePi will
take integer valueautomatically. The ILP constraintsfor the
multiplier are:

Z �
n � 1

∑
i � 0

2i � Pi (7)

andfor eachi !� 0 ��"�"�"�� n � 1� ,
Pi � L � Xi � 0 (8)

Pi � Y � L ��� 1 � Xi �#� 0 (9)

0 � Pi � Y (10)

Practicaldesignsoftencontainoperandswider than32 bits.
Due to an inherent32-bit word representationof the current
MILP solverssuchwide operatorscannotbehandleddirectly.
Accordingto ourexperiencewith thecommercialMILP solver
CPLEX,numericalproblemsmightoccurfor signalwiderthan
24 bits. As a result,wide operatorsmustbedecomposedinto
smallerones. For moredetailsregardingthe decomposition,
thereaderis referredto [18].

IV. MODELING OF BOOLEAN LOGIC

We now presentthe modelingof the Booleanlogic using
ILP constraints,compatiblewith thosederived for arithmetic
portionof thecircuit.

A straightforward way of translatingBoolean logic into
a mixed integer-linear programis to first map the Boolean
part into AND-OR-NOT network, and then derive integer-
linear constraintsfor eachlogic gate. All the primary inputs
and outputsof the Booleannetwork are declaredas binary
variables, while the rest of intermediatenodesare left as
continuousvariables.Dueto thebinarynatureof theBoolean
network the continuousvariableswill automaticallyassume
binaryvaluesaswell.

A. AND Gate

Considera 2-input AND gatewith inputsA, B andoutput
Z. According to its truth table, the following is alwaystrue:
Z � A andZ � B. OutputZ takesvalue1 whenbothinputsare
1, henceZ � A � B � 1. Z � 0 is implicit for LP. In summary,
thelinearconstraintsfor the2-inputAND gateareasfollows.

Z � A (11)

Z � B (12)

Z � A � B � 1 (13)

(14)

This can be readily extended to an AND gate with an
arbitrarynumberof inputs. Let Z be an outputandAi be an
i-th input of anAND gate.Then:

Z � Ai � $ i &% 1 ��"'"("(� n) (15)

Z �
n � 1

∑
i � 0

Ai � � n � 1� (16)

(17)

B. ORGate

Similarly, an n-input OR gatecanbe linearizedasfollows.
HereZ is theoutputandAi is the i-th input.

Z � Ai � $ i &% 1 ��"'"("(� n) (18)

Z �
n � 1

∑
i � 0

Ai (19)

Z � 1 (20)

4

C. NOT Gate

A NOT gate with input A and output Z can be trivially
modeledas:Z � 1 � A.

The describedmethodfor modeling the Booleanlogic as
ILP constraintsproved the most effective from the compu-
tational complexity point of view. We also experimented
with othermethods,suchasconstructinga BDD andderiving
MUX-lik eequations(seesectionIII-C) for theBDD nodes,but
theresultswereinferior in mostcases.

V. EXPERIMENTAL RESULTS

TheLPSAT tool wasimplementedin theframework of VIS
[19]. One of the merits of our method is that no manual
interventionis neededfor theentireSAT process;startingwith
the Verilog RTL descriptionof the circuit, the partitioning
onto arithmeticand Booleanpartsand the generationof the
MILP constraintsaredonein a fully automaticfashion.These
constraintsarethenpassedto thecommercialMILP solver[20]
andtheresultsverifiedby applyingtheobtainedvectorsto the
original circuit structurein VIS.

We comparedthe performanceof LPSAT with two CNF-
basedalgorithms, SATO [21] and GRASP [7], and with a
BDD-basedsatisfiability tool B-SAT [14] over a range of
benchmarks.In order to get a fair comparison,the overhead
associatedwith transformingthecircuit network into CNFfor-
mulaswereignored. Similarly, we alsoignoredthe overhead
associatedwith translatingtheBooleanpart into a network of
AND-OR-NOT gates(whichis reallyminimal). All experiments
wereperformedon aPentiumIII/500MHz PCrunningLinux.

