
96

Voltage Scheduling in the lpARM Microprocessor System

Trevor Pering, Thomas Burd, and Robert Brodersen
Berkeley Wireless Research Center

University of California, Berkeley
2108 Allston Way, Berkeley, CA 94704

+1-510-666-3100
{pering, burd, rb}@eecs.berkeley.edu

Abstract
Microprocessors represent a significant portion of the energy con-
sumed in portable electronic devices. Dynamic Voltage Scaling
(DVS) allows a device to reduce energy consumption by lowering
its processor speed at run-time, allowing a corresponding reduction
in processor voltage and energy. A voltage scheduler determines
the appropriate operating voltage by analyzing application con-
straints and requirements. A complete software implementation,
including both applications and the underlying operating system,
shows that DVS is effective at reducing the energy consumed
without requiring extensive software modification.

Keywords
Low-power, energy-efficient, RTOS, operating systems.

1. INTRODUCTION
The importance of energy-efficient microprocessors is increasing
along with the popularity of portable electronic devices, such as
laptops and PDAs, which devote a significant portion of their
power budgets to general purpose processing. The energy con-
sumed by a microprocessor system can be reduced by dynamically
adjusting the operating voltage using a technique called Dynamic
Voltage Scaling (DVS). Lowering the voltage also requires a reduc-
tion in the clock frequency, exposing a fundamental energy/speed
trade-off.

Dynamically adjusting the voltage and clock frequency at run-time
is the responsibility of the voltage scheduler, an entity which runs
as part of the operating system. Application requirements, in terms
of execution cycles and completion deadline, are combined to form
an estimate of the optimal operating speed. Since processor speed
is a global resource, the operating system is responsible for com-
bining multiple application requirements to determine the appro-
priate speed and voltage.

This paper describes the simulation of a thread-based voltage
scheduler designed to run on the DVS-capable Low-Power ARM
(lpARM) processor. The lpARM processor itself, described in
detail elsewhere [3], is an implementation of the ARM8 architec-

ture using a 0.6 µm CMOS process. The effectiveness of DVS
scheduling varies depending on the application, with energy being
reduced to less than 20% of fixed-voltage in some cases.

1.1 Voltage Scaling Fundamentals
The energy, E, consumed by a CMOS microprocessor can be cal-
culated using the equation E ∝ NopsCV2, where Nops is the number
of operations executed, C is the capacitance per operation, and V is
the operating supply voltage [5]. Architectural energy-reduction
techniques [14], such as clock-gating, focus on reducing C while
traditional compiler optimizations minimize Nops. Our technique,
DVS, focuses on reducing V.
Static-voltage reduction is a well-established energy-reduction
technique since the squared relationship between energy and volt-
age causes even small reductions in the voltage to affect relatively
large reductions in energy. Reducing the operating voltage also
reduces the maximum speed at which a device can operate, fmax,
approximated by the relationship fmax ∝ (V - c)/V, where c is a pro-
cess-dependent constant.
These two relationships expose the trade-off between energy and
speed which can be exploited by varying the voltage, graphically
depicted in Figure 1. Reducing the clock speed of a device without
simultaneously lowering the operating voltage does not reduce the
energy consumed by a given task. Given a fixed number of instruc-
tions that the processor must execute, it is imperative that the oper-
ating voltage also be reduced [2].

The simulated lpARM processor is based on the ARM8 core [1]
and designed to operate between 1.1V and 3.3V, resulting in
speeds between 10 MHz and 100 MHz, respectively. While exe-
cuting, the core and cache together consume between 1.8 mW and

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%
Speed

En
er

gy
/O

pe
ra

to
n

DVS
Fixed-Voltge

1.1 V

3.3 V

Figure 1: Energy/Speed Trade-Off

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and/or a fee.
ISLPED ’00, Rapallo, Italy.
Copyright 2000 ACM 1-58113-190-9/00/0007...$5.00.

97

220 mW, depending on the processor speed. When idle, the pro-
cessor consumes less than 500 µW, with a one cycle start-up cost.
Clock frequency transitions take approximately 25 µs for a com-
plete 10 MHz to 100 MHz transition: about 1250 cycles, on the
order of a context-switch. The system can continue operation while
the speed and voltage are changing; it is assumed that there is no
energy cost associated with changing the operating voltage. The
external processor bus operates at half the frequency of the proces-
sor core.

