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Abstract

This paper presents a new approach to two-level hazard-
free logic minimization in the context of extended burst-mode
finite state machine synthesis targeting generalized C-elements
(gC). No currently available minimizers for literal-exact two-level
hazard-free logic minimization of extended burst-mode gC con-
trollers can handle large circuits without synthesis times ranging
up over thousands of seconds. Even existing heuristic approaches
take too much time when iterative exploration over a large de-
sign space is required and do not yield minimum results. The
logic minimization approach presented in this paper is based on
state graph exploration in conjunction with single-cube cover al-
gorithms, an approach that has not been considered for minimiza-
tion of extended burst-mode finite state machines previously. Our
algorithm achieves very fast logic minimization by introducing
compacted state graphs and cover tables and an efficient single-
cube cover algorithm for single-output minimization. Our exact
logic minimizer finds minimal number of literal solutions to all
currently available benchmarks, in less than one second on a
333 MHz microprocessor — more than three orders of magnitude
faster than existing literal exact methods, and over an order of
magnitude faster than existing heuristic methods for the largest
benchmarks. This includes a benchmark that has never been pos-
sible to solve exactly in number of literals before.

1 Introduction

Burst-mode and extended burst-mode asynchronous finite state
machine controllers have been successfully used in designing sev-
eral efficient real-life asynchronous circuits [1, 2, 3, 4, 5]. For
such large designs, many iterations through the synthesis process
are needed to reach a good circuit implementation. For example,
different protocols and state assignments could lead to substan-
tial improvements in circuit area and delay. Since existing exact
synthesis methods are slow, and may not even complete for large
circuits, designers are often forced to use heuristic methods, or
partitioning [6], to interactively explore the design space in a rea-
sonable amount of time often yielding sub-optimal circuits. The
bottleneck of extended burst-mode finite state machine synthesis
is typically in the hazard-free logic minimization step. This paper
will address a new method that allows fast algorithms based on
�
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state graph exploration to produce solutions that are hazard-free
under the extended burst-mode hazard model. This new method
allows very fast logic minimization that is exact in number of lit-
erals, even for controllers that previously have been impossible to
solve exactly in number of literals due to their large size.

Hazard-free logic minimization of two-level sum-of-products
burst-mode circuits has been pursued by Nowick et al. Literal ex-
act, cube exact, and heuristic solutions have been explored in the
tools HFMIN [7], IMPYMIN [8], and Espresso-HF [8]. While
the two later algorithms have managed to reduce logic minimiza-
tion time, algorithms for higher quality literal-exact solutions still
takes thousands of seconds for large controllers, effectively set-
ting a limit on exploration of the design space.

Algorithms based on state graph exploration have tradition-
ally been used for synthesis of speed-independent [9, 10] and
timed [11] circuits. Some researchers [9, 10] have proposed to
use speed-independent methods for logic minimization of burst-
mode gC controllers by first translating them into Petri-net speci-
fications. The generated solutions are hazard-free under the con-
strained gC decomposition rules imposed by the relaxed burst-
mode hazard model presented in [12]. However, these methods
are not hazard-free for extended burst-mode controllers.

Structural logic minimization methods to combat the problem
of state explosion in state graph traversal have been explored
[13, 14, 15]. These methods perform logic minimization while
traversing the input Petri-net specification avoiding generation of
potentially large state graphs. These methods, however, experi-
ence a substantial increase in Petri-net size for non-monotonic
level signals (frequently used in extended burst-mode specifi-
cations), and are not hazard-free for extended burst-mode con-
trollers.

Recent efforts have been made to produce optimal output so-
lutions over all state reductions and encodings [16], thus avoiding
manual design exploration of different state assignments. While
these methods are intriguing, the sheer algorithm complexity cur-
rently limits the size of controllers that can be automatically ex-
plored.

In more recent designs, such as Yun’s differential equation
solver [4] and the burst-mode portions of Intel’s RAPPID [17],
it has been found that substantial performance improvements can
be achieved through the use of generalized C-element (gC) circuit
implementations over two-level standard gate implementations.
In [18], state minimization and state assignment methods are de-
veloped for extended burst-mode controllers based on excitation
region covers allowing for gC circuit implementations. These
synthesis methods have been implemented in the 3D tool [19]. 3D
leverages the HFMIN tool to perform hazard-free logic minimiza-



tion and [20] to perform technology mapping. The hazard-free
logic minimization method presented in this paper performs the
same function as the HFMIN tool in the 3D synthesis flow.

Contribution

This paper addresses the important milestone of achieving fast
and exact hazard-free logic minimization. It does so in the con-
text of hazard-free logic minimization of extended burst-mode gC
finite state machines. By combating state explosion and dividing
the minimization problem into more easily solved sub-problems,
our new algorithm allows very fast logic minimization of even
the largest burst-mode benchmarks to date and yields per-output
literal-exact solutions, enabling truly interactive and iterative ex-
act exploration of design alternatives.