Thetestcasesusedin ourexperiments,shown in TableI, are
extractedfrom RTL models. The circuit square corresponds
to a design whose output assertshigh if � Z2 � X2 � Y2 � ,
where X � Y and Z are 16-bit wide operators. The SAT
instancessquare� 1� and square� 0� correspondto the output
being assertedto 1 and 0, respectively. The benchmark
quadratic is an implementationof a solutionto the quadratic
equationX2 � a � X � b � 0, wherea andb areconstantsandX
is a16-bitwidevariable.Giventheconstantsa andb, theSAT
instancecorrespondsto computingthe valueof X. Examples
l inear � 1� and l inear � 2� are circuits with a relatively simple
structure(a chain of comparators)but with a large number
of primary inputs (over 1200). The two instancesdiffer in
their size. gcd20 and gcd40 are extensionsof the greatest
commondivisor(GCD),a24-bit inputsequentialcircuit. They
are generatedby unrolling the GCD circuit over 20 and 40
time frames,respectively. m13 � 13 andm16 � 16 are13-bit
and16-bit multipliers. Two differentSAT instancesfor each
werecreated:(sat) with a feasiblesolution,and(non) with a
non-satisfiablerequirement.Finally, mdpe� 1�+* � 2� , is a circuit
composedof a multiplier feedinga dynamicpriority encoder,
taken from a realisticdesign.The two casesdiffer in thesize
of theBooleanpartof thecircuit.

It shouldbe emphasized,that all the test caseswerecom-
prisedof both, the arithmeticand the Booleanparts,includ-
ing themultiplier circuits(thestructureof unsignedmultipliers

wasobtainedby a recursivesetof adders,andrequiredcertain
amountof connectingBooleanlogic).

In TableI, column2 (# constr) givesthe numberof linear
constraintsgeneratedby LPSAT, while column3 shows CPU
time for solving LPSAT. Columns4 and 5 give the number
of literalsandthenumberof clauses,respectively, in theCNF
formulas.TheCPUtimesfor CNF-basedalgorithmsarelisted
in columns6 and 7. Finally, column 8 gives the CPU time
for solving the sameexamplesusing a BDD-basedBoolean
satisfiabilitytool, BSAT [14].

As shown in Table I, in most test casesthe run-timesof
LPSAT aresignificantlysmallerthanthoseof gate-level CNF-
basedSAT algorithms. There is one exception, square� 1� ,
which couldbesuccessfullysolvedonly by GRASP. This one
was the only test casethat LPSAT was unableto solve in
the presetamountof time. In contrast,SATO and GRASP
couldnot solve four testcases.AlthoughtheCNF-basedSAT
algorithmshave madea lot of progressin the recentyears
and have beensuccessfullyapplied in ATPG [4] [5], these
approacheshave to dealwith large numbersof CNF clauses.
As a result,they have difficulties on somelarge circuits with
even simple structure,suchas gcd20 and gcd40. Similarly,
theBDD-basedsatisfiabilitytool, BSAT [14], couldsolve but
smallexamplesbecauseof theexcessive time/memoryneeded
to createBDDs for thetestedcircuits.

It would be desirableto compareour methodswith that of
HSAT [15]. While thesecircuitsweremadeavailableto us,all
exceptmult16aretrivial, mainlyarithmeticcircuits.Hencethe
comparisonwould not yield any importantinsight,especially
sinceHSAT alsousesCPLEX. It shouldalsobe pointedout
that mult16 of HSAT is a purely arithmeticcircuit, with no
Booleanpart, unlike our m16 � 16 multiplier which contains
certain amountof Booleanlogic. In order to demonstrate
the robustnessof our approach,we have usedlarge designs
which requiredup to about 250K clausesin the equivalent
CNF representation,while the largestdesignin [15] requires
no morethan1.4K clauses.

