
Requester-Aware Power Reduction

Yung-Hsiang Lu, †Luca Benini, Giovanni De Micheli
CSL, Stanford University, USA.{luyung, nanni}@stanford.edu
† DEIS, Università di Bologna, Italy. lbenini@deis.unibo.it

Abstract

Typically, power reduction is conducted by hardware
techniques, such as varying clock frequencies and/or
supply voltages. However, hardware devices consume
power to serve the requests from software programs.
Consequently, it is essential to consider software for
power reduction. This paper proposes “requester-aware”
power reduction through the collaboration with pro-
grams. Experimental results show that this approach
can save nearly 70% power with negligible performance
degradation.

1. Introduction

Power reduction has become a major goal in designing
electronic systems. For portable systems, low power
means longer battery life or lighter battery weight. For
desktop computers or servers, low power reduces elec-
tric bills and improves reliability.

Many run-time power-reduction techniques have been
proposed. Dynamic power management is a power-
reduction technique that puts idle hardware devices into
low-power sleeping states to reduce power consump-
tion [3]. A device isidle if it has no request to serve;
it can sleep to save power. When new requests arrive,
the device wakes up entering aworking state to serve
these requests. Requests are generated by programs
(also calledrequesters). For example, when a program
reads or writes a file on a hard disk, it generates IO
requests on the hard disk. Similarly, when a program
sends a packet through networks, it generates a request
on the network card.

Power state changes have overhead: additional energy
consumption and delay [9]; therefore, a device should
sleep only when the overhead can be justified by the
amount of energy saved.Power managers (PM) deter-
mine power states according to certain rules (also called

policies). In the past, power management was mainly
implemented in two ways. In the first approach, power
managers observe requests at devices to predict future
workloads; they are implemented in hardware or device
drivers without direct interaction with requesters [3]. On
the other extreme, programs can directly control power
states through Microsoft’sOnNow [10] application pro-
gramming interface (API).

We believe neither extreme is appropriate. This paper
proposes one approach between the two extremes. It
considers how requests are generated— by running pro-
grams. Programs can specify what devices are needed
before generating requests. Power states are affected,
but not controlled, by individual programs. Making pro-
grams aware of power management is suggested in [5];
however, no study has been devoted to examining ap-
propriate interaction between power managers and pro-
grams. This paper has three major contributions. First,
we explain the advantages to distinguishing individual
requesters. Second, we propose a performance-based
API which allows programs to indicate their device re-
quirements without detailed hardware information. Fi-
nally, we build an experimental environment to demon-
strate the effectiveness of this approach. Experimental
results show that 70% power of a wireless Ethernet card
can be saved with only 3% performance degradation.

2. Power Managers and Requesters

Power managers and requesters can interact in three dif-
ferent ways: no direct interaction, requester-controlled
power management, and a new approach between these
two extremes, presented in this paper.

2.1. Autonomous Power Management

Most power management techniques fall into the first
category. They observe requests at the managed de-
vices and predict the length of future idleness to deter-



mine power states [3]. They change power states “au-
tonomously” without direct interaction with requesters;
they use an abstract model with a single requester that
generates all requests. Figure 1 depicts this approach.

In reality, however, requests may be generated by multi-
ple requesters. For example, requests for a network in-
terface card (NIC) may come from different programs,
such asftp, telnet, or netscape. They have dif-
ferent power consumption patterns and performance re-
quirements. For example,ftp creates bursty requests
but telnet usually creates sparse requests. Further-
more, programs can finish and exit; when no program re-
quires a device, the device can sleep immediately. With-
out information about requesters, power managers may
either waste power to maintain performance unnecessar-
ily or cause delays to save power.

2.2. Requester-Controlled Power Management

The second category is mainly limited to ACPI-
compliant devices. ACPI (Advanced Configuration and
Power Interface [1]) is proposed by Intel and four other
companies for operating-system controlled power man-
agement. ACPI is an interface between software and
hardware; it replaces Advanced Power Management
(APM) by adding devices’ capability of being woken up
through software. ACPI also allows a device to have
multiple sleeping states, distinguished by the amount of
power consumed and the time to wake up.