Our approach is orthogonal to structural Petri-net based min-
imization methods by leveraging standard synthesis techniques
traditionally used in speed-independent and timed circuit synthe-
sis, namely state graph exploration and derivation of single-cube
covers [11, 21, 22, 23, 24]. Our method introduces significant en-
hancements and extensions to these techniques that are necessary
to reach the aggressive goal of allowing interactive exploration of
large designs. More specifically, this paper introduces a new ap-
proach that allows state graphs to be represented very compactly,
transforming the graph traversal complexity from potentially ex-
ponential, to linear. Compacted states also allow reduced syn-
thesis time in the subsequent binate and unate cover problems by
generating smaller cover tables. A new efficient algorithm to de-
rive single-output covers that are minimal in number of literals is
also introduced. By dividing the cover problem into more easily
solved sub-problems and then merging the results, the time spent
in finding a minimal solution is significantly reduced. Also part
of the logic minimization methodology has been the development
of methods to handle the concept of extended burst-mode hazards
during state graph exploration and cover minimization.

Section 2 describes extended burst-mode specifications, hazard
models, and required covers. Section 3 gives background on state
graphs and the single-cube cover algorithm leveraged by our new
method. Section 4 presents compacted state graphs along with a
new exact algorithm that achieves per-output literal-exact cover
solutions. Section 5 presents benchmark comparisons between
the algorithm presented in this paper and other available extended
burst-mode logic minimization tools. Conclusions can be found
in Section 6.

2 Extended burst-mode background

This section starts out by giving a background view of
extended burst-mode specifications. This is followed by an
overview of delay assumptions, hazard models, and requirements
for hazard-free synthesis.

2.1 Extended burst-mode specification

Extended burst-mode controllers [19] belong to the multiple
input change (MIC) classification of asynchronous finite state ma-
chines. The controllers work under a fundamental mode assump-
tion that requires the logic to stabilize between two distinct sets of
input changes. Inputs are allowed to change concurrently in an ex-
tended form of MIC called bursts. The signals within a burst may
arrive in arbitrary order. Every input burst is followed by (a pos-
sibly empty) concurrent burst of output and state signal changes.
After the output and state burst, the internal nodes of the circuit
must attain quiescence before the fed back state signals are al-
lowed to reach the inputs of the circuit. The circuit must then
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Figure 1. Extended burst-mode specification and gC implementa-
tion structure.

stabilize in response to these state signals before the next input
burst may arrive. This cyclic operation of extended burst-mode
circuits is similar to the way synchronous state machines operate,
which, by nature, also exhibit a “bursty” nature between clock
edges.

The extended burst-mode specification shown in Figure 1(a)
is used as an example in later sections. Each transition between
states contains an input burst and a possibly empty output burst. If
there is more than one outgoing transition from a state, a determi-
nistic choice is implied. Signals annotated with

�
and � signs and

not enclosed in angle brackets imply a rising and falling transition,
also known as a terminating edge. Input signals annotated with a� are called directed don’t cares and are free to change monoton-
ically at any time during a sequence of specified directed don’t
care states but must change by the time the signal is next speci-
fied as a terminating edge. A terminating edge not preceded by a
directed don’t care is called a compulsory edge. Signals enclosed
within angle brackets are conditionals (level signals) and are free
to change non-monotonicallywhenever not specified. When spec-
ified, such a conditional is assumed to reach a stable value in time
to be sampled correctly by the arriving compulsory edges of the
burst. State transitions occur only when all conditionals are met
and all terminating edges pertaining to a burst have appeared.

2.2 Extended burst-mode synthesis

Classic extended burst-mode synthesis follows a path similar
to synchronous finite state machine synthesis. An extended burst-
mode controller is first state assigned to implement a next state
function corresponding to the initial specification. The state as-
signment step must ensure that the resulting function is free of
function hazards and must also take steps to ensure that an im-
plementation free of logic hazards exists. The next step is to find
a minimal next state circuit implementation of the state assigned
specification that is free of logic hazards through logic minimiza-
tion. Logic minimization produces a set of minimized logic equa-
tions which can then be technology mapped into a real circuit
and analyzed for timing to determine required delays on feed-
back paths. The work in this paper focuses on the hazard-free
logic minimization step of this synthesis procedure. This section
presents the theory behind extended burst-mode transitions and
hazards so that these concepts can later be discussed in the con-
text of logic minimization using our approach which is based on
state graph exploration and the single-cube algorithm.

Timing requirements. Extended burst-mode assumes a delay
model with arbitrary delays in gates and wires. To guarantee a
correct implementation, three timing requirements are imposed by
the extended burst-mode synthesis method. Fundamental-mode
environmental constraint: no compulsory edge of the next input



burst may appear until the circuit has attained quiescence. Feed-
back delay requirement: fed back variable changes must not reach
the inputs until all enabled outputs and state variables have com-
pleted. Setup and hold time requirements: all conditional signals
specified to be stable must stabilize before any compulsory edge
appears and must remain stable until the output and state burst has
been completed.

gC implementation structure. In an extended burst-mode gC
implementation of the output function f , the set logic ( fset ) and
reset logic ( freset ) are both implemented as two-level AND-OR
circuits. The on-set of f ( fset ) is implemented by the N-stack
transistor network and the off-set ( freset ) is implemented by the
P-stacks. The arguments for hazard-free covers are analogous for
fset and freset . Figure 1(b) illustrates the structure of an extended
burst-mode gC circuit.

