
Efficient Integration of Behavioral Synthesis within Existing Design Flows

W.O. Cesário*, Z. Sugar**, I. Moussa** and A.A. Jerraya*
(*) TIMA Laboratory, 46 av. Félix Viallet - 38000 - Grenoble - France

(**) Arexsys, 1 Chemin du Pré Carré, 38240 - Meylan - France

Abstract

This paper analyzes the reasons why behavioral synthesis
was never widely accepted by designers, and then we
propose a practical solution to this problem. The main
breakthrough of this new approach is the redefinition of
the synthesis flow at the behavioral level to better profit
from the powerful of RTL and FSM synthesis tools. The
effectiveness of this new methodology is illustrated with
two large design examples: a 2-million-transistor ATM
shaper design and a motion estimator for a video codec
(H261 standard).

1. Introduction

In theory, behavioral synthesis brings a set of eagerly
wanted advantages: short design development cycles,
early estimation of system performance, better design
reuse, technology independence, improved area-timing-
power-throughput tradeoffs, etc. However, some
problems prevented it from being widely used in industry.
Among these problems, the most evident are: synthesis
results are difficult to predict and to understand, the input
model is not practical, it is difficult to integrate behavioral
synthesis in existing design flows and, in many cases,
RTL tools achieve better results.

This paper targets the specific problem of integrating
behavioral and RTL synthesis in an efficient way.
Traditionally, behavioral synthesis performs scheduling,
allocation and binding to produce a controller/datapath
architecture. While the scheduling step is specific to
behavioral synthesis, the rest of the flow could be
performed by RTL synthesis as well. Figure 1 shows that
there could be a functionality overlap (on gray) between
behavioral and advanced RTL synthesis tools. As we will
demonstrate in the next sections, a better integration of
behavioral and RTL synthesis is possible when resource
allocation/binding are done by the latter. The advantages
of this new approach to behavioral synthesis comes from
a unique reason: an RTL model that is easy to understand

and efficient to synthesize could be generated just after
scheduling.

Behavioral model

Scheduling

Resource
allocation

Resource
binding

FSM and logic
synthesis

Logic gates

Traditional behavioral
synthesis

Modern RTL
synthesis

Figure 1 - Scope of synthesis

1.1. Objectives

The main objectives pursued by our new behavioral
synthesis methodology are:
• Better integration of behavioral synthesis within

existing design flows. It is necessary to seamless
integrate modules generated using behavioral synthesis
with modules generated by other methods and
especially RTL synthesis. This integration is required
before and after the execution of behavioral synthesis.

• Generation of efficient design models for RTL
synthesis. The coding style generated by behavioral
synthesis has to take into account RTL synthesis
requirements in order to produce efficient designs in
terms of performance, power and gate count.

• Generation of understandable solutions from
behavioral synthesis. Even if the code produced by
behavioral synthesis is not aimed to be read by
designers, they will always require a readable model in
order to be able to understand the behavioral synthesis
process and to debug the design.

1.2. Structure of the paper

This paper is organized in the following way. First, we
show the main limitations of the previous generations of
behavioral synthesis tools. Next, the main features of our

scheduling-based behavioral synthesis methodology are
presented. Then we present the synthesis results for two
large applications. Finally, we discuss the advantages of
the new methodology and we draw our conclusions.

2. Behavioral-level design methodologies

Research on behavioral synthesis systems may be
classified into three generations of tools. The first
generation of behavioral synthesis tools was developed
mainly by the computer architecture community [1][2].
The most important result obtained was the precise
definition of the synthesis tasks. RTL synthesis was not
yet a reality at the time, so each tool had to do module
selection, lower level synthesis and even layout
generation.

