LPSAT: A Unified Approachto RTL Satisfiability

ZhihongZeng, PriyankKalla, MaciejCiesielski
Departmentf ElectricalandComputerEngineering
University of Massachusett&mherst,MA-01003,USA

{zzeng pkalla,ciesiell @ecs.umass.edu

Abstract

LPSA is an LP-basedcompehensivénfrastructue designed
to solve the satisfiability (SAT) problem for complex RTL
designscontaining both word-level arithmetic operators and
bit-level Booleanlogic. Thepresentedechniqueusesa mixed
integer linear programto modelthe constaintscorresponding
to both domainsof the design. Our technique rendes the
constrint propagation betweenthe two domainsimplicit to
the MILP solver thus enhancingthe overall efficiencyof the
SAT framevork. Theexperimentakesultsare quite promising
whencompaedwith genericCNF-basedaind BDD-basedSAT
algorithms.

I. INTRODUCTION

The Booleansatisfiability problem (SAT) hasmary direct
applicationsn the electronicdesignautomation(EDA) arena,
including testpatterngenerationtiming analysisJogic verifi-
cation,functionaltesting,etc. SAT belongsto the classof NP-
completeproblems,with algorithmic solutionshaving expo-
nentialworst-casecompleity. This problemhasbeenwidely
investigatedandcontinuego besobecausefficient SAT tech-
niguescangreatlyimpacttheperformancef mary EDA tools.

With respecto applicationsin VLSI CAD, mostinstances
of SAT formulationsstartfrom anabstractircuit description,
for which a requiredoutputvalue needsto be validated. The
resultingformulationis thenmappedontoaninstanceof SAT,
typically using Conjunctve Normal Form (CNF) formulae.
Classicalapproachedo SAT are basedon variationsof the
well known Davis andPutnamprocedurdl]. Typicalversions
of this procedurancorporatea chronologicabacktrack-based
search?] [3] [4] [5]; ateachnodein thesearchiree,it selects
an assignmentnd prunesthe subsequensearchby iterative
applicationof the unit clauseand pure literal rules[6]. Re-
centapproachemcorporatdearningtechniquesindothercon-
flict analysigproceduresvith non-cronolagical backtrackgo
prunethesearctspacq7] [8].

Another popularapproachto solving the Booleansatisfia-
bility problemss basedn Binary DecisionDiagramgBDDSs)
[9], [10]. Givena circuit for which a SAT instanceneedsto
be solved, a setof BDDs canbe constructedepresentinghe
outputvalueconstraints The conjunctionof all the constraints
expressedas a Booleanproductof the corresponding8DDs
(referredto asa productBDD) representshe setof all satis-
fying solutions. Any elementof the resultingconstraintset,
i.e. arny pathfrom therootto theterminalvertex 1 in the prod-
uct BDD, givesa feasibleSAT solution[11][12][13]. How-

ever, amajorlimitation of this approactis the memoryexplo-
sion problemassociatedvith the constructionof the product
BDD. RecentlyKalla etal. [14] proposeca BDD-basedSAT
techniquethat overcomesthe problemsrelatedto BDD size
by exploiting elementsof the unaterecursiveparadigm This
techniquesearchegor SAT solutionsin the cofactoss of the
individual constraintBDDs, thusrestrictingthe growth of the
entireBDD searchspace.

Let us briefly discussthe SAT problemasit appearsn the
context of our work andanalyzethe limitations of contempo-
rary SAT approaches.Considerthe circuit shawvn in Fig. 1
which representa block diagramof a Register TransferLevel
(RTL) design.It containsinstancef arithmeticblocks(such
as adders,multipliers and comparators)as well as Boolean
logic. Given a setof valuerequirementsat the outputs,how
do we find the input assignmentshat satisfy theseoutputre-
quirements?