Extended burst-mode transitions. When inputs are allowed
to change non-monotonically during multiple-input changes, the
classical definition of hazards is insufficient. In [19], Yun intro-
duces the notion of generalized transitions to enable a framework
for discussing the new hazards that can occur in an extended burst-
mode environment. A generalized transition defines the set of all
legal trajectories in transition cube � S � E � , where S is a start cube
and E is an end cube. A generalized transition can have three
types of inputs: rising-edge, falling-edge, and level. Edge inputs
change monotonically (i.e., at most once in a legal trajectory). If
specified, level inputs must hold the same value in S and E, where
the value is either a constant 0 or 1, to comply with the setup and
hold time requirements. Level signals, if they are not specified in
the transition, may change non-monotonically. The start subcube,
s, is a maximal subcube of S such that each signal undergoing a
directed don’t care transition is set to its initial value (i.e., 0 for
a rising-edge and 1 for a falling-edge). The end subcube, e, is
a maximal subcube of E such that each signal undergoing a di-
rected don’t care transition is set to its final value (i.e., 1 for a
rising-edge and 0 for a falling-edge). These subcubes fill an im-
portant role in the definition of hazard-free covers. An extended
burst-mode transition is a static generalized transition for a given
output if all minterms in [S,E] yield the same value for the out-
put. It is a dynamic 1 � 0 generalized transition if all minterms
in [S,E) (i.e., all minterms in the transition excluding those in E)
yield 1 and all minterms in E yield 0 on the output. A dynamic
0 � 1 transition is similarly defined.

Combinational logic hazards. A logic implementation of a
function f free of function hazards is said to have a logic hazard
for an input transition if for some assignment of delays to gates
and wires the output can exhibit a glitch during the transition in-
terval. There are two types of combinational logic hazards that
must be considered in an extended burst-mode circuit: static and
dynamic hazards. However, in a gC implementation, static haz-
ards cannot manifest themselves on the output [12]. Also, note
that an extended burst-mode specification is free of function haz-
ards after state minimization and assignment [12], a requirement
necessary to find an implementation free of logic hazards.

In [12], a combinational network is said to contain a dynamic
logic hazard during a function-hazard-free input change from start
cube S to end cube E when f 	 S 
��
 f 	 E 
 and the circuit’s out-
put can potentially change non-monotonically during the input
change from S to E. It is proven in [12] that when a product
term contains the start subcube s (or the end subcube e), then
the product term changes monotonically during the corresponding
extended burst-mode transition. Finally, it is shown that the out-
put of a two-level combinational AND-OR circuit is hazard-free
during a 1 � 0 or 0 � 1 extended burst-mode transition � S � E � if
and only if every product term intersecting the subtransition � S � E 


contains the start subcube s and every product term intersecting E
contains end subcube e.

Assuming that the transistor stacks internal to a complex
gate switch simultaneously, an output function implemented as
a monolithic gC circuit (gC core) cannot exhibit hazards on its
output. However, due to the weak current drive strength of high
transistor stacks, it is often desirable to partially decompose a gC
core into a two-level network of smaller gates with higher drive
strength. Such decomposition is also used to decrease the delay of
the most frequent paths through the controller, making the com-
mon case faster. When allowing arbitrary decomposition of a gC
core, the hazard constraints for a two-level combinational AND-
OR circuit, presented above, are required since delays introduced
by decomposed gates may cause stacks to no longer switch simul-
taneously. However, by avoiding short-circuits (i.e., not allowing
the decomposition of trigger signals which, during the same tran-
sition, enable and disable a P and N stack pair), the hazard con-
straints can be relaxed to no longer require the inclusion of the
start subcube s when a product term intersects the subtransition
� S � E 
 . Note, however, that a product term intersecting the end
cube E of a dynamic transition � S � E � still must contain the end
subcube e. Further discussion on extended burst-mode hazards
and short-circuit avoidance can be found in [12, 25, 20]. This
paper uses the hazard assumptions described above.

Extended burst-mode required cover. Given the hazard require-
ments discussed above, the hazard-free cover requirements for an
extended burst-mode gC set output function fset becomes:

1. Each set cube of fset must not intersect the off-set.

2. For every dynamic 0 � 1 transition � S � E � in fset , the end
cube, E, (i.e., the excitation region) must be completely cov-
ered by some product term.

3. Any product term of fset intersecting the cube E of a dynamic
0 � 1 transition � S � E � must also contain the end subcube e.

The second requirement describes the product terms, also called
required cubes, that are required for the cover to turn on when it
is supposed to. The first and third requirements describe the con-
straints that the required product terms must satisfy for the cover
to be hazard-free. As shown in Section 4.3, all of these require-
ments are satisfied by the logic minimization algorithm presented
in this paper. Hazard-freedom requirements for freset are analo-
gous to fset .