The second generation is characterized by the choice
of restricted application domains and the generation of a
controller/datapath architecture. Tools concentrated on
fewer synthesis tasks (scheduling, allocation and binding)
and relied on RTL synthesis for FSM generation and
technology mapping. More than hundred behavioral
synthesis tools have been reported [3][4] for a variety of
application domains: DSP, embedded controllers,
communication circuits, etc. The main drawback with
these tools was the rigid target architecture, over-
structuring of the output lowered the efficiency of RTL
synthesis. This is mainly due to the difficulty of doing
RTL optimizations over the borders of the structural
blocks. However, when the hierarchy is flattened down
the model obtained is too low level (gates) to enable any
high-level optimizations. Recently, some tools have tried
to improve on previous work by allowing a flexible order
for the execution of the synthesis tasks [5][6].

The new generation of synthesis tools tries to take full
profit from the expertise and industrial investment in RTL
synthesis tools. The main breakthrough in these new
systems is the adoption of a new design flow. In an early
work, VOTAN [7] has tried a re-timing based approach
where scheduling was performed as a behavioral VHDL
code transformation followed by RTL synthesis.
Unfortunately, development stopped before it could be
validated in large examples. In our approach, we will
follow the same research line using a more powerful
scheduling algorithm that enables the generation of
efficient RTL code and consequently more optimized
results. Hiasynth [8] represents a radically different
approach to integrate behavioral and RTL synthesis in the
same design flow. RTL synthesis is used to execute
behavioral synthesis tasks by means of a new design
model called “Behavioral Network Graph”. SAW [9]
accepts a “cycle-accurate behavioral code” as input, so it
has no restrictions as to where clock edges can be placed.
As a result, designers can easily describe arbitrarily
complex state machines in a format that is much easier to

understand and modify than RTL code. The downside of
SAW approach is that the whole flow is optimized for
designs that are more heavily datapath than control-
oriented.

2.1. Contributions

This paper introduces a new generation behavioral
synthesis flow. Its main characteristics are:
• The synthesis is centered at the scheduling task, which
makes it easier to understand. The output code is a high-
level cycle-accurate FSM that allows to fully exploiting
the capabilities of RTL synthesis tools.

• The input model is a subset of VHDL that allows
mixing cycle-accurate protocols and pure behavioral
models within the same specification. The scheduling is
able to accommodate several synchronization modes
within the same module (VHDL process). This opens
the application of behavioral synthesis to a large class of
applications where protocol and computation need to be
mixed.

• The produced RTL model is easy to understand. The
synthesis algorithms make use of a smart naming
convention that makes the produced RTL code easy to
read by the designer of the behavioral model.

The efficiency of this design flow has already been
demonstrated by Moussa [10]. The main result was a
three-fold reduction in design effort when using
behavioral synthesis and respecting the same design
constraints as RTL synthesis with an equivalent circuit
area. In this paper, we detail this new flow and compare it
with the classical flow in order to analyze the reasons for
its success.

3. The new scheduling-based behavioral
synthesis methodology

The overall design flow is shown in Figure 2. The
design is partitioned into subsystems or modules so that
each module can be described and synthesized efficiently.
Behavioral synthesis produces RTL code that may be
handled with existing synthesis tools. The verification of
both the behavioral input model and the resulting RTL
code could use the same testbench. This feature is
mandatory for practical use of behavioral synthesis. In our
case, this was made possible thanks to the input coding
style, which allows mixing pure behavioral code and
scheduled behavior. It is easy to make the correspondence
between the generated RTL code and the behavioral input
code thanks to the naming conventions and an on-screen
cross-pointing mechanism. This scheme allows behavioral
modules to be mixed with RTL modules within the same
system design flow.

Scheduling-based
Behavioral
Synthesis

Behavioral
description

VHDL

Test_Bench
File

Behavioral
Simulation

Comparison

RTL
description

VHDL

Design
Specifications

Partitioning

RTL
Simulation

Correspondence
between RTL

and behavioral
models

Figure 2 - Behavioral synthesis flow

3.1. Behavioral input model

The behavioral model is an asynchronous VHDL
process that communicates with the rest of the system
through signals. Synchronization with other modules and
processes is performed through wait statements. The main
facilities provided by our behavioral coding style are:
• Behavioral wait statement: wait and until expressions
may include other signals than the clock. The generated
RTL code includes the necessary FSM states and is as
efficient as a hand-coded FSM model.