1.2 System Overview
The lpARM CPU directly controls the operating voltage of the
processor subsystem, as shown in Figure 2. The voltage of the
entire microprocessor subsystem is scaled together, preventing one
component from dominating while the others operate at a reduced
voltage. The I/O interface provides a level-converting bridge to
interact with the I/O subsystems, which are implemented using
standard non-DVS components. The measurements and analysis in
this paper concentrate on the variable voltage portion only.
The operating system is based on a standard run-time kernel that
has been extended with a voltage scheduler, responsible for exam-
ining the state of the system and communicating the desired pro-
cessor speed to the hardware. The processing requirements of
individual threads, overall system loading, and resource utilization
all effect the scheduling decision. The effectiveness of voltage
scheduling is shown by comparing the energy consumed by three
different benchmark programs simulated with and without voltage
scaling.

2. VOLTAGE SCHEDULING
The voltage scheduler is responsible for determining the speed and
voltage at which the processor runs. System-level information,
such as recent processor utilization and predicted future behavior,
is combined with expectations of and estimates provided by indi-
vidual threads to determine the desired operating speed. The volt-
age scheduler is reevaluated each time a task is added or removed
from the system, and periodically during task execution.
The voltage scaling hardware/software interface is defined in
terms of speed, not voltage. The software specifies the target oper-
ating speed to the hardware, which is then responsible for deliver-
ing the requested performance. The software is not aware of the
operating voltage used by the hardware; the term voltage schedul-
ing is used rather than speed scheduling to remind us that the volt-
age is being adjusted along with the clock. Throughout this paper,
a change in clock frequency implies an associated change in volt-
age, unless otherwise noted.

Applications can specify a deadline, which is an indication of
when its current frame should be completed. The voltage scheduler
runs independently of the conventional temporal scheduler,
responsible for deciding which task runs when. An earliest-dead-
line-first (EDF) policy is used for temporal scheduling, which is
optimal for fixed-speed systems in the sense that all deadlines will
be met if possible [11]. However, since the processor is often run-
ning at a reduced speed, it is quite probable that a task will miss its
stated deadline. Tasks in the lpARM system, therefore, must be
designed to gracefully handle a missed deadlines, nominally
accomplished by buffering one frame of output data.

2.1 Hardware Interface
The voltage scheduler requires the support of the processor hard-
ware to effectively accomplish its task. The support mechanisms
can often be found in existing embedded microprocessors,
although they are not ubiquitous. The speed control register is
unique in DVS systems in that it also adjusts the operating voltage.
Four types of support are used:

• Speed-Control Register - sets the target operating speed of the
processor and changes the system operating voltage. A read
from this register returns the current physical processor speed,
which can be used to test system operation.

• Processor Cycle Counters - measures the number of cycles the
processor spends executing, stalled, waiting for memory, etc...
The count used includes all stall and execution cycles, incorpo-
rating the ‘work’ performed by the memory system.

• Wall-clock Time - maintains a consistent measure of time,
independent of the processor speed and sleep mode.

• System Sleep Control - controls the system’s low-power shut-
down mode, which causes the processor to consume virtually no
power, used where there are no active threads available. The
system is awakened by either an external interrupt or internal
wall-clock alarm timer.

2.2 Scheduling Framework
Three application-level execution models are supported by the sys-
tem: high-priority, rate-based, and deadline-based. Internally,
high-priority and rate-based tasks are represented as deadline-
based with automatically generated deadlines. Most system-level
threads run at high-priority, while major applications typically
specify a deadline-based model.
High-priority tasks are defined in the lpARM system to be short,
sporadic tasks which require a quick response time but do not
present a significant system load. They execute before all other
threads in the system (high-priority tasks themselves are ordered
and execute highest-priority-first). High-priority tasks are ignored
by the voltage scheduler and therefore do not directly effect the
processor speed: they would merely complete before the system
could increase speed, since and are short in duration.
Rate-based threads sustain a predictable rate of execution, supplied
by the application, without an explicit deadline. Jobs such as com-
pilation, which should finish in “a reasonable amount of time,” fall
into this category. The deadline for these tasks is automatically
calculated by the internal scheduler and update dynamically as the
task executes. Rate-based threads should be scheduled so that they
appear to be executing on a single-threaded system running at their

Figure 2: lpARM System Block Diagram

lpARM CPU SRAM

Voltage
Regulator

I/O
Interface

Fixed
Voltage

speed
setting memory

bus

Variable
Voltage

98

specified speed: two 10 MHz sustained rate threads will time-share
a system run at 20 MHz.