3 State graph and single-cube background

As the logic minimization approach presented in this paper is
based on state graph exploration and the single-cube cover algo-
rithm, this section first gives some background definitions used
for these approaches.

State graph definitions. A state graph is a graph in which
nodes are labeled with the current state vector. Signals in the
state vector that are enabled to rise or fall are annotated with a
superscript *. The edges of the state graph are optionally labeled
with the names of the signals that are enabled to change. An ex-
citation region for an output signal is a maximal connected set of
states in a state graph in which the signal is enabled to change. If
the signal is rising (falling) in the region, it is called a set region
(reset region). Each excitation region in an extended burst-mode
circuit can be implemented with a single conjunction of literals
(i.e., a single cube) which corresponds to a cover of the excita-
tion region. The cover of an excitation region is a set of states for
which the corresponding cube in the implementation evaluates to



one. Each cube in the implementation is composed of trigger sig-
nals and context signals. For an excitation region, a trigger signal
is a signal whose firing can cause the circuit to enter the excitation
region. The set of trigger signals for an excitation region can be
represented with a cube called a trigger cube.

The single-cube algorithm. The single-cube algorithm [11] is
a fast algorithm for finding a solution to controllers where each
excitation region can be covered by a single cube. An impor-
tant property of extended burst-mode controllers is that an exci-
tation region can always be represented by a single cube. In a
burst-mode specification, every excitation region spans only one
minterm due to the delay constraint imposed on fed-back state and
output signals (i.e., no changes on inputs are visible throughout
the excitation region). In an extended burst-mode specification,
directed don’t cares and level signals can expand this minterm
into a cube, but since all input and output signals that can be used
as context signals are persistent, the excitation region can still be
covered by a single cube. Therefore, the single-cube algorithm
is guaranteed to always find a solution for extended burst-mode
controllers.

The input to the single-cube algorithm is a complete state
coded state graph and the output is a set of minimized logic equa-
tions for each output signal implementing each set and reset re-
gion in the state graph specification. The single-cube algorithm
finds a hazard-free cover by first analyzing the state graph to de-
rive an initial cover based on trigger signals for each excitation
region. Since this initial cover may include minterms of the op-
posite set, called cover violations (CV), as well as hazards, called
intersection violations (IV), a binate covering problem is then for-
mulated to remove such violations by adding context signals to the
cover.

4 Extended burst-mode logic minimization using
the single-cube algorithm

Although the single-cube algorithm is very fast for medium
sized state graphs (several hundred states), large and highly con-
current extended burst-mode controllers can yield very large state
graphs, making state graph traversal and solving of cover tables
a time-consuming process. This section introduces the concepts
of compacted state graphs and compacted cover tables to enable
very fast logic minimization of large and complex controllers.

Extended burst-mode gC controllers are generally best imple-
mented with a minimal literal count per output cover (also known
as single-output minimization). Such a cover criteria exploits
product term sharing while at the same time guarding against ex-
cessive sharing which could result in product terms with too high
literal counts (as often happens in the simpler to derive minimal
cube covers). However, since the standard single-cube algorithm
by default generates minimal covers per excitation region, it can-
not be directly used to find high quality extended burst-mode im-
plementations. This section therefore also presents a new algo-
rithm that extends the single-cube algorithm to find per-output
minimal literal covers, a much harder problem than the single-
cube algorithm default of finding per-excitation-region minimal
literal covers.

4.1 Algorithm overview
Figure 2 illustrates the high-level outline of our logic mini-

mization algorithm. The logic minimization starts out by first
traversing the state graph, deriving the set of regions where the
output currently being minimized is enabled to change (excita-
tion regions). The algorithm then proceeds by finding the initial

cost f unction = minimum literal cardinality;
// Divide:

foreach out put set or reset function in StateGraph �
ERs = each excitation region of out put;
foreach er in ERs �

TCs = find trigger cubes(er, StateGraph);
CSs = find context signals(er, StateGraph);
// Resolve:

foreach (tc, cs) in (TCs, CSs) �
foreach state in StateGraph �

CVs = CVs � find cover violations(tc, state);
IVs = IVs � find intersection violations(tc, cs, state); �

tablebinate = build binate cover table(tc, cs, CVs, IV s);
Solutionslocal = Solutionslocal � solve binate cover table(tablebinate ); ���

// Merge:

tableunate = build unate cover table(ERs, Solutionslocal );
Solutionout put = solve unate cover table(tableunate , cost f unction);
Solutioncontroller = Solutioncontroller � Solutionout put ; �

Figure 2. Extended single-cube algorithm for per-output minimal
literal count solutions.

trigger cubes and context signals for each excitation region sepa-
rately. Eventual cover and intersection violations are then found,
and a binate cover table is built and solved in order to remove
any such violations from the initial cover. Except for the con-
cept of intersection violations which was developed by the au-
thors to handle extended burst-mode hazards, the steps described
so far form the original single cube algorithm which finds per-
excitation-region minimal covers. In order to achieve higher qual-
ity covers, the single cube algorithm is extended to generate per-
output minimal covers. The extensions are implemented by the
last five lines in the algorithm in Figure 2. Rather than finding a
single cover cube per excitation region, the extended single cube
algorithm finds the set of minimal and unique cubes that could
potentially be part of a final minimal cover. These sets of local
solutions are then merged into a final minimal solution by setting
up and solving a unate cover problem. The following subsections
will discuss the compacted state graphs and the extended single
cube algorithm in more detail.

