
Low power storage cycle budget distribution tool support for hierarchical graphs}

Erik Brockmeyer, Arnout Vandecappelle, Sven Wuytack, Francky Catthoor�

Desics, IMEC, Kapeldreef 75, Leuven, Belgium
� Also professor at the Katholieke Univ. Leuven, Belgium
} Partly sponsored by the Esprit ESD-LPD project 25518 : DAB-LP

Abstract

In data dominated applications, like multi-media and
telecom applications, data storage and transfers are the
most important factors in terms of energy consumption,
area and system performance. Several steps which optimize
these costs are present in our systematic Data Transfer and
Storage Exploration methodology. In the important step
discussed in this paper, the cycle budget available for back-
ground storage transfers is globally distributed over the ap-
plication’s memory accesses that are typically grouped in
the loop and function hierarchy. This is crucial for meeting
the real-time constraints with a customized memory organ-
isation without counteracting the memory size and energy
budget optimizations achieved by earlier steps in our script.

This paper proves the effectiveness of the prototype tool
on driver applications of several application domains. It
clearly shows the tradeoff between power, area and speed.

1 Introduction

In data transfer and storage intensive applications, the
memory accesses are often the limiting factor to the execu-
tion speed, both in custom “hardware” and instruction-set
processors (“software”). Data processing can easily be sped
up through pipelining and other forms of parallelism. On
the other hand, memory bandwidth can be improved too, es-
pecially in customized memory organisations, but it is much
more expensive to realize this. Multi-port memories cause
a large cost in area and power and high-speed memories
are restricted to very small sizes. However, they may not
be avoidable in stringent timing constraints. Because mem-
ory accesses are so important, it is even possible to make
an initial system level performance evaluation based solely
on the memory accesses to complex data types. Data pro-
cessing is then temporarily ignored except for the fact that
it introduces dependencies between memory accesses.

Data Transfer and Storage Exploration (DTSE) [6] is
a systematic methodology to optimize data dominated ap-
plications for memory size, energy consumption and bus
load reduction. Here the “back-end” of the methodology
is considered, which has the highest priority for tool sup-
port, whereas the “front-end” steps in the script are mainly

code transformations which can still be done manually (but
in a systematic way [17]). The DSE step, discussed in this
paper, involve the design of a (partly) custom memory orga-
nization. The final memory organization should be as cost-
efficient as possible, but on the other hand its performance
must (just) meet the real-time constraints.

In our previous research we have found that the design
of a custom memory organisation can be split up in a two
steps. The first step trades off the memory bandwidth with
the system real-time constraint (Storage Cycle Budget Dis-
tribution step), followed by second step to fit the memory
architecture to the application’s needs (Memory Allocation
and Assignment step), taking into account the constraints
generated in the first step [22] (Figure 1).

Storage Cycle Budget
Distribution (SCBD)

Memory Allocation
and Assignmnent (MAA)

Real Time Constraints

Data Layout Organisation
(Inplace)

Multiple types of
code transformations

Optimized Flow Graph

Memory Architecture
Constraints (ECG)

"Backend stages"
Platform dependent}

}"Frontend stages"
Platform independent

Memory architecture
definition

Figure 1. The memory architecture is defined in two steps

(SCBD+MAA).

The approach taken in our Storage Cycle Budget Dis-
tribution (SCBD) method is to partly order the memory ac-
cesses such that the maximally required memory bandwidth
is minimized [22]. This can be done by a (more) efficient
use of the memory ports. In our application domain, an
overall target storage cycle budget is typically imposed, cor-
responding to the overall throughput. In addition, other real-
time constraints can be present which restrict the ordering
freedom. The result of this SCBD step is a set of constraints
for the memory architecture.

To carefully evaluate the effect of the SCBD step, a de-
tailed custom memory architecture has to be decided. This
objective is tackled in the Memory Allocation and Assign-

1

ment (MAA) step, for which a systematic technique has
been published in [5, 17]. The MAA is done in three sub-
steps. First, the number and type of memories is chosen,
during the memory allocation sub-step. Then, every signal
is assigned to one of the allocated memories in the signal-
to-memory assignment sub-step. This also determines the
dimension of each memory. Finally, the related bus and port
organization are derived. After these sub-steps, the memory
architecture is fully determined. This allows to derive quite
accurate data transfer and storage related costs in term of
power, area and speed. The actual data organization inside
each memory is still partly free however and is only de-
termined in the last step of the DTSE script, memory data
layout.