D

E
inal7:0]
A
5 wh

inb[15:0]

wc2[7:0]

inb[15:8]

out2[7:0]

Fig. 1. An examplecircuit

CNF-basedSAT solvers can be directly applied to the
above circuit by transformingthe entire circuit into CNF
formulas. However, sincepracticalgate-level circuits canbe
quite large, dealing with substantiallylarge CNF formulas
resultsin unacceptabl€PUruntime. At thesametime, BDD-
basedtechniquessuffer from size explosion problems. It is
oftenthe casethatthe productBDD for a large circuit cannot
beconstructedecausef its prohibitive size- wide multipliers
areacasen point.

To overcomethesedravbacks,Fallah et al. [15] proposed
a hybrid satisfiabilityapproachHSAT, to generatdunctional
testvectorsfor HDL designs. Working on the RTL descrip-
tions, the hybrid methodgenerate<CNF clausesfor random
Booleanlogic, andlinear arithmeticconstaintsfor arithmetic
blocksin the design.Then,a 3-SAT solver is appliedto solve
SAT for CNF clausedor Booleanlogic, while linear program-
ming (LP) techniquesireusedto checkthefeasibility of linear

constraintgfor arithmeticblocks. A point to note hereis that

3-SAT checkingfor Booleanlogic andLP techniquedor arith-

metic blocks are performedsepaately, in differentdomains.
Thatis, for variablesthat correspondo the interfacebetween
the Booleanandarithmeticdomainsof the design,an assign-
mentis selectedrom the CNF-clausesandtheresultingcon-

straintsare propagatedo the arithmeticdomainfor the linear

programto checkfor consisteng. In suchaframework, back-
tracksbetweenthe two enginesare inevitable and performed
explicitly. If the selectedbinary elementsfrom the Boolean
domain (variable assignmentghat satisfy the CNF clauses)
causethe LP constraintsn the arithmeticdomainto beinfea-

sible, backtrackings neededo selectanothersetof Boolean
assignmentsSincethesetwo enginesoperatein separatelo-

mains, the performanceof HSAT is limited by the heuristics
thatchoosethe setof assignmentto Booleanvariables.

Constraint propagationtechniquesbetweendifferent do-
mainshave beenexploredto generatéunctionaltestsandhigh-
level ATPGvectorson HDL descriptiong15] [16] [17]. How-
ever, it would bedesirableio useaninfrastructurghatcanrep-
resenbothBooleamaswell asarithmeticconstraintsn asingle
unified domain. By doing so, constraintpropagatiorbetween
thearithmeticandBooleanpartscanbe handledmplicitly and
efficiently, without ary lossof information.

This papempresentanen LP-basedSAT enginecalledLP-
SAT. It providesa comprehensie approachto solving satisfi-
ability problemsfor RTL designscontaininginstancef both
arithmeticblocks and Booleanlogic. Linear arithmetic con-
straints areusedto modelthe arithmeticblocksof the design,
asin [15] The SAT constraintgor theBooleanlogic part,how-
ever, arerepresentedsinganinteger-linear program (ILP), in
contrastotheCNFformulasusedn [15]. For this purposewe
mapthe Booleanlogic into a network of AND-OR-NOT gates,
and representhe satisfiability constraintsy a systemof in-
teger/linearequations. The constraintsrepresentingoth the
Booleanandarithmeticpartsarecombinedtogetherto form a
mixedinteger linear program(MILP). An MILP solveris then
usedto solve the satisfiabilityproblemfor the entiredesign.

By representinghe satisfiability constraintsfor both do-
mainsin asingleMILP domain,we obviatethe dravbacksas-
sociatedwith theuseof two differentSAT engineperatingn
isolation. Furthermorepur techniquerendersconstraintprop-
agationbetweerthe arithmeticand Booleandomainsimplicit
totheMILP solver. This,in turn, helpsavoid theexplicit back-
trackingbetweendifferentSAT engines.This seamlessinifi-
cationof SAT constraintdor arithmeticand Booleanpartsof
thedesignblocksinto asingleunifiedMILP domain,allowsto
solve SAT problemquickly andefficiently for comple digital
designsasverifiedby extensie experimentation.