The deadline-based model divides applications into execution
units called frames, each of which has a measure of work which
should be completed by its deadline [4]. A frame is an application-
specific unit, such as a video frame, and work is defined in terms
of processor cycles. The desired rate of processor execution in a
predictable single-threaded system is easily determined by the
equation speed = work/deadline; it is the job of the voltage sched-
uler to determine the processor speed given a set of multiple tasks
and estimated parameters.
Slowing the processor down will cause many application deadlines
to be missed; therefore, applications are required to handle over-
deadline frames gracefully, typically by an added level of output
buffering. Allowing missed deadlines enables the voltage sched-
uler to accommodate the average-case workload instead of the
worst-case, reducing total energy consumed. Allowing multiple
missed frames, instead of just one, would further increase the flex-
ibility afforded the voltage scheduler; however, exploring this
trade-off is beyond the scope of this paper.

2.3 Scheduling Algorithm
The voltage scheduling algorithm used assumes all tasks are spo-
radic and calculates the minimum speed necessary to complete all
tasks assuming they are all currently runnable. Given that threads
are sorted in EDF order, this speed can be found by:

This algorithm can be implemented in O(n) time where n is the
number of scheduled threads; the sorted list of threads can be
maintained incrementally as task deadlines are updated.
Including non-runnable tasks in the voltage scheduling reserves
future execution cycles for them, preventing the system from
underestimating processing requirements. It is possible for the
scheduler to overestimate processing required if a non-runnable
task presents a very large future workload; however, this case is
rare and does not significantly effect performance.
The processor speed is reevaluated each time a thread is added or
removed from the system, or when a deadline is reached. There-
fore, the calculated target speed needs only to be valid until the
next task deadline. Figure 3 shows an example voltage schedule
with three tasks. In this example, the processor will be set to run at
48% processor speed until Task A completes, at which time the
schedule will be reevaluated. Other speeds shown are intermediate
results only that are not necessarily used by the system (because of
reevaluation). Note that the voltage schedule is independent of the
task’s start times; for example Task C’s start time is considerably
after Task B’s deadline without effecting the schedule. This relax-
ation is valid because the algorithm is periodically reevaluated; in
any case, however, a task will not start executing until its start time
is reached.

2.4 Workloads & Schedule Smoothing
The estimated workload, used by the scheduling algorithm, is
determined empirically at run-time using a exponential moving
average, reevaluated each time an application frame is completed:
Wnew = (Wold*k + Wlast)/(k + 1), where Wnew is the new estimate,
Wold is the old estimate, and is Wlast the recently completed frame’s
cycle count. Outlier samples, which correspond to frames requir-
ing more work than could possibly be completed before deadline,
are assumed to be initialization frames and ignored. An application
may either explicitly specify an initial work estimate or use the
computation required for its first frame to initialize the sequence.
Rate-based applications specify their workload as sustained rate of
execution, defined in terms of processor speed (equivalent to
work/time). High-priority threads do not need to specify a work-
load estimate because they are not handled by the voltage sched-
uler.
Applications with high frame-to-frame computation variance
could potentially consume more energy than well-behaved appli-
cations because the system will have difficulty accurately predict-
ing the next frame’s workload: one frame may execute over
deadline, while the next would be under deadline. To mitigate this
problem, the voltage scheduler schedules threads aiming to com-
plete twice the amount of work in twice the deadline, effectively
aggregating the variance of adjacent, a technique called schedule
smoothing.

3. EXPERIMENTAL RESULTS
The effectiveness of voltage scheduling is evaluated by comparing
the results of a voltage-scheduled system against those of fixed-
voltage systems, shown in Figure 4. For each benchmark, the
energy is normalized to the energy consumed while running that
benchmark at maximum processor speed. “DVS” is the energy
consumed when applying the voltage scheduling algorithm of the
previous section. “Nominal” represents an application-specific rea-
sonable fixed-speed for the different benchmarks, described below
in more detail.

speed MAX
i n≤()∀

workj
j i≤
∑

deadlinei currenttime–
--

=

Figure 3: Example Voltage Schedule

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5 6 7 8 9 10
Time

Pr
oc

es
so

r
Sp

ee
d

Task A Task A&B Task AB&C

Deadline A
Deadline B

Deadline C

StartTime Deadline Workload Workload /Deadline

Task A 0 3 144 144 48

Task B 2 5 74 218 44.4

Task C 7 9 88 306 34

Σ Σ

99

The energy savings afforded by DVS are extremely application
dependent. For some applications, energy is reduced to under 20%
of maximum, while in other situations DVS does not significantly
reduce energy consumption at all. Several different aspects of volt-
age scheduling, supported by a description of the benchmarks
themselves, are discussed below.