Our previously published SCBD prototype tool supports
the definition of a memory organisation which is cheap in
terms of power and area [22, 5]. An overview of this
technique is given in Section 4. More related work can be
found in Section 2. However, this methodology and tool are
applicable for flat flow graphs only. All real-life applica-
tions contain loops and a function hierarchy though which
could only be handled locally one at a time. To overcome
this undesired situation we have now significantly extended
the current approach and tool. Section 5 emphasizes the
most crucial additional problems which arise for hierarchi-
cal flow graphs. In Section 6 we present our incremental
approach which gives a solution to these problems. The ex-
periments in Section 7 have been performed with the aid of
a prototype tool implementation to support this approach.

2 Related work

In the register allocation domain, the allocation tech-
niques start from a fully scheduled flow graph and are scalar
oriented. A nice literature overview of this domain, which is
fairly well understood by now, can be found in [16]. Many
of these techniques construct a scalar conflict or compati-
bility graph and solve the problem using graph coloring or
clique partitioning. This conflict graph is fully determined
by the schedule which is fixed before. This means that no
effort is spent to come up with an optimal conflict graph.

In the less explored domain of memory allocation and as-
signment for hardware systems, the current techniques start
from a given schedule [11], or perform first a bandwidth es-
timation step [1] which is a kind of crude ordering that does
not really optimize the conflict graph either. These tech-
niques have to operate on groups of signals instead of on
scalars to keep the complexity acceptable, e.g., thestream
model of Phideo [11] or thebasic sets in the ATOMIUM en-
vironment [1].

In the scheduling domain, the techniques for optimiz-
ing the number of resources given the cycle budget are of
interest to us. Also here most techniques operate on the

scalar-level, e.g. [13, 18]. The only exceptions currently are
the Phideo stream scheduler [19] and the Notre-Dame rota-
tion scheduler [14]. Many of these scalar techniques try to
reduce the memory related cost by estimating the required
number of registers for a given schedule. Only few of them
try to reduce the required memory bandwidth, which they
do by minimizing thenumber of simultaneous data accesses
[18, 19]. They do not take into accountwhich data is being
accessed simultaneously.

The main difference between our SCBD and the related
work discussed here is that we try to minimize the required
memory bandwidth in advance by optimizing the access
conflict graph for groups of scalars within a given cycle
budget. We do this by putting ordering constraints on the
flow graph, taking into accountwhich data accesses are be-
ing put in parallel (i.e., will show up as a conflict in the
access conflict graph).

3 Speed-cost tradeoff considerations

The SCBD and MAA tool combination explores differ-
ent solutions in the performance, power and area space. In-
deed, SCBD generates many valid solutions for different
cycle budgets and MAA generates multiple solutions in the
power/area space for this cycle budget. Therefore it be-
comes possible to make the right tradeoff within this so-
lution space. Of course the tradeoff can be based solely on
the tool output when the application is data dominant. If the
application is not fully data dominated, memory accesses
cycles can be traded to data-path cycles. Also cycles as-
signed to tasks, in a complex application consisting out of
multiple task, can be supported by this type of information.
These kind of considerations illustrated with examples can
be found in [3, 4].

4 Summary of the flat flow graph technique

The main goal of the approach is to find which arrays
must be stored in different memories in order to meet the
cycle budget (for details see [5, 22]). Ordering the mem-
ory accesses within a certain number of memory cycles de-
termines the required memory bandwidth. The concept of
memory cycles does not have to equal the (data-path) clock
nor the maximum access frequency of the memory, it is only
used to describe the relative ordering of memory accesses.
Every memory access is assumed to take up an integer num-
ber of abstract cycles. A memory access can only take place
in a cycle after any access on which it depends. The found
ordering does not necessarily have to match exactly with the
final schedule (complete scheduling, including data-path re-
lated issues). It is produced to make sure that it is possible
to meet the real time constraints with the derived memory
architecture.

2

If two memory accesses are ordered in the same memory
cycle, they are in conflict and parallelism is required to per-
form both accesses. These simultaneous memory accesses
can be done in two different memories, or, if it is the same
array in a dual port memory. Thus, the conflict constrains
the signal to memory assignment and incurs a certain cost.
A tradeoff has to be made between the performance gain
of every conflict and the cost it incurs [3, 4]. On the one
hand, every array in a separate memory is optimal for speed
and seemingly also for power. But having many memo-
ries is very costly for area, interconnect and complexity and
due to the routing overhead also for power in the end. Due
the to presence of the real time constraints and the complex
control and data dependencies, a difficult tradeoff has to be
made. Therefore automatic tool support is crucial.