Il. PARTITIONING INTO ARITHMETIC AND BOOLEAN
PARTS

The criterionfor partitioningthe circuit into arithmeticand
Booleanpartsis dictatedby the generaktructureof thecircuit.
Such a partitioning is not unique and different partitioning

schemesmay resultin different CPU time of the resulting
MILP program.Thegenerakuleis to putasmuchaspossible
into arithmetic portion, and avoid expandingthe word-level
signalsinto bits, unlessnecessaryA notableexceptionis “bit
nibbling” which requiresextractionof a portionof theword as
abit vectorto interfaceswith the Booleanlogic.

In the example in Figure 1, the adder the multiplier,
the mux, and the two comparatorselongto the arithmetic
domain;theshadedart,containinglogic gatespbelongso the
Booleanpart. In principle, the multiplexor canbe modeledin
eitherform. However, sinceone of the multiplexor’s inputs
ina[7 : 0] is alsoaninputto otherarithmeticblocks, it will be
treatedasanarithmeticoperatorhere.

The signalsin the partitionedcircuit can be classifiedinto
thefollowing threetypes:

« Word-level signals. Thesesignalsare declaredas integer
variablesin the MILP problem.In Figurel,ina[7: 0], wb and
wc areinteger variables. (It shouldbe notedthat, depending
ontheirinteractionwith othersignals someof thosevariables
canbe declaredas continuouswith integer bounds;they will
assumentegervaluesautomatically).

« World-level signalswith bit-level expansion.Signalsof this
typetypically exist at the interfaceof arithmeticandBoolean
parts. Dependingon the type of interface,the expansionmay
befull or partial. If theentirewordinterfaceswith theBoolean
logic, it mustbe fully expandedinto individual bits, eachbit
beingdeclaredasa binary variable. For example,signalwc2
in Figurel, interfacingwith the adder will befully expanded
asfollows:

we2 = we2[0] 4 2L« we2[1] + -+ + 2" x we2[7)],

were wc2i], i=1,...,7, are binary variables,and wc2 is an
implicit integervariable.
Partial expansionis also possiblein caseof bit nibbling. In
this case,a word is broken into several partsin the places
definedby the nibbling bits. Eachportionof theword canstill
be expressedasaninteger, with bits beingdeclaredasbinary
variables.
« Single-bitsignals. Theseare typically control or decision
signals,andassuchthey aredeclaredasbinary variables.For
example,we andwd in Figurel arebinarydecisionvariables.
It shouldbenotedthattheir natureis differentthantheBoolean
variablesdescribedabove, and typically they are the ones
responsiblefor high computationalcomplexity of the MILP
program.

In our systemthe circuit partitioning into arithmetic and
Booleanpartsandthe generatiorof the respectie constraints
is fully automaticanddoesnotrequireary userintervention.

I1l. MODELING OF ARITHMETIC OPERATORS

Basicarithmeticword-level operatordanclude: adders sub-
tractors,comparatorsmultiplexers, shifters,and multipliers.
Any otherword-level operatorcanberepresenteth termsof
theseusingBooleanconnector§AND, OR, NOT). Most of the
following linearizationtechniquef the word-level operators
canbefoundin [15] [18].

A. Adder/Subtactor

Addition and subtractionare both linear operatorsand can
be trivially representeds equality constraints:C = A+ B,
whereA, B,C areall word-level variables.

B. Compaator

Thereare6 typesof comparisoroperators<, <, >, >, #,
and=. Considerasanexample,s = A < B, wherethesisa
binaryBooleanvariable.lt canbe modeledasfollows:

A-B—Lx(1-9<-1 1)
A—B+Lxs>0)

Here L is a constant,L > maxA,B). All other types of
comparisoroperatorcanbe derivedsimilarly.