Theoretically, the worst casecomputationalcomplexity of
LPSAT is exponentialin the numberof binary/integer vari-
ables.Theprogramhasanoptionto explicitly specifythepri-
orities of binary variablesto branchon. We did experiments
in which primary inputswereset to assumeeitherhigheror
lower branchpriority over the intermediatesignals. Unfortu-
nately, the resultingCPU time over the testedexampleswas
case-dependentandno consistentobservationcouldbemade.

VI . CONCLUSIONS AND FUTURE WORK

The presentedLPSAT techniquesolvessatisfiabilityprob-
lemfor RTL designsby modelingtheconstraintsof arithmetic
andBooleanlogic in a unified MILP environment. The uni-
ficationobviatestheneedfor multiple SAT toolsoperatingin
isolation,andrendersthe constraintpropagationbetweenthe
two domainsimplicit to the MILP solver, thusenhancingthe
overallefficiency of theSAT framework.

The experimentalresultsare quite promising when com-

5

LPSAT CNF-SAT BSAT
Testcase SATO GRASP

constr CPU time # literals # clauses CPU time CPU time CPU time
m13x13(sat) 68 0.04 7146 16704 2.51 187.24 137
m13x13(non) 68 0.60 7146 16704 12.12 1355.8 520
m16x16(sat) 149 44.09 10590 24720 722.35 2819.3 � 3600
m16x16(non) 149 2.34 10590 24720 132.12 � 3600 � 3600

square(1) 701 � 3600 33119 77361 � 3600 1344 � 3600
square(0) 701 0.96 33119 77361 � 3600 � 3600 � 3600
quadratic 469 0.05 30759 72015 10.68 14.38 923.8
linear(1) 950 0.37 16899 36914 5.01 2.98 � 3600
linear(2) 2749 1.34 35683 77887 1.27 6.73 � 3600
gcd20 542 0.03 50451 117785 � 3600 � 3600 � 3600
gcd40 1062 0.08 106423 248449 � 3600 � 3600 � 3600

mdpe(1) 2933 1.12 12245 29560 75.2 572.27 � 3600
mdpe(2) 3673 8.98 12731 30851 4.4 59.1 � 3600

TABLE I

COMPARISON OF DIFFERENT SAT RESULTS

pared with generic CNF-basedand BDD-basedSAT algo-
rithms. The limitationsof LPSAT approachsurfaceout when
the SAT instancecontainslarge portions of sequentialcon-
trol logic, or long symbolic tracesspanninga large number
or time frames. In this casethe proposedmethodwould re-
duceto usingILP for solvingBooleanSAT, or generatingtoo
complex code,which maybeprohibitively expensive in terms
of computationtime. For otherSAT instanceswith balanced
mixed arithmetic-Booleanor purearithmeticcircuit, our LP-
SAT seemsto beadesirableapproach.

On the final note, the SAT problemdiffers from the opti-
mizationproblemasit doesnot requireany specificcostfunc-
tion; any feasiblesolutionis acceptable.SinceanMILP solver
is actuallydesignedfor optimizationproblems,wewish to ex-
ploresomeheuristicsthatwould guideit to solve the simpler
SAT problemfaster. We alsowould like to investigatetheap-
plication of LPSAT approachto complex sequentialcircuits
with a largenumberof time frameinstances.

REFERENCES

[1] M. Davis andH. Putnam, “A ComputingProcedurefor Quantification
Theory,” Journal of theACM, vol. 7, pp.201–215,1960.

[2] C. E. Blair andet al., “SomeResultsandExperimentsin Programming
Techniquesfor PropositionalLogic,” Comp.andOper. Res., vol. 13,no.
5, pp.633–645,1986.

[3] J. W. Freeman, “Improvementsto PropositionalSatisfiability Search
Algorithms,” Ph.D.Dissertation,Dept.of Comp.and Inf. Sc.,Univ. of
Penn., May 1995.