• Mixing loop, if and wait statements: this is probably
the most significant difference between RTL and
behavioral coding styles. Behavioral synthesis could
perform several optimizations that are difficult to
perform manually (for instance, loop unrolling).

• Combining wait and procedure calls: procedures can
contain complex control structures and wait statements.
This feature combined with the above one aid to
drastically reduce the size and complexity of the input
model. Since RTL synthesis forbids wait statements
within procedures, all procedure calls need to be in-
lined.

• Description of complex process: in RT-level, complex
processes are split into smaller, more manageable
processes. This strategy has the drawback of requiring
extra lines of code to manage the inter-process
communication. Behavioral code empowers the use of
more complex processes reducing the necessity of
heavy inter-process communication.

The behavioral specification has two main kinds of
operations: synchronization and computation statements.
Our model assume that the behavioral description is a
system-level FSM where the system states correspond to
synchronization points and system transitions are made of
the code executed between two synchronization points
during a simulation step. System transitions are also
called execution threads. These may include sequential
statements that form loops, have conditional branches or
evaluate expressions and assign them to variables.

Execution delays of system transitions are transparent
from the point of view of the external environment. It
means that the order of operations can be changed during
scheduling as long as the order of input/output behavior
of the system remains unchanged. Obviously, shifting I/O
operations in time is forbidden.

System-level FSM

S15

S16

...
Procedure read_ram_nrt(Address:in Bu_11bits;...) is
begin
 cs_grt <= ‘0’;
 grt_addr <= Address;
 rw_grt <= ‘1’; oe_grt <= ‘0’;
 wait until rising_edge(clk);
 rw_grt <= ‘0’; cs_grt <= ‘1’;
 wait until rising_edge(clk);
 grt1 := dout_grt(16 downto 6);
 grt2 := dout_grt(1); grt3 := dout_grt(0);
end read_ram_grt2;
...
Main_loop : loop
...
read_ram_nrt(Addr_nrt, Gn_nrt, qid_nrt, fe_nrt);
if (DC = 16#000#) then
 Aux_pt := nrt_pt;
else --(DC /= 16#000#) then
 Addr_nrt := nrt_pt;
 Addr_grt := Gn_nrt;
 Aux_pt := FFL;
 Loop1 : while (DC /= 16#000#) loop
 ...
 if (fe_nrt = '0') then
 Aux_pt := Aux_pt + 1; Addr_nrt := Addr_nrt + 1;
 else -- (fe_nrt = '1') then
 Aux_pt := Addr_nrt;
 end if;
 DC := DC - 1;
 end loop Loop1;
end if;
DC := DC + 1;
wait until rising_edge(clk);
...
end loop Main_loop ;

(a)

DC = 16#000#

...

S17

(b)

While
(DC /= 16#000#)

(DC=16#000#) :
Aux_pt:=nrt_pt
DC:=DC+1

(DC/=16#000#) :
Addr_nrt := nrt_pt
Addr_grt := Gn_nrt
Aux_pt := FFL

cs_grt<=0; rw_grt <=1
oe_grt<=0; grt_addr<=Address

rw_grt<=0; cs_grt<=1

grt1:=dout_grt(16 downto 6)
grt2:=dout_grt(1); grt3:=dout_grt(0)

(fe_nrt='0') :
Aux_pt:=Aux_pt+1
Addr_nrt:=Addr_nrt+1
DC:=DC-1 (fe_nrt /= '0') :

Aux_pt:=Addr_nrt
DC:=DC-1

DC:=DC+1

fe_nrt = '0'

Figure 3 - The VHDL specification (a) and the
system-level FSM input model (b)