C. Multiplexor

In principle, the multiplexor can be treatedas part of a
Booleanlogic. However, if the inputsto the multiplexor are
word-level signals,it is more efficient to representt as an
arithmeticoperator ConsiderZ = MUX(A, B, s), whereA,
B andZ areword-level variablesandthe selectiorsignalsis a
Booleanvariable.Fors=1,Z = A, otherwiseZ = B. TheILP
constraintdor the multiplexer are:

Z-A—Lx(1-9<0 ©)
A—Z—Lx(1—9<0 (4)
Z-B—L#s<0 (5)
B—Z—Lxs<0 (6)

with constant. > maxA, B),

D. Multiplier: Z = X x Y

Sincemultiplicationis anon-linearoperatoyoneof its input
word-level operandsX or Y, hasto be expandedn termsof
Booleanvariables. The choice of which operandto expand
is dictatedby its interactionwith the restof the circuit. The
bestcandidatds the onewhich is driven by the Booleanpart,
suchasport B of the multiplier in Figure 1. In thefollowing,
let X be an n-bit variableto be expandedandP, = X; x Y be
a partial product. Note that X; hasto be declaredasa binary
variable,but P is left asa continuousvariablebecausd® will
take integer value automatically The ILP constraintSor the
multiplier are:

n-1 i
z:%z*e (7)
andfor eachi € [0,...,n—1],
R—LxX<0 (8)
P-Y+Lx(1-X)>0 9)

0<R<Y (10)

Practicaldesignsoftencontainoperandsvider than32 bits.
Due to an inherent32-bit word representatiorf the current
MILP solverssuchwide operatorsannotbe handleddirectly.
Accordingto ourexperiencewith thecommerciaMILP solver
CPLEX, numericalproblemsmightoccurfor signalwiderthan
24 bits. As aresult,wide operatoranustbe decomposeéhto
smallerones. For more detailsregardingthe decomposition,
thereaderis referredto [18].

IV. MODELING OF BOOLEAN LOGIC

We now presentthe modelingof the Booleanlogic using
ILP constraintscompatiblewith thosederivedfor arithmetic
portionof thecircuit.

A straightforvard way of translatingBooleanlogic into
a mixed integerlinear programis to first map the Boolean
part into AND-OR-NOT network, and then derive integer
linear constraintsor eachlogic gate. All the primary inputs
and outputsof the Booleannetwork are declaredas binary
variables, while the rest of intermediatenodesare left as
continuousvariables.Dueto the binary natureof the Boolean
network the continuousvariableswill automaticallyassume
binaryvaluesaswell.

A. AND Gate

Considera 2-input AND gatewith inputs A, B and output
Z. Accordingto its truth table, the following is alwaystrue:
Z < AandZ < B. OutputZ takesvaluel whenbothinputsare
1,henceZ > A+B—1. Z > 0is implicit for LP. In summary
thelinearconstraintdor the 2-inputAND gateareasfollows.

Z < A (11)
Z < B (12)
Z > A+B-1 (13)

(14)

This can be readily extendedto an AND gate with an
arbitrary numberof inputs. Let Z be an outputand A; be an
i-th inputof anAND gate.Then:

Z < A, Vie{l..n} (15)
2> FA-0-1 16)
an

B. ORGate

Similarly, an n-input OR gatecanbe linearizedasfollows.
HereZ is the outputandA, is thei-th input.

Z > A, Vie{i..n} (18)
z < 3a (19)
z < 1 (20)

C. NOT Gate

A NOT gatewith input A and output Z can be trivially
modeledas:Z = 1— A

The describedmethodfor modelingthe Booleanlogic as
ILP constraintsproved the most effective from the compu-
tational compleity point of view. We also experimented
with othermethodssuchasconstructinga BDD andderiving
MUX-lik eequationgseesectionlll-C) for theBDD nodeshut
theresultswereinferior in mostcases.

V. EXPERIMENTAL RESULTS

The LPSAT tool wasimplementedn theframawork of VIS
[19]. One of the merits of our methodis that no manual
interventionis neededor theentireSAT processstartingwith
the Verilog RTL descriptionof the circuit, the partitioning
onto arithmeticand Booleanpartsand the generationof the
MILP constraintsaredonein afully automaticfashion.These
constraintarethenpassedo thecommerciaMILP solver[20]
andtheresultsverifiedby applyingthe obtainedvectorsto the
original circuit structurein VIS.