Our previous tool orders by “balancing the flow graph”
a single (flat) flow graph within the given time constraints.
The flow graph is extracted from a C input description. In-
ternally, it constructively generates a (partial) memory ac-
cess ordering steered by a sophisticated cost model which
incorporated global tradeoffs and access conflicts over the
entire algorithm code. The cost model is based on size, ac-
cess frequency and other high level estimates (eg. possibil-
ities for array size reduction [8]). The technique used for
this is to order the memory accesses in a given cycle budget
by iteratively reducing the intervals of every memory access
(starting with ASAP and ALAP) [22]. The interval reduc-
tions are driven by the probability and cost of the potential
conflicts between the accesses.

An Extended Conflict Graph (ECG) is generated which
follows out of the memory access ordering. It contains
the conflicting arrays which are accessed simultaneously.
These arrays need to be stored in different memories. Note
that many possible orderings (and also schedules) are com-
patible with a given ECG. A consolidation of the memory
organisation is needed in the subsequent memory allocation
and assignment step (as explained in Section 1).

5 Extension for hierarchical graphs

The technique mentioned above can only be directly used
for flat flow graphs, i.e. when no loops and no function
calls are present. Loops could be unrolled and function
calls could be inlined, but this destroys the hardware or
code reuse possibilities present in the original specification.
Moreover, the complexity would explode. Therefore, order-
ing the memory accesses has to be done hierarchical.

We define ablock as a code part which contains a flat
flow graph. It can contain multiple basic blocks and con-
dition scopes. Even the function hierarchy can be adapted
to the needs of ordering freedom. In practice, the term loop
body and block coincide; all loop bodies are defined as a
separate block and the body of a nested loop is part of an

other block.

Because the number of iterations to the blocks is mostly
different, the problem is increased in two directions. First,
the distribution of the global cycle count over the blocks
need to be found (see Section 5.1), within the timing con-
straints and while optimizing a cost function. Second, a
single memory architecture must satisfy the constraints of
all blocks, and therefore the global ECG cost must be mini-
mized. Combining all the conflicts of the locally optimized
blocks in the global conflict graph will lead to a poor result
(see Section 5.2). Reuse of the same conflict over different
blocks is essential.

In our application domains, an overall throughput con-
straint (maximal or average) is put forward for the entire
application. For instance, in a video application the tim-
ing constraint is 40ms to arrive at 25 frames per second.
Sometimes, additional timing constraints are given. In this
paper, we will only deal with one global timing constraint
but extensions to support additional internal constraints are
feasible on top of this.

5.1 Cycle distribution across blocks

The distribution of the cycles over the blocks is crucial.
A wrong distribution will produce a too expensive memory
architecture because the memory access ordering cannot be
made nicely in some of the blocks while there are “cheap”
cycles available in other blocks. Every single block affects
the global cost of the memory subsystem. Therefore, if cy-
cle budget of one block is too tight (while there is space in
other blocks) it will cause additional cost.

The global cycle budget can be distributed over differ-
ent blocks in many different ways, as shown Figure 2. At
the left side of the figure a program is given containing 3
consecutive loops, to be ordered in 500 cycles. The table
of Figure 2 shows three different distributions and a good
ordering matching the distribution. The resulting conflict
graph and cheapest memory architecture is given in the last
two rows. Obviously, the second solution (loop-i 2 cycles,
loop-j 1 cycle andloop-k 2 cycles) is the cheapest solution.
The very poor third distribution even forces a dual-ported
memory (due to assignment of one cycle forloop-i).

The illustration here is based on an academic example
to show the problem. But in fact, the problem in real-life
applications is much more difficult. First, because more
signals, accesses and blocks are involved, the number of
different possible distributions increases. Second, the num-
ber of block iterations will not be equal for each block. The
impact on the global time elapse of one block is much big-
ger than another block. Hence, there is more freedom in the
search space.