Figure 3 shows a simple example, it consists of a
segment of VHDL description extracted from the ATM
Shaper application (Figure 3a) [10] and the corresponding
system-level FSM (Figure 3b). The code uses a procedure
call containing wait statements to access a RAM memory.
The system state S17 corresponds to the wait statement in
the body of VHDL code. States S15 and S16 correspond
to the wait statements inside the procedure read_ram_nrt,
they realize the communication protocol with the
memory. The system-level FSM (Figure 3b) mixes
traditional FSM notation and control-flow graphs (CFG).
Different transitions that start from the same state may
share the same code allowing for a very compact notation.
Obviously, not all transitions can be executed in a single
clock cycle and have to be partitioned. For instance, some
of the transitions starting from state S16 include a data-
dependent loop that needs to be broken into clock cycles.
The next section details how the scheduling of this model
produces a cycle-accurate FSM that may be handled using
classical RTL synthesis tools.

3.2. Scheduling-based behavioral synthesis

Scheduling consists mainly in partitioning complex
system transitions into single clock transitions. Of course,
this operation may induce the creation of new states. The
scheduling method used here starts from the system-level
FSM model and produces a cycle-true FSM. Two steps
are used during this process.

The first step deals with the implicit states of the
behavioral description. These come mainly from data-
dependent and infinite loops that do not include
synchronization points. Loops with fixed bounds also
introduce extra states it they are not unrolled. This step

makes use of a modified Dynamic Loop Scheduling
algorithm [12]. It produces a new model where transitions
are formed by operations that can be executed in parallel
in one control step. Figure 4a shows the FSM generated
for the VHDL code presented before. This step assumes
that we have an infinite clock period and an infinite
amount of resources.

Scheduled FSM

S15

S16

fe_nrt = '0'

DC = 16#000#

...

S17

(a)

(DC=16#000#) :

Aux_pt:=nrt_pt

DC:=DC+1
(DC/=16#000#) :
Addr_nrt := nrt_pt
Addr_grt := Gn_nrt
Aux_pt := FFL

(DC/=16#000#) :
cs_grt<=0; rw_grt <=1
oe_grt<=0; grt_addr<=Address

rw_grt<=0; cs_grt<=1

grt1:=dout_grt(16 downto 6)
grt2:=dout_grt(1); grt3:=dout_grt(0)

(fe_nrt='0') :

Aux_pt:=Aux_pt+1

Addr_nrt:=Addr_nrt+1

DC:=DC-1

(fe_nrt /= '0') :Aux_pt:=Addr_nrt DC:=DC-1

(DC=16#000#) :
DC:=DC+1

S18

RTL FSM

(b)

DC:=DC-1

(fe_nrt='0') :
Aux_pt:=Aux_pt+1

Addr_nrt:=
Addr_nrt+1

S15

S16

DC = 16#000#

...

S17

(DC=16#000#) :

Aux_pt:=nrt_p
t

DC:=DC+1

(DC/=16#000#) :
cs_grt<=0; rw_grt <=1
oe_grt<=0; grt_addr<=Address

rw_grt<=0; cs_grt<=1

grt1:=dout_grt(16 downto 6)
grt2:=dout_grt(1); grt3:=dout_grt(0)

(DC=16#000#) :
DC:=DC+1

S18

fe_nrt = '0'

S20

(fe_nrt /= '0') :Aux_pt:=Addr_nrt DC:=DC-1

S19

Figure 4 – Scheduled FSM (a) and RTL FSM (b)

In the case of our example, an extra computation state
(S18) has been inserted due to the data-dependent loop.
The initial system transitions have been partitioned into
three loop-free transitions. This implies that an execution
condition must be computed for each transition (the
conditions are represented inside parenthesis in Figure 4).