We comparedthe performanceof LPSAT with two CNF-
basedalgorithms, SATO [21] and GRASP [7], and with a
BDD-basedsatisfiability tool B-SAT [14] over a range of
benchmarks.In orderto geta fair comparisonthe overhead
associateavith transforminghecircuit network into CNF for-
mulaswereignored. Similarly, we alsoignoredthe overhead
associateavith translatingthe Booleanpartinto a network of
AND-OR-NOT gategwhichisreallyminimal). All experiments
wereperformedon a Pentiumlll/500MHz PCrunningLinux.

Thetestcasesusedin ourexperimentsshavnin Tablel, are
extractedfrom RTL models. The circuit squae corresponds
to a designwhose output assertshigh if (Z? = X? +Y?),
where X,Y and Z are 16-bit wide operators. The SAT
instancessquae(1) and squae(0) correspondo the output
being assertedto 1 and O, respectiely. The benchmark
guadratic is animplementatiorof a solutionto the quadratic
equationX?+axX +b= 0, wherea andb areconstantandX
is a16-bitwide variable.Giventheconstanta andb, the SAT
instancecorresponds$o computingthe valueof X. Examples
linear(1) andlinear(2) are circuits with a relatively simple
structure(a chain of comparatorsut with a large number
of primary inputs (over 1200). The two instanceddiffer in
their size. gcd20 and gcd40 are extensionsof the greatest
commondivisor (GCD),a24-bitinputsequentiatircuit. They
are generateddy unrolling the GCD circuit over 20 and 40
time frames,respectrely. m13x 13 andml6 x 16 are 13-hit
and 16-bit multipliers. Two differentSAT instancedor each
were created:(saf with a feasiblesolution,and(non) with a
non-satisfiableequirementFinally, mdpe(1)/(2), is a circuit
composedf a multiplier feedinga dynamicpriority encodey
takenfrom arealisticdesign. The two casedliffer in the size
of theBooleanpartof thecircuit.

It shouldbe emphasizedthat all the testcasesvere com-
prisedof both, the arithmeticand the Booleanparts,includ-
ing themultiplier circuits(thestructureof unsignednultipliers

wasobtainedby arecursve setof addersandrequiredcertain
amountof connectingBooleanlogic).

In Tablel, column2 (# const) givesthe numberof linear
constraintgyeneratedy LPSAT, while column3 shavs CPU
time for solving LPSAT. Columns4 and5 give the number
of literalsandthe numberof clausesrespectiely, in the CNF
formulas. The CPUtimesfor CNF-basedlgorithmsarelisted
in columns6 and7. Finally, column 8 givesthe CPU time
for solving the sameexamplesusing a BDD-basedBoolean
satisfiabilitytool, BSAT [14].

As shown in Table I, in most test casesthe run-timesof
LPSAT aresignificantlysmallerthanthoseof gate-lerel CNF-
basedSAT algorithms. Thereis one exception, squae(1),
which could be successfullysolved only by GRASP This one
was the only test casethat LPSAT was unableto solve in
the presetamountof time. In contrast,SATO and GRASP
couldnot solve four testcases Althoughthe CNF-baseSAT
algorithmshave madea lot of progressin the recentyears
and have beensuccessfullyappliedin ATPG [4] [5], these
approachesave to dealwith large numbersof CNF clauses.
As aresult,they have difficulties on somelarge circuits with
even simple structure,suchas gcd20 and gcd40. Similarly,
the BDD-basedsatisfiabilitytool, BSAT [14], could solve but
smallexampleshecaus@f the excessve time/memoryneeded
to createBDDs for thetestedcircuits.