3

for (i = 1 to 100)
 tmp += A[i] + B[i] + C[i];
 A[i] = i;

for (j = 1 to 100)
 tmp2 += B[j] + f(A[j]);

for (k = 1 to 100)
 tmp3 = max(tmp3,
 g(C[k] + B[k]));

R(A) R(B)

R(C) W(A)

R(A)

R(B)

R(B) R(C)

R(A) R(B)

R(A) R(B) R(C) W(A)

200-200-100 200-100-200 100-200-200

A B

C

A B

C

A B

C

R(A) R(B)

R(C) W(A)

R(B)

R(C)

R(A)

R(B)

R(B)

R(C)

2

2

1

2

2

1
2

1

2

A B C A
B
C

A B C

cycle budget
= 500 cycles

Figure 2. The distribution over loops has a big impact on

the memory architecture.

5.2 Global optimum for ECG

A global optimization over all blocks is needed to obtain
the global optimal conflict graph. Ordering the memory ac-
cesses on a block per block basis will result in a poor global
result. The local solution of one block will typically not
match the (local) solutions found in other blocks. Together,
the local optima will then sum up to an expensive global
solution (see Figure 3).

A D

A B

C

A B C

A C
B

A B
C D

A
B C
B D

D

A B

C D

A B

C D

A B

C D

D

A C

A B

C

A
B D

B D
A

A C
B D

A C
B D
B

D

A B

C D

A B

C D

A B

C D

C

+ +

Local optimization Global optimization
for (i = 1 to 5)
 A[i] = A[i] + B[i] +
 C[i]+D[i];

for (j = 1 to 5)
 B[j] = f(A[j]);
 D[j] = g(C[j]);

for (k = 1 to 10)
 B[k] = g(B[k], A[k]);
 D[k] = C[k];

Figure 3. Global optimum instead of local optima.

Solving the problem locally per block will lead to differ-
ent conflict graphs. The total application has one memory
architecture and therefore one global conflict graph only.
The memory architecture cannot change from one block to
the next. Therefore, all the block (local) conflicts graphs
should be added to one single global conflict graph. A typ-
ical conflict mismatch is shown in the left side Figure 3.
A fully connected global graph is the result, requiring four
memories.

Ordering the memory accesses with a global view can
potentially “reuse” conflicts over different blocks. When
the different blocks use the same conflicts, as shown at the
right hand side of Figure 3, the global conflict graph and the
resulting memory architecture are much cheaper. Again,

the academic example shows the essence of the problem.
However, the real problem is much more complex.

6 Incremental SCBD

For solving the storage cycle budget distribution over
multiple blocks we have placed the flat-graph solver (de-
scribed in Section 4) in a loop, iterating over all the blocks.
As motivated in Subsection 5.2 as such, this leads to a poor
global optimum. This is solved by suggesting reusable con-
flicts to the flat-graph solver. Moreover, additional con-
straints are put forward to steer the process.

The incremental SCBD reduces the global cycle budget
every step until the target cycle budget is met. Initially,
the memory access ordering is sequential. Therefore ev-
ery block can be ordered without any conflicts. During the
iteration over the blocks, the cycle budget is made smaller
for every individual block. Gradually, more conflicts will
have to be introduced. The SCBD approach decides which
block(s) are reduced in local cycle budget and so which con-
flicts are added globally. Finally, after multiple steps of de-
creasing the budgets for the blocks, the global cycle budget
is met and a global conflict graph is produced. This is less
trivial than it looks, as shown next.

The proposed SCBD algorithm initializes with a sequen-
tial ordering (see Figure 4). Every memory access has its
own time slot. A block containing X memory accesses will
have an initial cycle budget of X cycles (assuming one cy-
cle per memory access). Due to this type of ordering, the
global conflict graph will not contain any conflicts.

Initialisation:

for (all blocks)
Use sequential ordering

The found ECG will contain NO conflicts

Iteration:

While (target cycle budget > cycle budget) // step
for (all blocks)
reduce cycle budget of block
return (some) ordering freedom
execute flat-graph optimizer

update one or multiple blocks (based on gain/cost)

Figure 4. Basic algorithm for incremental SCBD.

In the successive steps of the algorithm the global bud-
get will shrink. Every step, (at least) one of the blocks will
reduce in length. The reduction of the block is at least one
cycle. However, depending on the number of iterations of
the concerning block, the impact on the global budget is
much bigger. The global conflict cost change is calculated
in the case of the block reduction. But the reduction is not
approved yet. The block(s) having the biggest gain (based
on a change in total cycle budget and/or change in conflict

4

cost) is actually reduced in size. All the other ordering re-
sults in this step are discarded. The cycle budget reduction
is continued until the target cycle budget is reached. Due to
the block cycle budget reduction, additional conflicts arise.
Note that this basic algorithm is greedy, since only a single
path is explored to reach the target cycle budget.