3.1 Benchmarks
Two common multimedia tasks and a graphical user interface are
used to evaluate voltage scheduling:
• Audio - IDEA decryption of a 10-second 11 KHz mono audio

stream, divided into 1 kB frames with a 93 ms deadline.
• MPEG - MPEG-2 decoding of an 80-frame 192x144 video at

8 frame/sec.
• GUI - A simple address-book user interface allowing simple

searching, selection, and database selection. 432 frames are pro-
cessed, each defined as a user triggered event, such as pen-
down, which ends when the corresponding action has been com-
pleted. A deadline of 50 ms is used for each frame, roughly
modeled on the human visual perception time.

The data for the Audio and MPEG benchmarks is brought into the
system by low-lever interrupt handlers and placed in system
FIFOs. The main application thread pulls data from the FIFO, per-
forms the necessary computation, and transfers the result to an
intermediate de-jitter buffer. A separate thread is then used to
transfer the data to the output device before the next frame’s dead-
line. This output buffering is necessitated by the need to tolerate
missed deadlines, caused by the application of voltage scheduling;
therefore, the stated deadline only represents a suggested comple-
tion time. These benchmarks will fail when any single frame
exceeds twice its deadline, when the output thread would be unable
to output its data in a timely manner. “Nominal” for Audio and
MPEG represents the minimum fixed-speed at which all frames
are output correctly.
User input, from a screen pointing device, is the primary mode of
input for the GUI application. A screen event, such as a pen-down
event, passes through the operating and windowing systems and
then is passed to the application. A 50 ms deadline representing
human visual perception time is used for GUI events: screen
updates faster than this will not be noticed by the user [6][13].
Most GUI events, such as simple button updates, can easily com-
plete before this deadline. Some events, however, are extremely
computationally expensive; opening a new dialog window, for
example, takes 260 ms when the processor is running at max-
speed. There is no ‘correct’ speed for these events: they represent a

user-dependent energy/speed trade-off. For the long-running
events, execution defaults to a rate-based 40 MHz, opting for a bal-
ance between energy-efficiency and low-latency. “Nominal” for
GUI represents a fixed 40 MHz speed for all events, resulting in
the same perceived quality-of-service for the long-running events;
DVS is able to beat this nominal setting by reducing the speed for
short frames without impacting the performance of long-running
frames.

3.2 Event Distributions
Frame-to-frame computation histograms, shown in Figure 5, detail
how the individual benchmarks impact, and are effected by, volt-
age scheduling. An application’s average execution requirement,
represented by the max-speed distribution, is the primary factor in
determining energy consumption. The processing required for
Audio frames is quite low compared to the processing required for
MPEG. Correspondingly, the Audio max-speed distribution is far-
ther to the left than MPEG’s. Less works simply means that the
benchmark executes fewer instructions and can be run at a lower
voltage
The visual effect of voltage scheduling is to adjust the distribution
to center around the 100% deadline mark. For the computationally-
intensive Audio and MPEG benchmarks, all frames are equally
effected by voltage scaling, a 50% reduction in processor speed
increases all frame completion times by 50%. However, close
examination of the GUI frame distributions indicates that many
long-running frames are relatively unaffected by changes in pro-
cessor speed. A large component of these frames is hard idle time:
idle time which is spent waiting for external events and is not com-
putation bound. The simplest example of hard idle time is waiting
for an external network packet, which takes the same amount of
time to arrive regardless of the processor speed.