It would be desirableto compareour methodswith that of
HSAT [15]. While thesecircuitsweremadeavailableto us,all
exceptmult16aretrivial, mainly arithmeticcircuits. Hencethe
comparisonwould not yield ary importantinsight, especially
sinceHSAT alsousesCPLEX. It shouldalso be pointedout
that mult16 of HSAT is a purely arithmeticcircuit, with no
Booleanpart, unlike our m16 x 16 multiplier which contains
certain amountof Booleanlogic. In orderto demonstrate
the robustnessof our approachwe have usedlarge designs
which requiredup to about 250K clausesin the equivalent
CNF representationwhile the largestdesignin [15] requires
nomorethanl.4K clauses.

Theoretically the worst casecomputationakcomplexity of
LPSAT is exponentialin the numberof binary/integer vari-
ables.The programhasanoptionto explicitly specifythe pri-
orities of binary variablesto branchon. We did experiments
in which primary inputs were setto assumeeither higher or
lower branchpriority over the intermediatesignals. Unfortu-
nately the resultingCPU time over the testedexampleswas
case-dependeandno consistenbbsenationcouldbemade.

VI. CONCLUSIONS AND FUTURE WORK

The presented PSAT techniquesolves satisfiability prob-
lemfor RTL designsy modelingthe constraintsof arithmetic
and Booleanlogic in a unified MILP ervironment. The uni-
fication obviatesthe needfor multiple SAT tools operatingin
isolation, andrendersthe constraintpropagatiorbetweenthe
two domainsimplicit to the MILP solver, thusenhancinghe
overall efficiency of the SAT framework.

The experimentalresultsare quite promising when com-

LPSAT CNF-SAT BSAT
Testcase SATO GRASP
#constr | CPUtime | #literals | #clauses | CPU time | CPU time | CPU time

m13x13(sat) 68 0.04 7146 16704 2.51 187.24 137

m13x13(non) 68 0.60 7146 16704 12.12 1355.8 520
m16x16(sat) 149 44.09 10590 24720 722.35 2819.3 >3600
m16x16(non)| 149 2.34 10590 24720 132.12 >3600 >3600
square(1) 701 >3600 33119 77361 >3600 1344 >3600
square(0) 701 0.96 33119 77361 >3600 >3600 >3600
guadratic 469 0.05 30759 72015 10.68 14.38 923.8
linear(1) 950 0.37 16899 36914 5.01 2.98 >3600
linear(2) 2749 1.34 35683 77887 1.27 6.73 >3600
gcd20 542 0.03 50451 117785 >3600 >3600 >3600
gcd40 1062 0.08 106423 | 248449 >3600 >3600 >3600
mdpe(1) 2933 1.12 12245 29560 75.2 572.27 >3600
mdpe(2) 3673 8.98 12731 30851 4.4 59.1 >3600

TABLE |

COMPARISON OF DIFFERENT SAT RESULTS

paredwith generic CNF-basedand BDD-basedSAT algo-

rithms. The limitations of LPSAT approachsurfaceout when
the SAT instancecontainslarge portions of sequentialcon-

trol logic, or long symbolic tracesspanninga large number
or time frames. In this casethe proposedmethodwould re-

duceto usingILP for solvingBooleanSAT, or generatingoo

comple code,which may be prohibitively expensve in terms
of computationtime. For other SAT instanceswith balanced
mixed arithmetic-Boolearor pure arithmeticcircuit, our LP-

SAT seemso beadesirableapproach.

On the final note, the SAT problemdiffers from the opti-
mizationproblemasit doesnotrequireary specificcostfunc-
tion; ary feasiblesolutionis acceptableSinceanMILP solver
is actuallydesignedor optimizationproblemswe wish to ex-
plore someheuristicsthat would guideit to solve the simpler
SAT problemfaster We alsowould lik e to investigatethe ap-
plication of LPSAT approachto comple sequentialcircuits
with alargenumberof time frameinstances.

REFERENCES

[1] M. Davis andH. Putnam, “A ComputingProcedurdor Quantification
Theory’ Journal of the ACM, vol. 7, pp.201-2151960.

[2] C.E.Blair andetal., “SomeResultsandExperimentsn Programming
Techniquedor PropositionaLogic,” Comp.andOper Res, vol. 13,no.
5, pp.633-645,1986.