Microsoft’s OnNow [10] and ACPI4Linux [2] sup-
port power management for ACPI-compliant devices.
OnNow also provides an API for programs to spec-
ify power states directly as illustrated in Figure 2.
Programs can keep a device in the working state
by callingSetThreadExecutionState; programs
can also wake up a device usingRequestDevice-
Wakeup, or receive notice about power-state changes

requester requester

power manager

observe
request

determine
power state

device driver

requestrequest

hardware device

Figure 1: The power manager does not distinguish re-
questers as indicated by the dotted lines.

requester requester

device driver

power statepower state

hardware device

Figure 2: Requesters control power states directly.

by WM POWERBROADCAST.

OnNow’s “power-state based” API has several draw-
backs. First, there are no well-defined rules to distin-
guish power states. Clear distinction is necessary for
programs to decide which power states to set. However,
clear distinction is impractical due to wide ranges of de-
vice parameters. For example, the wakeup delay on a
3.5” hard disk is four times longer than the delay on a
2.5” hard disk [9]. Second, different programs may set
the same device to different power states and damage
hardware. Finally, technology improvement is changing
hardware parameters. If the state-transition energy and
delay are negligible for a program, it should not be con-
cerned about the power states of the device.

3. Requester Process

Since there are problems in either approach, we propose
a new method between the two extremes. We explain
the necessity to consider individual requesters; we use
processes to distinguish requesters. Power states are af-
fected, but not directly controlled, by running processes.
There are multiple advantages in our approach. First,
processes are real instantiation of requesters. Processes
can be created or terminated; when no process uses a
device, the device can sleep immediately. Second, pro-
cess schedulers arrange the order of execution, hence
the generation of requests. Furthermore, processes can
specify their device requirements through a function call
presented in this paper.

3.1. Power Management and Process Management

When a program executes, it creates one or multiple
processes. A process is an instantiation of a program.
The process is terminated when the program finishes.
When a process terminates, it cannot generate requests
any more. A typical computer contains nearly a dozen



p1
p2
p3

1
1

2
2

2
3

3

timeidle idle

1

p1
p2
p3

1
1

2
2

2
3

3

time
idle

1

Figure 3: two schedules of three programs. The second
schedule reorders execution to make a long, continuous
idle period.

of devices, such as a network card, a speaker, a micro-
phone, a hard disk drive, a floppy drive, a DVD drive,
a USB controller, and so on. Some devices can be used
by only a few programs. When no program uses any of
these devices, they can sleep to save power.

Distinguishing requesters by their processes is first pro-
posed in [8]; the study shows that more than 50% power
saving compared to traditional aggregate-view timeout
power management. Processes provide valuable infor-
mation for power managers such as the priority, CPU
utilization, and timing constraints. When a process runs
at high priority or has high CPU utilization, it is likely to
generate requests faster than a low priority or low CPU-
utilization process. When a process has timing con-
straints, power management has to consider the impact
of state-transition delay on this process. If a power man-
ager does not distinguish individual processes, it may
be too aggressive in saving power and fail to meet the
requirements of some processes, or be too conservative
and waste power.

3.2. Power Management and Process Scheduling

As explained earlier, power-state changes have associ-
ated overhead. Specifically, when a device stays in the
sleeping state too short, the saved energy cannot com-
pensate state-change energy. A quantitative measure-
ment of the minimum length of sleeping to save energy
is called the minimum sleeping time (Tms). Power man-
agement reduces energy consumption only if a device
can stay in the sleeping state longer than Tms; Tms is a
device-specific parameter, independent of workloads.