3.3 Simultaneous Benchmark Execution
Figure 6 shows the execution of concurrent benchmarks. For all of
these combinations, the voltage scheduler behaves as expected:
adapting the processor speed to accommodate the extra workload.
Since data is normalized to a max-speed processor, the increased
number of executed instructions has no effect on the normalized
energy consumed; the increase is due solely to an increase in the
processor speed/voltage. The actual energy for running Audio^2,

0%

20%

40%

60%

80%

100%

Audio MPEG GUI

N
or

m
al

iz
ed

 E
ne

rg
y Nominal

DVS

Figure 4: Basic Voltage Scheduling Results

Figure 6: Multiple Benchmark Execution

0%

20%

40%

60%

80%

100%

A
udio

A
udio^2

A
udio^3

A
udio^4

M
P

E
G

M
P

E
G

 &
A

udio

N
or

m
al

iz
ed

 E
ne

rg
y Nominal

DVS

100

however, would be greater than twice the energy consumed by
Audio. Running two MPEG decodes simultaneously is not possi-
ble because it would overload the processor.

Figure 7 shows the frame completion time histograms for the
Audio and MPEG benchmarks running simultaneously. As the pro-
cessor loading is increased by adding more threads, the completion
times of the Audio frames are decreased dramatically. This shift is
caused by the combination of the increased processor speed, due to

executing multiple benchmarks, and the shorter Audio frame dead-
lines, which are typically scheduled first due to the EDF temporal
scheduling policy. Therefore, although executing multiple bench-
marks will increase the energy consumed by the system, the real-
time behavior of the system, as measured by over-deadline frames,
is improved. (Although for the lpARM system this has little bene-
fit because the applications can tolerate delayed frames.)

3.4 Scheduling Overhead
Figure 8 shows the scheduling overhead for several different
benchmark combinations, measured by the percentage of energy
going towards the execution of the scheduler thread. In all cases,

Audio Frame Distribution

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 20% 40% 60% 80% 100% 120%
Normalized Completion Time

Fr
am

es
 C

om
pl

et
in

g

Max-Speed
Nominal
DVS

MPEG Frame Distribution

0%

5%

10%

15%

20%

25%

30%

0% 50% 100% 150% 200% 250% 300%
Normalized Completion Time

Fr
am

es
 C

om
pl

et
in

g

Max-Speed
Nominal
DVS

GUI Frame Distribution

0%

10%

20%

30%

40%

50%

60%

0% 200% 400% 600% 800% 1000% 1200% 1400% 1600% 1800% 2000%
Normalized Completion Time

Fr
am

es
 C

om
pl

et
in

g

Max-Speed

Nominal
DVS

Figure 5: Frame Completion Histograms

0%

10%

20%

30%

40%

50%

0% 50% 100% 150% 200%

Normalized Frame Completion Time

W
ei

gh
te

d
Fr

am
es

 C
om

pl
et

in
g

Audio
Individual
Audio
Simultaneous
MPEG
Individual
MPEG
Simultaneous

Figure 7: Multiple Benchmark

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

Audio Audio^4 MPEG MPEG &
Audio

GUI

O
ve

rh
ea

d
En

er
gy

Figure 8: Scheduling Overhead

101

the overhead is quite small: less than 2%. The voltage scheduler is
triggered around start-times and deadlines: the more computation
is required per-frame the smaller the relative impact. Additionally,
as the number of tasks increases, the overhead increases due to
additional scheduling complexity.

4. RELATED WORK
Dynamic Voltage Scaling for a microprocessor system first
appeared in [7][15], which applied the fundamental speed/energy
trade-off to a collection of UNIX workstation traces. For these
works, the processor speed was scaled based on the global proces-
sor utilization of fixed size intervals: no knowledge of individual
threads was used. Our earlier work, [12] evaluates these interval-
based voltage scheduling algorithms using the same basic environ-
ment presented in this paper. Since interval-based scheduling does
not understand application processing requirements, e.g. deadlines
and computation estimates, it behaves poorly for workloads that
consist of more than a single well-behaved task.
[16] presents a theoretical basis for using real-time constraints very
similar to those used in this paper and an off-line O(n log2 n)
scheduling algorithm which optimally schedules a given set of
tasks, given complete and accurate knowledge. Additionally, it
gives formal proofs necessary to construct the optimal algorithm. It
does not consider work estimation, frame-to-frame execution vari-
ance, scheduling of unknown tasks, or analysis of real applications.

[10] presets a theoretical analysis of scheduling a single task
assuming the capacitance/cycle not constant. Our work assumes a
constant capacitance, which we believe is reasonable for compiler-
generated general-purpose applications.