4.2 Compacted state graphs

The underlying problem of state explosion of highly concur-
rent controllers is that every extended burst-mode burst must be
expanded into all possible interleavings of signal edges. This is
because signals pertaining to a burst may arrive in arbitrary or-
der. The number of states caused by a burst grows exponentially
with the number of signals in the burst. The situation is made
even worse when non-monotonic level signals are present in the
specification. Since any unspecified level signal may take on an
arbitrary value, each state in the state graph corresponding to a ter-
minating edge must be split into 2n states, where n is the number
of level signals defined in the specification, to model all possible
combinations of values that the level signals may currently ex-
hibit. As a high degree of signal concurrency is often required to
extract as much parallelism from a design as possible and level
signals are frequently used to read the status of datapaths, clearly
we do not wish the minimization algorithm to be exponentially
dependent on the degree of signal concurrency and level signals
present in the specification. This state explosion can be combated
by introducing the concept of compacted state graphs. A com-
pacted state represents the set of states reachable by all possible
interleavings of a set of concurrently enabled signals. An impor-
tant property of compacted states is that they must not contain
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unreachable states or else synthesis results may not be optimal.
A compacted state is a cube consisting of all states reachable

by all possible interleavings of the set of currently enabled mono-
tonic (edge) and non-monotonic (level) input and output signals.
A compacted state is represented by a set of 1’s and 0’s for non-
enabled signals, a set of R’s and F’s denoting rising and falling
edges of enabled monotonic signals (terminating edges as well as
directed don’t cares), and a set of -’s denoting the unknown value
of enabled non-monotonic level signals.

When building a compacted state graph from a generic sig-
nal transition based specification, a new compacted state is only
added to the compacted state graph when a new signal becomes
enabled or when a signal in the current state becomes enabled in
the opposite direction. Note that the definition of a compacted
state may allow compacted states to overlap. As an example
consider the generic transition based specification shown in Fig-
ure 3(a). This specification corresponds to the extended burst-
mode burst a

� � b � � d ��� x � in Figure 3(b). When entering the
specified portion of the graph, three signals a

�
,b
�

, and d
�

are
enabled. A compacted state abdx:RRR0 is created which covers
all states reachable by all possible interleavings of the enabled sig-
nals. A state that is not part of this compacted state is not reached
until a

�
and b

�
have both fired and x

�
becomes enabled. The

enabled signals are now x
�

, and d
�

and a compacted state 11RR
is created. Note that these two compacted states partially over-
lap and indeed they need to do so since directed don’t care d

�
is free to fire at any time both before and after a

�
and b

�
fire.

Subsequently, both compacted states must cover the possibility of
d
�

firing inside either of them. In the compacted state graph, a
transition from compacted state RRR0 to compacted state 11RR
takes place when both a

�
and b

�
have fired (illustrated by the

a
� � b � � d � label in the figure), regardless if d

�
has fired or not.

Figure 3(d) shows the uncompacted state graph for the same tran-
sition specification.

For an extended burst-mode controller specification there ex-
ists a one-to-one correspondence between an extended burst-
mode burst and a compacted state graph state. The compacted
state graph size therefore grows linearly with the number of bursts
in the original extended burst-mode specification and is com-

pletely independent of the number of concurrently enabled sig-
nals and the number of declared level signals. The right side of
Figure 3(e) shows the compacted state graph for the ack-xbm-si
example from Figure 1. The compacted state graph has 17 states
and 20 transitions. An uncompacted state graph would have 50
states and 114 transitions. In real, more complex, extended burst-
mode controllers, state savings are usually well over two orders
of magnitude significantly reducing state graph analysis time and
memory consumption.

4.3 Compacted cover tables

The single-cube algorithm starts out by first deriving an ini-
tial cover, or trigger cube, for each excitation region consisting
of only the trigger signals of that excitation region. Trigger sig-
nals in an extended burst-mode controller correspond to the set of
terminating edges of an input burst. Note that a signal specified
as a directed don’t care in a burst cannot be a trigger signal for
that burst as its value is a don’t care throughout the excitation re-
gion. A level signal is also not a trigger signal since the setup time
requirement forces it to stabilize before any compulsory edges ar-
rive at the inputs. As an example, consider the compacted state
graph in Figure 3(e). The excitation regions for output x are in-
dicated by the shaded (set) and striped (reset) compacted states.
The trigger cube for signal x in the set region abdl � xyz:1100.RR0
of our example would be --0-.---, or d � , since d � is the trig-
ger signal transition. The other trigger cubes (TC) for the signal
x are shown in Figure 4(a). By starting with a trigger cube to
cover each excitation region, we satisfy the second requirement
for a hazard-free extended burst-mode cover (see Section 2.2) in
that the excitation region is completely covered by some product
term. Subsequent steps to remove violations from the initial trig-
ger cube cover must, of course, ensure that the whole excitation
region remains completely covered.