Process execution orders are controlled by schedulers.
Figure 3 is an example of three running processes (P1,
P2, and P3); two of them (P1 and P2) generate requests

for a device. A block indicates that a process is running.
If the process generates requests for a device during this
period, the block is filled; an unfilled block indicates
that the process does not generate requests for this de-
vice. In this figure, each process has multiple blocks or-
dered as as 1,2, and 3. Schedulers can arrange the order
between independent processes to adjust the length of
an idle period; schedulers cannot rearrange these blocks
and change the order within each process. In the first
schedule of this example, the third block of P2 (filled
block number 3) executes earlier than the third block of
P1 (unfilled block number 3). Their execution order is
changed in the second schedule. On the other hand, the
third block of P1 (unfilled block number 3) cannot ex-
ecute earlier than the second block of P1 (filled block
number 2) because they belong to the same process.
Scheduling affects power management in two ways:

1. Scheduling can arrange process execution so that
idle periods are clustered instead of scattered.
Power management is advantageous only when a
device can sleep longer than its Tms. Contiguous
and long idle periods make power management
applicable [4].

2. Even when the original scattered idle periods are
long enough to save power, clustered idle periods
reduce the number of power-state transitions and
state-transition overhead.

In Figure 3, the second schedule is preferred because the
idle period is long and continuous. A “power-friendly”
scheduler for multiple devices is presented in [7]; it re-
duces up to 33% power and 40% state transitions.

Schedulers have to know the devices used by each pro-
cess in advance. This can be achieved in several ways,
such as using the recent history to predict future de-
vice usage based on the principle of “ locality” . Another
approach is to allow programs to specify their require-
ments as explained next.

4. Requester Device Requirements

There are three ways to predict whether a device will
be used in the future. The first is an aggregate view ex-
plained in 2.1; requests are are considered to come from
an abstract requester. The second approach predicts de-
vices usage of each process [8]. This section presents
the third approach: requesters actively specify which de-
vices will be used through an application programming



interface (API). Power managers use such information
for determining appropriate power states. We use the
conventional term “API” even though it is not restricted
to application programs (running at user space); privi-
leged programs running in kernel space can also use the
same interface.

Power management, like virtual memory management,
should be transparent to most programs. Programs do
not determine which virtual pages reside in physical
memory; nor should they actively control the power
states of devices. Operating systems provide each pro-
gram with an illusion of large continuous memory ad-
dressing space, even though memory is divided into
segments and pages. Swapping and demand paging
are hidden from most programs. Another example of
such illusion is file system; hardware details such as
disk plates and cylinders are hidden. A logic abstrac-
tion, called file system, is presented to programmers.
Similarly, power-state changes should be hidden from
programs. Programmers do not have to handle power
state change events; therefore, we claim that commands
such as RequestDeviceWakeup or SetThread-
ExecutionState in OnNow are unnecessary.

Some programs may, however, anticipate predictable
performance from hardware devices. Power managers
maintain an illusion that these devices are always in their
working states ready to serve requests. Programmers do
not need to control hardware power states; instead, they
can indicate the requirements of hardware devices re-
gardless of the their power states. In contrast to power-
state-based API in OnNow, we propose “performance-
based” API as an interface between power management
and programs.

One function is sufficient for most programs:

RequireDevice(device, type, period, wait)
device: hardware device
type: always / periodic / once / delete
period: requirement period (ms)
wait: time allowed to wait (ms)

This function has four parameters. The first parameter
specifies which device is needed. The second parameter
specifies how this device is used: always needed when
the program is running, periodically, just once, or delete
the previous performance specification. The third pa-
rameter is the period; it is used only when the second
parameter is periodic. Finally, the fourth parameter
specifies how long the program can wait; a large number

indicates that this program can tolerate longer wait. We
provide some examples below.

4.1. Periodic Requests

A text editor automatically saves the current content to
the hard disk every five minutes (300 second); its perfor-
mance requirement can be specified as

RequireDevice(HardDisk, periodic, 300000, 500)

4.2. File Downloading

A user downloads a file from the Internet. When the user
clicks “download” from a browser, the browser forks an
ftp process. File transfer needs both the network card
and the hard disk. Because the ftp program fetches
only one file and then exits, the browser specifies the
performance requirement for these two devices.

RequireDevice(HardDisk, once, - , 100)
RequireDevice(Network, once, - , 100)

Alternatively, the ftp can specify

RequireDevice(HardDisk, always, - , 100)
RequireDevice(Network, always, - , 100)

Note that the first method is preferred because the
browser can specify the performance requirement then
fork a ftp process. If a device needs to be woken up,
the wakeup delay can overlap with the process creation
time and reduce the overall waiting after clicking the
“download” button.