The traversal of the cycle search space can be made less
greedy however. At every step, multiple reduction possibili-
ties exist. Instead of discarding non-selected block ordering
information (as proposed in the previous paragraph), these
can be selected and explored further. Different block reduc-
tions (paths) and finally the entire solution tree can be built.
An example of such one additional exploration is shown by
the dotted line in Figure 6. Many of the branches will be
equivalent to the already found “greedy solutions”. Due to
this property, the exploration will not explode but still extra
solutions can be found. Moreover, a lower bound can also
cut off some of the potential branching paths. Note how-
ever, due to the heuristics in the flat graph solver, the solu-
tion may be different even though the distribution of cycles
over the blocks is equal. In this way, the longer the tool will
run, the more and (maybe) better solutions can be found.

The incremental nature is further explained in Figure 5.
The source code is shown left. The first loop contains five
memory accesses and has five iterations. Therefore, in total
25 cycles are spent inloop-i when executed sequentially.
Similarly, 20 cycles inloop-j and 50 cycles inloop-k. In
total 95 cycles are spent for the entire algorithm. In this
example,loop-i is selected in the first step and reduced from
five to four cycles, causing a total cycle budget reduction
from 95 to 90. In the next two steps,loop-k is reduced,
leading to a total cycle budget from first 80 and then 70. In
the last step, the target budget is met and the algorithm ends.

for (i = 1 to 5)
 A[i] = A[i] + B[i] +
 C[i]+D[i];

for (j = 1 to 5)
 B[j] = f(A[j]);
 D[j] = g(C[j]);

for (k = 1 to 10)
 B[k] = g(B[k], A[k]);
 D[k] = C[k];

5 4
25 20

T
ar

ge
t C

yc
le

 B
ud

ge
t (

75
 C

yc
le

s)

5 4
50 40

25 Cycles

20 Cycles

50 Cycles

4 3
40 30

95 Cycles 90 Cycles

80 Cycles

70 Cyles

Figure 5. Graphical representation of incremental SCBD.

To improve the global result and to avoid a long exe-
cution time and instable behavior, two new inputs have to
be entered to the flat-graph scheduler. First of all, a list of
reusable conflicts is specified. The internal cost function is
adapted to (re)use conflicts which are already used by other
blocks if possible. Second, the ordering freedom is limited.
The returned ordering freedom to a block is based on the

final ordering of the previous step1.
The algorithm is sped up further by reusing ordering re-

sults which did not change. Since much ordering informa-
tion is discarded in a step, this does not mean it is useless.
By keeping track of which blocks have to be rescheduled,
the tool execution time can be decreased drastically. This
happens especially in large applications containing many
independent blocks.

Currently, the flat flow graph technique (see Section 4)
used has already proven its value in the past. But its speed
becomes unacceptable large for huge loop bodies. Research
is in progress to use dynamic programming and different
type of schedulers to drastically speedup the original te-
chinique [12].

We have built a prototype tool which incorporates all
these techniques, to avoid the tedious labour for a designer.
An on-line demo and down-loadable (application restricted)
executable are available on the web:
http://www.imec.be/acropolis/

7 Experimental SCBD results

The new prototype tool has been applied to drivers from
multiple application domains to prove the effectiveness, as
demonstrated by results in other recent papers [2, 3, 4, 17].
In these papers, the actual technique underlying the SCBD
exploration has however not yet discussed. Here we will
analyse the results and the detailed evolution of the SCBD
tool for the Binary Tree Predictive Coder driver only. The
experiment clearly shows the tradeoff between memory or-
ganisation cost (power and area) and the memory subsystem
cycle budget. All the results are obtained within reasonable
tool execution time (several minutes) on a Pentium II-400.
A Motorola library memory model is used to estimate the
on-chip memory cost (see [6]). For the off-chip compo-
nents, we have used an EDO DRAM series of Siemens.

Binary Tree Predictive Coding (BTPC) [15] is a lossless
or lossy image compression algorithm based on multi res-
olution. The image is successively split into a high resolu-
tion image and a low resolution quarter image, where the
low-resolution image is split up further. The pixels in the
high-resolution image are predicted based on patterns in the
neighboring pixels. The remaining error is then expected to
achieve high compression ratios with a Huffman coder. The
power numbers in this section are based on real memory
models.