The second step performs a system-level re-timing in
order to ensure that all transition can execute in a single
clock cycle. It introduces new states according to implicit
and explicit constraints. Implicit constraints are necessary
to ensure the correct execution of operations (data
dependencies between conditions and expression
evaluations). Explicit constraints are imposed by the
designer such as primary resource constraints and the
clock period. Because scheduled-FSM transitions do not
contain loops, classic scheduling techniques are well
suited and we apply a LIST scheduling [13] technique. In
our example (see Figure 4b) the constraint was to use only
one ALU. This resulted in the creation of two additional
states S19 and S20. Multicycle operations are supported
and may be specified using constraints for binding some
operations to specific operators. They are represented as a
list of transfers that needs to be executed in a fixed order
during a set of consecutive states.

One should note that this scheduling scheme keeps a
compact representation style allowing to share code
between transitions that starts from the same state. This
coding style will also be kept in the produced RTL code,
as it will be explained later.

3.3. Generated RTL model

The produced RTL code is derived directly from the
RTL FSM. It is readable and easy to understand, except

for the portion of the code that mixes loops and wait
statements. This comes from the fact that the system
unrolls the loops and introduces extra intermediate
variables in order to perform the chaining of operations.
The RTL model uses an efficient coding style for
synthesis, its main features are:
• Coding state machines: the template used to generate

RTL code follows the guidelines for coding state
machines [14].

• Flat representation: enables full optimization by FSM
and logic synthesis avoiding the boundary barriers
imposed by unwanted hierarchical structures.

• Resource allocation/binding are left to RTL synthesis:
FSM and logic synthesis is able to combine aggressive
logic optimization with resource allocation and binding.
For example, a multiplier by a given constant can be
one-fourth the area of a general multiplier, particular
specialized multipliers can be even smaller, depending
on the constant [15]. Further logic optimizations can be
possible between the generated modules and the
surrounding logic gates.

• Condition coding: the scheduling step keeps the
structure of the conditional expressions. This allows
RTL synthesis to perform comparator sharing, data
chaining and control chaining.

• Readable RTL model: the generated code use a
naming strategy that keeps as much as possible the
names provided by the designers.

Examples of generated RTL code will be shown in
section 5.

4. Assessing the new behavioral synthesis
flow on large examples

In this section, we compare the results obtained with
our behavioral synthesis tool against traditional tools.
Two design examples were used: Asynchronous Transfer
Mode (ATM) traffic shaper and a motion estimator for a
video coder/decoder. The main features of the ATM
Shaper used here are the following: the bandwidth is 155
Mbits/s supporting all types of traffic such as Variable Bit
Rate (VBR), Constant Bit Rate (CBR), Unspecified Bit
Rate (UBR) and Available Bit Rate (ABR) [16] and up to
4K connections can be managed simultaneously. The
main timing constraint states that the processing of an
ATM cell cannot exceed 106 clock cycles at 40 MHz
operating frequency. More details about this application
may be found in [10]. H261 motion estimator (HME) is a
circuit that determines the motion vectors for the moving
parts of an image according to the H261 video-
conferencing standard [17]. The HME computes the
“distance” or distortion between the current sub-window
and the target sub-window, for a total of 256 possible
motion vectors.

4.1. Synthesis results

Table 1 compares the results obtained with our
behavioral methodology and traditional tools. For
executing traditional behavioral synthesis, we used a
public domain tool called AMICAL [11]. We think that
the comparison with other high-level synthesis tools will
be of the same order. The size of the behavioral input
model is about the same but the size of the generated RTL
code is about 70% smaller with our new methodology.
This is explained by the extra hierarchy of controller-
datapath RTL architecture. This over structuring lowers
the efficiency of RTL synthesis due to the difficulty of
optimization over the borders of the blocks. In terms of
gate count, our solutions were 10% better in average but
also 20% faster. The simplified synthesis flow used in our
new methodology fastens the development cycle.