4.3. Internet Streaming Video

In contrast to ftp, Internet streaming video continu-
ously downloads images and sounds. For example, re-
alplayer shows movies on computer screens. In or-
der to reduce storage space, streaming video programs
downloads data to refill their buffers while video and
audio are shown. They often generate periodic or nearly
periodic network requests. The requests have real-time
constraints. If images do not arrive in time, users will
see blank screens. These programs can specify their per-
formance requirements as

RequireDevice(Network, periodic, 2000 , 10)

These examples show that this API is very flexible; it is
also simple to understand. Programmers do not have to
consider power states and other hardware details.



5. Put It All Together

Figure 4 shows requester-aware power management.
The process management provides information about re-
quester creation and termination. The scheduler adjusts
execution orders based on the requests reported from a
device driver and the performance requirements speci-
fied by requesters. The lengths of idle periods are re-
ported to the power manager. The power manager uses
all information to determine an appropriate power state.

6. Experiments and Results

We set up an experimental environment on a notebook
computer to understand power consumption patterns of
individual devices for running different programs. In
this paper, we explain one set of experiments. The note-
book uses a WaveLan wireless ethernet PC-card; it sup-
ports IEEE 802.11 standard [11]. The card and the com-
puter are connected through a Twin 3300-4EXACR PC-
card extender; it provides probing points for measuring
power. We use a National Instruments data acquisition
(DAQ) card to record the power consumption; it can read
sixteen power sources simultaneously and up to one mil-
lion samples per second. Figure 5 shows the experimen-
tal environment. Unlike the power profiling presented
in [6], our measurement setup is purely hardware-based;
there is no software overhead.

We use a one-hour three-phase (I, II, and III) workload;
a requester is created for each phase. Phase I sends a file
of 50MB; phase II receives a file of the same size. In
phase III, a program periodically requests for acknowl-
edgment from a remote machine, similar to ping. The
period is ten seconds and this repeats fifty times. The
network card is idle for five minutes between two adja-
cent phases and after phase III. The purpose of the first

requester requester

hardware device

process management

scheduler

requester creation
and termination

device driver

request request

performance
requirementobserve

request

power manager
determine

power state

estimate length
of idle periods

Figure 4: Process management and scheduler provide
valuable information for power manager.

PC Card
Extender

WaveLan
NIC

DAQ

Figure 5: experiment setup

two phases is to measure the bandwidth; the third phase
measures the round-trip time (RTT).

We consider four power management schemes: no
power management, power management in IEEE
802.11, using process information (3.1), and using
scheduling and our API (3.2 and 4). In IEEE 802.11
standard, a wireless client has to communicate with the
access point (wireless server) every 0.1 second to ob-
tain a beacon [11]; the card can sleep for 0.1 second if
it is idle. The third scheme turns off the card between
two adjacent phases and after the workload finishes. Fi-
nally, in the fourth scheme, the card is turned on and off
in phase III using our API. We implement the last two
schemes in the kernel of Linux 2.2.

Table 1 shows our experimental results. Smaller power
and RTT are desirable while larger bandwidth is pre-
ferred. The card consumes 859 mW on average in
scheme 1. The bandwidth is 180 KB/s for sending and
167 KB/s for receiving; the average RTT is 18.9 mil-
lisecond. When we use the IEEE 802.11 power manage-
ment, the average power reduces to 290 mW. However,
the performance degrades up to 50% for sending. This
power management scheme does not consider requesters
and treats each network packet independently. Figure 6
shows that scheme 2 shuts down the card repetitively
during phase I; this scheme takes much longer to finish
phase I while schemes 1 and 3 finish phase I earlier (at
around 320 second). For scheme 2, RTT increases sig-
nificantly because the card needs to wait for beacons, in
both sending and receiving.