Figure 6 shows the tradeoff for the complete cycle bud-
get range. This is obtained by letting the tool explore the
cycle budget starting from the fully sequential budget, and
then progress through the most interesting memory organi-

1The memory access is scheduled between the ASAP and ALAP time.
Both the ASAP and ALAP are put close to the location of the previous
ordering.

5

sations (from a cost point of view) to reduce the cycle bud-
get for multiple differently optimized implementations [4].
The number of allocated on chip memories is four for the
entire graph shown in this figure. In the sequential bud-
get (about 18M cycles), only single-port memories are em-
ployed. When a dual-ported memory has to be added, a
clear discontinuity is present in the energy function. In
order to reduce the budget below 8M cycles, dual-ported
memories are needed though. The allocation of two dual-
ported memories allows to decrease the cycle budget up to
the critical path (6.5M cycles). The worst case needed “im-
age” bandwidth can be guaranteed by inserting three inter-
mediate on-chip memories (two dual port and one single
port). These three intermediate memories can deliver up to
five pixels per memory cycle.

Off-chip
memory

Off-chip
memory

Potential extra point found
by further exploration

0 5 10 15 20
Cycle budget (#Mcycles)

100

150

200

250

E
ne

rg
y

(m
J)

Figure 6. Pareto curve for Binary Tree Predictive Coder.

The cyle distribution over the eight loops of the BTPC
application is done incrementally by the tool. The evolution
of this distribution is shown in Figure 7. At every step, the
differently shaded bars represent the consumed cycle bud-
get of every loop (“loop body time”� “number of loop it-
erations”). The lowest gray part representsloop-1, the next
white part representsloop-2, the next oneloop-3 etc.. As
can be seen in the figure,loop-1 is dominant and consumes
nearly 50% of the overall time in the fully sequential case
(step-0). In addition,loop-4 is so small that it only appears
as a thin line. The dotted line and solid line represent re-
spectively the estimated cost (internally estimated in SCBD
without generating a memory organisation) and the actual
power cost after memory allocation and assignment.

In the progressing steps of SCBD, the cycle budget is
reduced and conflicts are added gradually. Step-0 is the
fully sequential budget containing no conflicts. Therefore,
the estimated cost is zero. However, the memory archi-
tecture will (of course) consume some power. In the first
steploop-2, 3 and8 are reduced in cycle budget, decreasing

also the global cycle budget just below 20M cycles. The
(few) added conflicts increase the cost estimate. The actual
power does not increase because the added conflict does not
enforce changes in the optimal signal to memory assign-
ment. The actual power cost does not increase until step-
11. Then the cycle budget is reduced by 40% already. Due
to an added selfconflict in step-16, both the estimated cost
and actual cost make a large jump. For step-24 and step-25
the memory architecture constraints are demanding a 4-port
memory. For the used memory library this is not feasable.
Therefore, no valid solution exists any longer.

0

5

10

15

20

C
yc

le
 B

ud
ge

t
(x

 1
M

)

0 5 10 15 20 25

Step

0.0

0.5

1.0

1.5

2.0

2.5

C
os

t

160

170

180

190

200

210

P
ow

er
 (

m
W

)

Actual Power

Power Cost Estimate

Figure 7. The distribution of cycles over the loops.

The tool feedback is more then a memory architecture
alone. Optimization, for further cycle budget or cost, reduc-
tion can be based on the found schedule and conflict graph.
A scheduled flow graph of a single loop is given in Fig-
ure 8. Also the global conflict graph of this step is given in
Figure 9. The global conflict graph contains the conflict of
the scheduled loop and of all the other loops. So in timeslot-
2 the signalsin andglob freq1 are scheduled together, and
therefore it appears in the conflict graph. The gray nodes
and edges in Figure 8 show the critical path. Indeed, the
dataflow of the critical needs to be broken to reduce cycle
budget further. This is typically done with software pipelin-
ing techniques which are not discussed in this paper. An-
other approach to reduce the cycle budget further is partially
loop unrolling. Then, a large parallelism becomes available.
Note that this comes with a potential very high cost in both
required bandwidth and code size. The cost of the memory
architecture is reflected in the conflict graph. By analyz-
ing the conflict graph at every step it can be located where
a cost increase occurs and why. Counter measures can be
taken in the form of basic group matching [9] and inserting

6

intermediate arrays [10].