Traditional behavioral
synthesis

New behavioral
synthesis

Design
Behav.
VHDL
lines

VHDL
RTL
lines

Gates
Critical

path
(ns)

VHDL
RTL
lines

Gates
Critical

path
(ns)

HME 290 6021 7850 11.19 538 4200 8.49
Sched 781 4176 5060 19.57 1476 4350 13.82
Sender 621 3267 3930 18.31 1289 3840 16.46
Abrsa 425 3765 3220 18.76 952 3440 14.35Sh

ap
er

T. unit 115 985 730 16.14 209 800 13.25

Table 1 - Behavioral synthesis results

5. Evaluation of the new methodology

5.1. Efficiency of the produced RTL model

The coding style of the generated RTL model follows
guidelines for coding state machines [14]. Latches are
avoided by initializing all signals and providing default
signal values. Registers are inferred by updating all
signals at the falling edge of the clock; only negative-edge
flip-flops are used. By construction, combinatorial
feedback is never generated. The code generator is able to
produce complete sensitive lists for the signals referenced
in the body of behavioral code. Additionally, the coding
style favors optimization tasks during FSM and logic
synthesis. As explained in section 3.3, the scheduling step
keeps the algorithmic structure of the transitions. This
allows maximizing resource sharing when implementing
conditions. The use of if-elsif-else structures to deal with
the conditional expressions enables efficient synthesis and
sharing of comparators. We obtained gains of about 50%
in area due to this strategy. Additionally, this style allows
a full exploration of time-area tradeoffs provided by
modern FSM synthesis tools. In fact, the non-separation
between control and data operations makes it easier to
combine control and data chaining. This feature, very

difficult to implement in behavioral synthesis [8], is
performed very efficiently by FSM and RTL synthesis.

The RTL module generator plays an important role
when executed in parallel with resource allocation and
binding. For example, there are eight multiplications by
different filter constants on the well-known fifth-order
elliptical wave filter benchmark. Most traditional
behavioral synthesis systems will use a generic multiplier
to perform these multiplications. A good RTL module
generator could produce much smaller multipliers specific
for each multiplication. For instance, in a 0.8µm CMOS
technology, a generic multiplier corresponds to an area of
368 (in generic units) while the largest specific multiplier
generated had an area of 295. The differences were
between 20% and 38% and represented a 10% gain in
total area and delay for the elliptical wave filter example.

5.2. Integration with existing design flows

In traditional behavioral synthesis, there is a problem
to mix subsystems described at different abstraction
levels. In our new methodology, behavioral modules can
be easily mixed with RTL blocks. Traditional behavioral
synthesis tools impose very restrictive specification
styles. Thus, designing complex applications required an
over-decomposition in sub-modules that could be
described in a pure style suitable to some specialized
behavioral synthesis tools. These restrictions are mainly
due to the scheduling step. In fact, most scheduling
algorithms impose restrictions on the input description
style. The behavioral input style adopted by our
behavioral synthesis tool and its scheduling allow
describing complex applications in an intuitive way.

. . .
P r o c e d u r e r e a d _ r a m _ g r t 2 (A d d r e s s : i n B u _ 1 1 b i t s ;
 g r t 1 : o u t B u _ 1 1 b i t s ; g r t 2 : o u t s t d _ l o g i c ;
 g r t 3 : o u t s t d _ l o g i c) i s
b e g i n
 c s _ g r t < = ‘ 0 ’ ; g r t _ a d d r < = A d d r e s s ;
 r w _ g r t < = ‘ 1 ’ ; o e _ g r t < = ‘ 0 ’ ;
 w a i t u n t i l r i s i n g _ e d g e (c l k) ;
 r w _ g r t < = ‘ 0 ’ ; c s _ g r t < = ‘ 1 ’ ;
 w a i t u n t i l r i s i n g _ e d g e (c l k) ;
 g r t 1 : = d o u t _ g r t (1 6 d o w n t o 6) ;
 g r t 2 : = d o u t _ g r t (1) ; g r t 3 : = d o u t _ g r t (0) ;
e n d r e a d _ r a m _ g r t 2 ;
. . .
M a i n _ l o o p : l o o p
… …
 e l s e - - (F E = ' 1 ') F i l l e d p o s i t i o n a n