[3] J.W. Freeman, “Improvementsto PropositionalSatisfiability Search
Algorithms; Ph.D. Dissertation,Dept.of Comp.and Inf. Sc.,Univ. of
Penn, May 1995.

[4] T. Larabee, Efficient Genention of TestPatternsusing Satisfiability
Ph.D.thesis Dept.of ComputeiScience StanfordUniversity Feh 1990.

[5] P R.StephanR.K. Brayton,andA. L. Sangi@anni-Vincenteli, “Com-
binational Test Generatiorusing Satisfiability’ Tech.Rep.UCB/ERL
M92/112,Dept.of EECS.,Univ. of Californiaat Berkelgy, Oct. 1992.

[6] R.ZabihandD. A. McAllester “A RearrangemerfearchStratgy for
Determining PropositionalSatisfiability’ in Proc. Natl. Conf on Al,
1988.

[7] J. Marques-Sila and K. A. Sakallah, “GRASP - A New Search
Algorithm for Satisfiability’ in ICCAD’96, 1996,pp.220-227.

[8] L.G.Silva,L. M. Silvera,andJ.Marques-Sile, “Algorithms for Solving
BooleanSatisfiabilityin CombinationalCircuits] in Proc.DATE, March
1999,pp.526-530.

[9] R.E.Bryant,“GraphBasedAlgorithmsfor BooleanFunctionManipula-

tion,” IEEE Transaction®on Computes, vol. C-35,pp.677-691 August

1986.

K. S.Brace,R. Rudell,andR. E. Bryant, “Efficient Implementatiorof

the BDD Packagé, Proceeding®f the DesignAutomationConfeence

pp.40-45,1990.

S.JeongandF. Somenzi, “A New Algorithm for the Binate Covering

Problemandits Applicationto the Minimization of BooleanRelations,

in ICCAD, 92.

B. Lin and F. Somenzi, “Minimization of Symbolic Relations, in

ICCAD, 90.

T. Villa andetal., “Explicit andimplicit Algorithmsfor BinateCovering

Problems, IEEE Trans.CAD, vol. Vol. 16,n0.No. 7, pp.677-691 July

1997.

P. Kalla, Z. Zeng, M. J. Ciesielski, and C. Huang, “A BDD-Based

Satisfiability Infrastructureusing the Unate Recursie Paradignf, in

Proc. of DATE 200Q 2000,pp.232-236.

F. Fallah,S.DevadasandK. Keutzer “FunctionalVectorGeneratiorfor

HDL modelsusingLinear Programmingand 3-Satisfiability’ in Proc.

DAC, 1998,pp.528-533.

R.VemuriandR. Kalyanaraman;Generatiorof designverificationtests

from behaioral VHDL programsausingpathenumeratiorandconstraint

programming, IEEE Tran.on VLSISystemsvol. 3, no. 2, pp.201-214,

Junel995.

A. K. Chandraand V. S. lyengar “Constraintsolving for test case

generation:a techniquefor high-level designverification; in Proc. of

Int'l Conf on ComputerDesign: VLSIin Computes and Processas,

1992,pp. 245-248.

F. Fallah, Coverage DirectedValidation of Hardware Models Ph.D.

thesisMIT, 1999.

R. K. Brayton,G. D. Hachtel,A. Sangi@anni-\encentell F. Somenzi,

A. Aziz, S-T. Cheng,S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo,

S. QadeerR. Ranjan,S. Sarvary, G. Shiple, S. Swamy, andT. Villa,

“Vis: A systemfor verification and synthesi$, Proceedingsof the

ComputerAidedVerificationConfeence 1996.

CPLEXRefeenceManual ILOG, 1999.

H. Zhang, “Sato: An efficient propositionalprover,” in Proc. of 14th

Confeenceon AutomatedDeduction 1997,pp.272-275.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]
[21]

	Main
	DATE2001
	Front Matter
	Table of Contents
	Session Index
	Author Index