[9] analyzes the theoretical scheduling of a hard real-time DVS
system, using worst-case instead of average-case work estimates.
They present an independently developed on-line scheduling algo-
rithm that is designed to optimally schedule a set of active tasks
(no future start-times). In [8], the same authors analyze the incor-
poration of a DVS microprocessor into system-on-a-chip synthesis
tools.

5. CONCLUSION
Dynamic Voltage Scaling is an extremely effective technique for
reducing the energy consumed by a portable microprocessor sys-
tem. Our results show that energy can be reduced by up to 80%,
depending on the application workload.
The analysis of a complete environment, provided by our simula-
tor, shows that DVS can be efficiently integrated into existing
operating systems without extensive modification. Since processor
speed is independent of temporal scheduling, voltage scheduling
can be implemented on top of an existing operating system with
little modification. Additionally, standard real-time constraints
provided by start-times and deadlines provide an convenient
framework, making existing applications easy to integrate. Relax-
ing the deadline constraint and allowing application frames to
complete after their deadlines enables a scheduler to absorb the
effects of high frame-to-frame application variance, which could
otherwise increase energy consumption.

Acknowledgments
This work was funded by a grant from DARPA and made possible
by cooperation by ARM Ltd. The authors would also like to thank
Eric Anderson for his many helpful insights and conversations.

References
[1] ARM 8 Data-Sheet, Document Number ARM DDI0080C,

Advanced RISC Machines Ltd, July 1996.
[2] T. Burd and R. W. Brodersen, “Energy efficient CMOS

microprocessor design,” Proc. 28th Hawaii Int’l Conf. on
System Sciences, Vol.1, pp. 288-297, Jan. 1995.

[3] T. Burd, T. Pering, A. Stratakos, R. Brodersen, “A Dynamic
Voltage-Scaled Microprocessor System”, 2000 IEEE Interna-
tional Solid-State Circuits Conference Digest of Technical
Papers, San Francisco, Feb. 2000.

[4] A. Burns and A. Wellings, Real-Time Systems and Program-
ming Languages, second edition, Addison-Wesley, 1997.

[5] A. Chandrakasan, S. Sheng, R. W. Brodersen, “Low-power
CMOS digital design,” IEEE Journal of Solid-State Circuits,
Vol. 27, pp. 473-484, Ap. 1992

[6] Y. Endo, Z. Wang, J. B. Chen, and M. Seltzer, “Using
Latency to Evaluate Interactive System Performance,” Proc.
2nd Symp. on Operating Systems Design and Implementation,
Nov. 1996.

[7] K. Govil, E. Chan, H. Wasserman, “Comparing Algorithms
for Dynamic Speed-Setting of a Low-Power CPU”, Proc. 1st
Int’l Conference on Mobile Computing and Networking, Nov
1995.

[8] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. Srivas-
tava. Power optimization of variable voltage core-based sys-
tems. In Design Automation Conference, 1998.

[9] I. Hong, M. Potkonjak, M. Srivastava. On-Line Scheduling of
Hard Real-Time Tasks on variable Voltage Processor.
IEEE/ACM International Conference on Computer-Aided
Design, Nov 1998.

[10] T. Ishihara, H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” Proc. 1998 Int’l
Symp. on Low Power Electronics and Design.

[11] C. Liu and J. Layland. Scheduling algorithms for multipro-
gramming in a hard real-time environment. CACM 20, 1973.

[12] T. Pering, T. Burd, and R. W. Brodersen, “The Simulation
and Evaluation of Dynamic Voltage Scaling Algorithms,”
Proc. 1998 Int’l Symp. on Low Power Electronics Design.

[13] B. Shneiderman, Designing the User Interface, Addison-
Wesley, 1992.

[14] M. Srivastava, A. Chandrakasan, R. Brodersen. Predictive
system shutdown and other architectural techniques for
energy efficient programmable computation. IEEE Transac-
tions on VLSI Systems, 4(1), 1996.

[15] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Schedul-
ing for reduced CPU energy,” Proc. 1st Symp. on Operating
Systems Design and Implementation, pp. 13-23, Nov. 1994.

[16] F. Yao, A. Demers, and S. Shenker. A scheduling model for
reduced CPU energy. In IEEE Annual Foundations of Com-
puter Science, pages 374-382, 1995.

	Main Page
	ISLPED'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