In contrast, our schemes (3 and 4) put the card into
the high performance state when a requester is ac-
tively sending or receiving packets; it turns off the card
when the requester terminates. This scheme reduces
nearly 70% power and provides high performance. The
bandwidth is slightly lower (3%) compared to the first
scheme due to the wake-up delay of the card. No change
in the requester program is needed for the third scheme.
Finally, the fourth scheme further reduces power in
phase III for periodic requests. The power manager



scheme power send receive RTT
1. no power management 859 mW 180 KB/s 167 KB/s 18.9 ms
2. IEEE 802.11 power management 290 mW 89 KB/s 143 KB/s 327 ms
3. requester-aware (3.1) 277 mW 178 KB/s 162 KB/s 18.9 ms
4. requester-aware (3.1) + scheduling (3.2) + API (4) 270 mW 178 KB/s 162 KB/s 18.9 ms

Table 1: experimental results

wakes up the card periodically before the scheduler se-
lects this requester. This is feasible because the re-
quester uses our API to specify its periodic pattern. This
reduces power while maintaining small RTT. Figure 7
shows the power consumption of four schemes during
phase III. Scheme 4 saves 64.8% power in phase III
compared to scheme 1.

7. Conclusion

This paper examines the interaction between power
management and requesters. Requester-specific infor-
mation helps power managers find power-saving op-
portunities. Power management, like memory manage-
ment, should be transparent to programs. We propose
performance-based API that allows requesters to spec-
ify their device requirements without overloading pro-
grammers with excessive hardware details. Experimen-
tal results show that nearly 70% power can be reduced
by considering requester information.

8. Acknowledgments

This work was supported in part by MARCO/DARPA
Gigascale Silicon Research Center and in part by NSF
under contract CCR-9901190.

0

300

600

900

1200

1500

200 300 400 500

time (sec)

p
o

w
er

(m
W

)

scheme 1

scheme 3

scheme 2

Figure 6: power consumption during phase I

0

250

500

750

1000

1600 1610 1620 1630 1640 1650

time (sec)

p
o

w
er

(m
W

)

scheme 4scheme 2

scheme 1,3

Figure 7: power consumption during phase III

9. References
[1] ACPI. http://www.teleport.com/ ãcpi.
[2] ACPI4Linux. http://phobos.fs.tum.de/acpi/index.html.
[3] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A

Survey of Design Techniques for System-Level Dynamic Power
Management. IEEE Transactions on VLSI Systems, 8(3), June
2000.

[4] Jason J. Brown, Danny Z. Chen, Garrison W. Greenwood, Xi-
aobo Hu, and Richard W. Taylor. Scheduling for Power Re-
duction in a Real-Time System. In International Symposium on
Low Power Electronics and Design, pages 84–87, 1997.

[5] Carla Schlatter Ellis. The Case for Higher-Level Power Man-
agement. In Workshop on Hot Topics in Operating Systems,
pages 162–167, 1999.

[6] Jason Flinn and M. Satyanarayanan. PowerScope: A Tool
for Profiling the Energy Usage of Mobile Applications. In
IEEE Workshop on Mobile Computing Systems and Applica-
tions, pages 2–10, 1999.

[7] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli. Low-
Power Task Scheduling for Multiple Devices. In Interna-
tional Workshop on Hardware/Software Codesign, pages 39–
43, 2000.

[8] Yung-Hsiang Lu, Luca Benini, and Giovanni De Micheli.
Operating-System Directed Power Reduction. In International
Symposium on Low Power Electronics and Design, 2000.

[9] Yung-Hsiang Lu, Eui-Young Chung, Tajana Šimunić, Luca
Benini, and Giovanni De Micheli. Quantitative Comparison
of Power Management Algorithms. In Design Automation and
Test in Europe, pages 20–26, 2000.

[10] OnNow. http://www.microsoft.com/hwdev/onnow/.
[11] Tajana Šimunić, Haris Vikalo, Peter W Glynn, and Giovanni De

Micheli. Energy Efficient Design of Portable Wireless Systems.
In International Symposium on Low Power Electronics and De-
sign, 2000.


	Main Page
	ISSS'00
	Front Matter
	Table of Contents
	Session Index
	Author Index