. . .
 w h i l e (R I = ' 0 ') l o o p
 A d d r _ g r t : = g n _ g r t ;
 r e a d _ r a m _ g r t 2 (A d d r _ g r t , g n _ g r t , S G , R I) ;
 g n _ g r t : = g n _ g r t + 1 ;
 e n d l o o p ;

. . .
 e n d i f ;

. . .
e n d l o o p m a i n _ l o o p ;

Figure 5 – Mixing behavior and RTL code

For example, Figure 5 shows a sequence including a
loop and a procedure call that includes two wait
statements. In fact, the procedure corresponds to a cycle-
true communication protocol with a memory block. The
full system included several memory blocks described as
separated entities. These blocks were described at the
clock cycle level with delay annotation. They were
necessary for the simulation of the whole system at both

behavioral and clock-cycle level. They were used as black
boxes during the synthesis process.

5.3. Understanding the results of behavioral
synthesis

Classic behavioral synthesis produces a hierarchical
structural model that is very different from the input
description. Thus, correlating the input and the output of
the synthesis process is nearly impossible. In our case, the
output code is easier to understand because synthesis tries
to keep the initial control structure. In Figure 6, we could
see that all operations and conditions in the behavioral
input (Figure 6a) could be immediately identified in the
generated code (Figure 6b). The loop structure is broken
using an extra state. This kind of transformation may be
very hard to perform manually in case of nested loops.
During scheduling, several temporary variables may be
introduced when splitting states and for some
optimization purposes.

entity gcd is …
architecture behavior of gcd is
begin
 P1 : process
 variable x,y,c: integer;
 begin
 wait until (start='1' and rising_edge(clk));
 dout <= '0';
 calculation : loop
 wait until (din='1' and rising_edge(clk));
 x := xi; y := yi;
 while (x /= y) loop
 if (x < y)
 then y := y - x;
 else x := x - y;
 end if;
 end loop;
 ou <= x; dout <= '1';
 wait until (din='0' and rising_edge(clk));
 dout <= '0';
 end loop;

 end process;
end behavior;

(a) (b)

entity gcd is ...
architecture RTL of gcd is
begin
 P1 : process(start,din,xi,yi,x,y,CURRENT_STATE_P1)
 signal x,next_x : std_logic_vector(31 downto 0); ...
 next_x <= x ; next_y <= y ; ...
 NEXT_STATE_P1 <= ST_P1_P1;
 case CURRENT_STATE_P1 is
 when ST_P1_P1 =>
 if (start = '1') then
 next_dout <= '0'; NEXT_STATE_P1 <= ST_P1_1_P1 ;
 elsif (start /= '1') then
 NEXT_STATE_P1 <= ST_P1_P1 ;
 end if;
 when ST_P1_1_P1 =>
 if (din = '1') then
 next_x <= xi; next_y <= yi;
 NEXT_STATE_P1 <= ST_P1_2_P1 ;
 elsif (din /= '1') then
 NEXT_STATE_P1 <= ST_P1_1_P1 ;
 end if;
 when ST_P1_2_P1 =>
 if ((x /= y) and (x < y)) then
 next_y <= (y - x); NEXT_STATE_P1 <= ST_P1_2_P1 ;
 elsif ((x /= y) and (x >= y)) then
 next_x <= (x - y); NEXT_STATE_P1 <= ST_P1_2_P1 ;
 elsif (x = y) then
 next_ou <=x; next_dout <='1'; NEXT_STATE_P1 <= ST_P1_3_P1 ;
 end if; ...
 when others => null;
 end case;
 end process P1; ...
end RTL ; -- of architecture

Figure 6 – Behavioral (a) and generated VHDL (b)

Of course, if more aggressive behavioral-level
optimizations (like loop unfolding and chaining) are used
the correlation will not be so obvious. Our behavioral
synthesis tool has a VHDL correlation mechanism to
solve this problem. Every element generated during
behavioral synthesis, e.g. a state or variable, has a name
that is associated with its original environment in the
behavioral specification. So when reading the generated
code, the designer has insight from the origin of each
name.