MA69 R[in]
cbtpc_4_bg_matching.c(1345)

MA73 R[in]
cbtpc_4_bg_matching.c(1395)

MA77 R[glob_freq1]
cbtpc_4_bg_matching.c(1366)

MA71 R[glob_freq02]
cbtpc_4_bg_matching.c(1390)

MA72 R[pyrridge]
cbtpc_4_bg_matching.c(1393)

MA75 R[in]
cbtpc_4_bg_matching.c(1440)

MA74 R[pyrridge]
cbtpc_4_bg_matching.c(1438)

MA70 R[pyrridge]
cbtpc_4_bg_matching.c(1350)

MA79 R[glob_freq35]
cbtpc_4_bg_matching.c(1434)

MA81 R[glob_freq4]
cbtpc_4_bg_matching.c(1414)

MA78 W[glob_freq1]
cbtpc_4_bg_matching.c(1365)

MA76 W[glob_freq02]
cbtpc_4_bg_matching.c(1389)

MA80 W[glob_freq35]
cbtpc_4_bg_matching.c(1433)

MA82 W[glob_freq4]
cbtpc_4_bg_matching.c(1413)

MA83 R[glob_freq35]
cbtpc_4_bg_matching.c(1473)

MA85 R[glob_freq4]
cbtpc_4_bg_matching.c(1456)

MA84 W[glob_freq35]
cbtpc_4_bg_matching.c(1472)

MA86 W[glob_freq4]
cbtpc_4_bg_matching.c(1455)

Figure 8. Scheduled flow graph of one loop in step 23.

sq_encode_table

insq_decode_table

pyrridge

di_encode_table di_decode_table

2/1/2

glob_freq02 glob_freq1

glob_freq35

glob_freq4

glob_enclenenc35

glob_enclenenc4

glob_enclenenc02

glob_enclenenc1

Figure 9. The conflict graph for step 23.

These large performance gains are only possible at mod-
erately low cost when the memory architecture is designed
carefully. At step-23 the cycle budget is reduced with 60%
at a cost of 25% more power consumption, 5% more area
and more complex interconnect compared to the fully se-
quential solution (step-0).

This experiment also proves the high usefulness of the
tool. All these results can only be generated effectively by
the introduction of our new approach and tool. It is clear
that manual design would never allow to explore such a
huge search space.

8 Conclusions

In the past, our Flow Graph Balancing technique and tool
were applicable for flat flow graphs only. All real-life ap-
plication, however, contain loops and a function hierarchy.
So the tool could only be applied relatively locally on a loop
per loop basis where the designer has to distribute the global
cycle budget over the loops. In this paper, the existing me-
thodology is extended towards hierarchy support. With the
current extension we tackle the two most urgent problems.
First, the memory cycle budget distribution across blocks
is automated. And second, a global optimum for the en-
tire application is found and not a local optimum for every
block separately. This paper has shown the effectiveness of

our new incremental approach on a real-life demonstrator.
The power, area and timing information obtained from the
tool are very useful especially at the system level. Clear
tradeoffs can be made on a higher level to steer code trans-
formations using these estimations.

References

[1] F.Balasa, F.Catthoor, H.De Man, “Dataflow-driven memory allocation for
multi-dimensional processing systems”,Proceedings IEEE International Con-
ference on Computer Aided Design, San Jose CA, Nov. 1994.

[2] E.Brockmeyer, J.D’Eer, N.Busa’, F.Catthoor, P.Lippens, J.Huiskens, “Code
transformations for reduced data transfer and storage in low power realization
of DAB synchro core”, Patmos’99, Kos, Greece, Oct 6-8, 1999.

[3] E.Brockmeyer, S.Wuytack, A.Vandecappelle, F.Catthoor, “Low power storage
for hierarchical graphs”,Proc. 3rd ACM/IEEE Design Automation Test in Eu-
rope Conf., Paris, France, pp., April 2000.

[4] E.Brockmeyer, A.Vandecappelle, F.Catthoor, “Systematic Cycle budget versus
System Power Trade-off: a New Perspective on System Exploration of Real-
time Data-dominated Applications”, to appear inProc. Intnl. Symp. on Low
Power Design, Rapallo, Italy, July 25-27, 2000.

[5] F.Catthoor, S.Wuytack, E.De Greef, F.Franssen, L.Nachtergaele. H.De Man,
“System-level transformations for low power data transfer and storage”,
in paper collection on “Low power CMOS design” (eds. A.Chandrakasan,
R.Brodersen), IEEE Press, pp.609-618, 1998.