[4] T. Larabee, Efficient Generation of TestPatternsusing Satisfiability,
Ph.D.thesis,Dept.of ComputerScience,StanfordUniversity, Feb. 1990.

[5] P. R. Stephan,R. K. Brayton,andA. L. Sangiovanni-Vincentelli , “Com-
binationalTestGenerationusingSatisfiability,” Tech.Rep.UCB/ERL
M92/112,Dept.of EECS.,Univ. of Californiaat Berkeley, Oct.1992.

[6] R. ZabihandD. A. McAllester, “A RearrangementSearchStrategy for
DeterminingPropositionalSatisfiability,” in Proc. Natl. Conf. on AI,
1988.

[7] J. Marques-Silva and K. A. Sakallah, “GRASP - A New Search
Algorithm for Satisfiability,” in ICCAD’96, 1996,pp.220–227.

[8] L. G.Silva,L. M. Silvera,andJ.Marques-Silva, “Algorithms for Solving
BooleanSatisfiabilityin CombinationalCircuits,” in Proc.DATE, March
1999,pp.526–530.

[9] R.E.Bryant,“GraphBasedAlgorithmsfor BooleanFunctionManipula-
tion,” IEEETransactionsonComputers, vol. C-35,pp.677–691,August
1986.

[10] K. S. Brace,R. Rudell,andR. E. Bryant, “Efficient Implementationof
theBDD Package,” Proceedingsof theDesignAutomationConference,
pp.40–45,1990.

[11] S. JeongandF. Somenzi, “A New Algorithm for the BinateCovering
Problemandits Applicationto theMinimization of BooleanRelations,”
in ICCAD, 92.

[12] B. Lin and F. Somenzi, “Minimization of Symbolic Relations,” in
ICCAD, 90.

[13] T. Villa andetal., “Explicit andImplicit Algorithmsfor BinateCovering
Problems,” IEEETrans.CAD, vol. Vol. 16,no.No. 7, pp.677–691,July
1997.

[14] P. Kalla, Z. Zeng, M. J. Ciesielski, and C. Huang, “A BDD-Based
Satisfiability Infrastructureusing the UnateRecursive Paradigm,” in
Proc.of DATE2000, 2000,pp.232–236.

[15] F. Fallah,S.Devadas,andK. Keutzer, “FunctionalVectorGenerationfor
HDL modelsusingLinear Programmingand3-Satisfiability,” in Proc.
DAC, 1998,pp.528–533.

[16] R.VemuriandR.Kalyanaraman,“Generationof designverificationtests
from behavioral VHDL programsusingpathenumerationandconstraint
programming,” IEEE Tran.onVLSISystems, vol. 3, no.2, pp.201–214,
June1995.

[17] A. K. Chandraand V. S. Iyengar, “Constraint solving for test case
generation:a techniquefor high-level designverification,” in Proc. of
Int’l Conf. on ComputerDesign: VLSI in Computers and Processors,
1992,pp.245–248.

[18] F. Fallah, Coverage DirectedValidation of Hardware Models, Ph.D.
thesis,MIT, 1999.

[19] R. K. Brayton,G. D. Hachtel,A. Sangiovanni-Vencentelli, F. Somenzi,
A. Aziz, S-T. Cheng,S. Edwards,S. Khatri, Y. Kukimoto, A. Pardo,
S. Qadeer, R. Ranjan,S. Sarwary, G. Shiple,S. Swamy, andT. Villa,
“Vis: A systemfor verification and synthesis,” Proceedingsof the
ComputerAidedVerificationConference, 1996.

[20] CPLEXReferenceManual, ILOG, 1999.
[21] H. Zhang, “Sato: An efficient propositionalprover,” in Proc. of 14th

ConferenceonAutomatedDeduction, 1997,pp.272–275.

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