6. Conclusion

 This paper described a new behavioral synthesis
methodology belonging to a new generation of behavioral
synthesis tools. The features that distinguish our
behavioral synthesis tool from old generation tools are:
the close integration with RTL synthesis; abandonment of
the controller-datapath architecture as the only possible
interface with RTL synthesis; a scheduling approach that
leaves the allocation and binding tasks to RTL synthesis

and is capable of treating efficiently mixed-style
applications; and the generation of efficient RTL code
comparable in quality with hand-made code. We
demonstrated that this new design flow allows to produce
better results than classical behavioral synthesis.

7. Bibliography

[1] M. Barbacci, “Automatic Exploration of the Design Space
for register Transfer (RT) Systems”, Ph.D. Thesis, Dept.
Of CS, Carnegie-Mellon University, November 1973.

[2] P. Marwedel, “The MIMOLA Design System: Detailed
Description of the Software System”, 16th DAC
Proceedings, pp. 59-63, New York, USA, June 1979.

[3] D. Gajski, et al., “High-Level Synthesis: Introduction to
Chip and System Design”, Kluwer Academic Publishers,
Boston, Ma, 1992.

[4] R.A. Walker, R. Camposano, “A Survey of High-Level
Synthesis Systems”, Kluwer Academic Publishers,
Boston, Ma, 1991.

[5] L. Guerra, M. Potkonjak and J. Rabaey, “A Methodology
for Guided Behavioral-Level Optimization”, ACM/IEEE
DAC, p.309-314, 1998.

[6] K. Küçükçakar, et al., “Matisse: An Architectural Design
Tool for Commodity ICs”, IEEE Design & Test of
Computers, April-June, 1998.

[7] N. Wehn, et al., “Scheduling of Behaviorial VHDL by
Retiming Techniques”, Proc. of EuroDAC, 1994.

[8] R.A. Bergamaschi, “Behavioral Network Graph: Unifying
the Domains of High-Level and Logic Synthesis”, 36th
ACM/IEEE DAC, June 1999.

[9] Thomas, Lagnese, Walker, Nestor, Rajan, and Blackburn:
Algorithmic and Register Transfer Level Synthesis: The
System Architect's Workbench, Kluwer, 1990.

[10] I. Moussa et al., “Comparing RTL and Behavioral Design
Methodologies in the Case of a 2M Transistors ATM
Shaper”, ACM/IEEE DAC, June 1999.

[11] A.A. Jerraya, H. Ding, P. Kission, M. Rahmouni,
“Behavioral Synthesis and Component Reuse with

Kluwer Academic Publishers, 1997.
[12] K. O’Brien et al., “DLS: A scheduling algorithm for high-

level synthesis in VHDL”, Proc. of the EuroDAC, Paris,
France, February, 1993.

[13] T.C. Hu, “Parallel Sequencing and Assembly Line
Problems”, Operations Research, pp. 841-848, November,
1961.

[14] M. Keating and P. Bricaud, “Reuse Methodology Manual
for System-On-A-Chip Designs”, Kluwer Academic
Publishers, 240 pp., June 1998.

[15] A. DeHon and J. Wawrzynek, “Reconfigurable
Computing: What, Why, and Implications for Design
Automation”, 36th ACM/IEEE DAC, June 21-25, 1999.

[16] The ATM Forum Technical Committee. Traffic
management specification v4.0. af-tm-oo56.000 Letter
Ballot, April 1996.

[17] A. Wise, “Introduction to Motion picture Coding and the
CCITT Algorithm”, December, 1989.

	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