[6] F.Catthoor, S.Wuytack, E.De Greef, F.Balasa, L.Nachtergaele,
A.Vandecappelle, “Custom Memory Management Methodology – Ex-
ploration of Memory Organisation for Embedded Multimedia System Design”,
ISBN 0-7923-8288-9, Kluwer Acad. Publ., Boston, 1998.

[7] F.Catthoor, K.Danckaert, C.Kulkarni, T.Omnes, “Data transfer and storage ar-
chitecture issues and exploration in multimedia processors”, book chapter in
“Programmable Digital Signal Processors: Architecture, Programming, and
Applications” (ed. Y.H.Yu), Marcel Dekker, Inc., New York, 2000.

[8] E.De Greef, F.Catthoor, H.De Man, “Memory Size Reduction through Storage
Order Optimization for Embedded Parallel Multimedia Applications”, special
issue on “Parallel Processing and Multi-media” (ed. A.Krikelis), inParallel
Computing Elsevier, Vol.23, No.12, Dec. 1997.

[9] P.Ellervee, M.Miranda, F.Catthoor, A.Hemani, “Exploiting data transfer local-
ity in memory mapping”,Proc. 25th EuroMicro Conf., Milan, Italy, pp.14-21,
Sep. 1999.

[10] J.P.Diguet, S.Wuytack, F.Catthoor, H.De Man, “Formalized methodology for
data reuse exploration in hierarchical memory mappings”,Proc. IEEE Intnl.
Symp. on Low Power Design, Monterey, pp.30-35, Aug. 1997.

[11] P.Lippens, J.van Meerbergen, W.Verhaegh, A.van der Werf, “Allocation of Mul-
tiport Memories for Hierarchical Data Streams”,Proc. IEEE Inter. Conf. on
Computer-Aided Design, pp.728-735, Santa Clara, Nov. 1993.

[12] T.Omnes, T.Franzetti, F.Catthoor, “Interactive algorithms for minimizing band-
width in high throughput telecom and multimedia”, accepted forProc. 37th
ACM/IEEE Design Automation Conf., Los Angeles CA, pp., June 2000.

[13] P.Paulin, J.Knight, “Force-directed scheduling for the behavioral synthesis of
ASIC’s”, IEEE Trans. on CAD, Vol.8, No.6, pp.661-679, June 1989.

[14] N.Passos, E.Sha, “Push-up scheduling: optimal polynomial-time resource con-
strained scheduling for multi-dimensional applications”,Proc. IEEE Inter.
Conf. on Computer-Aided Design, San Jose CA, pp.588-591, Nov. 1995.

[15] J. Robinson, Efficient general-purpose image compression with binary tree
predictive coding.IEEE Trans. on Image Processing, 6(4):601–608, Apr. 1997.

[16] L.Stok, “Data path synthesis”,INTEGRATION, the VLSI journal, Vol.18, pp.1-
71, June 1994.

[17] A.Vandecappelle, M.Miranda, E.Brockmeyer F.Catthoor, D.Verkest, “Global
Multimedia System Design Exploration using Accurate Memory Organization
Feedback”Proc. 36th ACM/IEEE Design Automation Conf., June 1999.

[18] W.Verhaegh, P.Lippens, E.Aarts, J.Korst, J.van Meerbergen, A.van der Werf,
“Improved Force-Directed Scheduling in High-Throughput Digital Signal Pro-
cessing”,IEEE Transactions on CAD and Systems, Vol.14, No.8, Aug. 1995.

[19] W.Verhaegh, “Multidimensional Periodic Scheduling”,Ph.D. dissertation,
Eindhoven University of Technology, Oct. 1995.

[20] S.Wuytack, F.Catthoor, F.Franssen, L.Nachtergaele, H.De Man, “Global com-
munication and memory optimizing transformations for low power systems”,
IEEE Intnl. Worksh. on Low Power Design, Napa CA, pp.203-208, Apr. 1994.

[21] S.Wuytack, J.P.Diguet, F.Catthoor, H.De Man, “Formalized methodology for
data reuse exploration for low-power hierarchical memory mappings”,IEEE
Trans. on VLSI Systems, Vol.6, No.4, pp.529-537, Dec. 1998.

[22] S.Wuytack, F.Catthoor, G.De Jong, H.De Man, “Minimizing the Required
Memory Bandwidth in VLSI System Realizations”,IEEE Trans. on VLSI Sys-
tems, Vol.7, No. 4, pp.433-441, Dec. 1999.

7

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