Next, a set of potential context signals, signals that are sta-
ble throughout the excitation region, are derived for each excita-
tion region. Such context signals are later used to remove violat-
ing states. Note that because of the feedback delay constraint of
extended burst-mode, concurrently changing outputs that are fed
back remain stable at the inputs throughout an excitation region
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Figure 4. Logic minimization of output x of controller ack-xbm-si.

and can thus be used as context signals. The potential context sig-
nals for output x in excitation region 1100.RR0 of our example are
a, b, l � , x � , y � , and z � . The other potential context signal sets (CS)
for excitation regions of signal x are also shown in Figure 4(a).

Since the initial cover may cover states where the output in
question is defined to have the opposite value, such cover viola-
tion (CV) states must be removed from the initial cover. Note
that special care must be taken while detecting cover violations
when using compacted state graphs since compacted states may
overlap. By removing all cover violation states we satisfy the first
requirement for a hazard-free extended burst-mode cover in that
each set cube does not intersect the off-set minterms.

For extended burst-mode gC controllers, a cube must not inter-
sect an excitation region unless it also includes its end subcube.
An example of such an intersection violation (IV) is cube d � which
intersects excitation region 01R-.R00 without including its end
subcube 011-.000. The intersection state-cube 010-.000 =
01R-.R00 � --0-.--- must therefore be removed for the
cover to be hazard-free. The only possible context signal that
can be used to remove this violation is a. All intersection viola-
tions (IV) for signal x are shown in Figure 4(a). Note that even if
the trigger cube contains the end subcube, a selected context sig-
nal may still exclude the end subcube. If such a context signal is
selected, then some other context signal must also be selected to
remove the entire intersection cube. This condition is what makes
our covering problem binate. By removing all intersection vio-
lation states (i.e., parts of the trigger cube which may intersect a
dynamic transition without containing its end subcube), we sat-
isfy the third requirement for a hazard-free extended burst-mode
cover in that no dynamic hazard is present in the final cover.

To minimize the logic output functions, all covering and inter-
section violations are collected along with any context signal that
can remove the violations from the initial cover and a binate cover
table is constructed and solved. Columns in the table then repre-
sent violations that must be removed before the function becomes

hazard-free, and rows represent context signals that can be added
to the cover to remove violating states. By using cubes to repre-
sent violations in combination with compacted state graphs, the
size of the cover table is reduced considerably allowing the cover
problem to be solved much faster than previously possible. The
binate cover tables for signal x are shown in Figure 4(b).

4.4 Exact minimization

The basic single-cube algorithm implements the per-
excitation-region literal-exact minimization approach. It does not
perform sharing of product terms which is the minimization crite-
ria of choice for extended burst-mode gC circuits. We present an
extension to the single-cube algorithm which essentially casts the
problem of finding a per-output literal-exact cover as a simpler
three step problem of divide, resolve, and merge. Our proposed
method is general enough such that any cost function based on
literal and product term counts can be easily implemented, both
for single and multi-output minimization. This paper, however,
considers only single-output literal-exact solutions as this suits
extended burst-mode gC implementations best.

Classic single-output logic minimization for extended burst-
mode controllers is a two step problem where each output func-
tion is considered separately. An output function is composed of
all excitation regions for that output’s on-set (or off-set). The clas-
sic algorithms first find all prime implicants of the output function
using tools such as Espresso or Scherzo. Since prime impli-
cants may potentially be hazardous, the prime implicants are then
checked for hazards and split into hazard-free implicants when
necessary. A cover is then formed by selecting hazard-free impli-
cants until the entire function is covered. As the number of ex-
citation regions per output grows, Espresso and Scherzo runtimes
increase quite notably as deriving prime implicants for a large
on-set is a very complex problem. In contrast to the approach
described above, the single-cube approach to logic minimization
is to consider each excitation region separately, thus dividing the
problem into smaller, more easily solved sub-problems. Since we
are interested in achieving a minimal literal count per output how-
ever, the basic single-cube algorithm must be extended to find a
broader set of sub-solutions and then merge these sub-solutions
into a final minimal cover.

Finding a per-output literal-exact solution through the use of
the single-cube algorithm is achieved by employing a strategy
consisting of three phases, divide, resolve, and merge. The di-
vide phase splits the dataset into manageable pieces, the resolve
phase then finds the local solutions for each piece, and the merge
phase finds the total solution by considering all local solutions.
This algorithm is illustrated in Figure 2.

The basic single-cube algorithm first divides the cover prob-
lem into the sub-problems of finding, for each excitation region
separately, a minimal hazard-free cube that covers the excitation
region. To find a minimal cover for the whole output function
however, we must extend the single-cube algorithm to return the
set of minimal cubes, where each cube covers a unique combina-
tion of excitation regions. Finding these sets of local hazard-free
solutions for each excitation region then constitutes the resolve
phase of the algorithm. The second extension of the single-cube
algorithm is then to find a minimal literal cover for the output as
a whole from these local solutions. This is posed as a unate cover
problem where a minimal literal solution is found using classi-
cal reduction techniques followed by a branch and bound on the
cyclic core. This forms the merge phase of the single-cube algo-
rithm and produces a final cover for the output that is minimal in
the number of literals.



Return to Figure 4(b). Since both a and d can remove the vi-
olating state-cube 000-.100 from trigger cube b � of excitation
region 	 x ��� 2 
 , two minimal literal solutions b � a and b � d are found
for this excitation region. Cube b � a covers only excitation region
	 x ��� 2 
 while cube b � d covers both 	 x ��� 1 
 and 	 x ��� 2 
 . Since
cube b � a covers only a subset of the excitation regions of cube b � d
and does not have a smaller literal count, only cube b � d is unique
and needs to be kept. Although excitation region 	 x � � 2 
 has two
possible solutions d � a and d � ab, only d � a needs to be kept since
d � ab is not minimal in number of literals and both solutions cover
the same excitation regions (the same cover table and solutions
are found for excitation region 	 x � � 3 
 ). The merge phase then
finds a final solution for the set and reset regions of the output by
selecting a minimal cover from the local solutions found during
the the resolve phase. This unate cover problem is illustrated in
Figure 4(c). Both cubes ba � and d � a must be used in the cover for
the set region of x. For the reset region of x only one cube, b � d,
is needed as it covers both excitation regions. The final complex
gate for output x is shown in Figure 4(d).

5 Results

The algorithm described in this paper has been completely in-
corporated and automated in the ATACS [11] synthesis tool. The
ATACS extended burst-mode logic minimizer is exact in number
of literals. We compare against the publicly available state of the
art hazard-free logic minimization tools developed by Nowick et
al. The HFMIN [7] minimizer is exact in number of literals. The
IMPYMIN [8] minimizer uses implicit BDD algorithms for exact
number of cubes minimization but does not perform literal exact
minimization. The ESPRESSO-HF [8] minimizer is heuristic in
both number of cubes and number of literals. It should be noted
that IMPYMIN and ESPRESSO-HF are optimized for the more
difficult problem of multi-output covers. All minimizers are run
in single-output minimization configurations as multi-output min-
imization is not suitable for gC circuits in terms of performance.
The 3D tool [19] was used to find a state assignment for the bench-
marks.

5.1 Benchmark results

The runtime and literal comparisons shown in Table 1 contains
the largest benchmarks that have been built in the burst-mode
community to date. The postoffice [1], cache-ctrl [26], stetson
[3], hp-ir [3], diffeq [4], cd-player [27], pscsi [28], sscsi [2], xscsi
[19], dram-ctrl [2], and barcode [29] are all derived from real-
life designs. The other examples are classic burst-mode bench-
marks from various publications. The burst-mode controllers ack-
cd-player, ack-fibonacci, ack-diffeq, ack-barcode, ack-gcd, and
ack-factorial are all generated automatically from a procedural
language description by the high-level synthesis framework ACK
[30, 6, 31, 5]. All benchmarks are run on a 333 MHz Ultrasparc-2
processor with 1 GB of physical memory and 840 MB of virtual
memory running the Solaris operating system. All benchmarks
that finished ran completely in physical memory. Hence the re-
sults should show the true runtime potential of the respective min-
imizers.

As can be seen in Table 1, our logic minimization method is
not only exact for all benchmarks but also extremely fast. Our
method achieves sub-second synthesis even for the largest bench-
marks and is well over three orders of magnitude faster than the
closest literal-exact solution for these benchmarks. Our exact
method is also over one order of magnitude faster than heuris-
tic solutions for the majority of the benchmarks. In addition, our
method can perform literal-exact minimization for designs where

ATACS HFMIN IMPYMIN ESPRESSO-HF
(literal-exact) (literal-exact) (cube-exact) (heuristic)

Design CS IO Time Lit Time Lit Time Lit Time Lit

ack-cdplayer-p1 74 45 0.42 274 impossible 150.86 276 20.02 277
ack-cdplayer-p2 32 24 0.32 129 44.93 129 29.04 133 10.56 130
ack-fibonacci 50 35 0.34 194 1675.65 194 85.74 204 13.61 198
ack-diffeq 32 34 0.33 177 120.16 177 45.93 184 14.32 185
ack-barcode 34 28 0.31 167 45.90 167 31.54 168 11.15 168
ack-gcd 34 20 0.33 80 19.26 80 16.44 80 6.48 80
ack-factorial 23 17 0.27 42 16.01 42 13.26 42 5.77 42
ack-xbm-si 17 7 0.25 16 7.68 16 4.48 16 2.09 16
cache-ctrl 98 36 0.79 510 2524.96 510 273.40 534 14.62 521
chu-ad-opt-e 8 6 0.25 12 5.53 12 4.68 12 2.19 12
dme-e 20 8 0.28 22 9.33 22 8.50 22 3.69 22
dme-fast-e 20 8 0.26 27 9.27 27 7.74 29 3.66 28
dram-ctrl 25 13 0.31 38 12.93 38 10.25 42 4.37 42
hp-ir-sc-ctrl 76 30 0.39 205 81.73 205 41.90 216 12.26 213
hp-ir-sd-ctrl 54 24 0.50 137 39.42 137 30.24 144 11.28 144
hp-ir-it-ctrl 23 13 0.26 46 15.25 46 12.85 48 5.73 47
hp-ir-rf-ctrl 26 13 0.31 33 13.18 33 10.92 35 5.06 35
hp-ir-two-tick 15 6 0.25 8 3.82 8 3.10 8 1.59 8
hp-ir 16 5 0.26 11 3.74 11 3.09 11 1.53 11
postoffice-pesnd 28 10 0.31 57 9.33 57 8.01 58 3.64 58
postoffice-bfsnd 17 8 0.33 30 9.22 30 7.61 31 3.55 31
postoffice-bfrd 14 7 0.26 15 7.32 15 6.03 15 2.88 15
pscsi-pscsi 119 20 0.58 270 30.76 270 22.49 282 7.42 280
pscsi-isend 22 10 0.31 48 11.09 48 9.24 48 4.25 48
pscsi-ircv 13 9 0.32 26 9.15 26 7.56 26 3.56 26
pscsi-trcv-bm 18 10 0.27 30 11.06 30 10.01 30 4.26 30
pscsi-trcv 14 8 0.32 23 7.33 23 6.09 23 2.83 23
pscsi-tsend-bm 24 10 0.33 45 11.26 45 9.22 45 4.21 45
pscsi-tsend 24 10 0.32 50 11.14 50 9.23 50 4.26 50
sscsi-isend-bm 24 11 0.31 52 11.39 52 9.35 52 4.24 52
sscsi-isend-csm 18 11 0.28 39 11.05 39 9.28 41 4.31 39
sscsi-trcv-bm 24 11 0.27 50 11.14 50 9.39 51 4.25 51
sscsi-trcv-csm 18 11 0.26 37 11.04 37 9.28 39 4.23 37
sscsi-tsend-bm 26 11 0.30 52 11.92 52 9.32 52 4.27 52
sscsi-tsend-csm 22 11 0.30 38 11.10 38 9.27 39 4.22 40
stetson-p1 84 30 0.43 225 81.06 225 39.80 236 11.95 235
stetson-p2 56 24 0.52 148 38.41 148 28.47 154 11.10 168
stetson-p3 16 6 0.25 8 3.74 8 3.03 8 1.53 8
vanbek-ad-opt-e 6 6 0.25 13 5.47 13 4.61 13 2.17 13
xscsi-fifo2scsi 22 11 0.32 45 12.02 45 9.38 46 4.12 45
xscsi-dma2fifo 18 9 0.28 37 9.53 37 7.62 37 3.50 37
xscsi-fifo2dma 14 8 0.29 20 7.87 20 6.01 20 2.78 20
xscsi-fifocellctl 6 5 0.25 10 5.48 10 4.51 10 2.10 10
yun-diffeq-alu2 32 14 0.32 89 20.02 89 16.21 90 6.19 89
yun-diffeq-alu1 18 10 0.29 38 13.28 38 10.61 38 4.67 38
yun-diffeq-mul1 8 7 0.26 32 7.43 32 6.04 32 2.73 32
yun-diffeq-mul2 6 6 0.25 13 5.74 13 4.46 13 2.06 13

Table 1. Benchmark comparisons between existing extended
burst-mode logic minimizers ATACS (the method presented in this
paper), HFMIN, IMPYMIN, and ESPRESSO-HF. (CS - number of
compacted states in state graph, IO - number of input, output, and
state signals, Time - logic minimization run-time in seconds, Lit -
number of literals in solution.)

this has previously been impossible. For the ack-cd-player-p1
benchmark which contains four level signals, HFMIN runs out of
memory despite the 1.84 GB of total available memory while our
minimizer ATACS completes in only 0.42 seconds using less than
15 MB of memory. Although the heuristic and cube-exact meth-
ods of ESPRESSO-HF and IMPYMIN yield results comparable
to literal-exact solutions for many of the benchmarks, their lit-
eral counts deviate by as much as 13.5% and 10.5% respectively
for some of the benchmarks, underscoring the importance of the
ability to perform literal-exact exploration of design alternatives.

5.2 Discussion
The effectiveness of the presented logic minimizer can be

mainly attributed to two factors. First, the signal concurrency
properties of extended burst-mode controllers allows them to be
expressed very efficiently in the form of compacted state graphs.
Using compacted state graphs to represent extended burst-mode
finite state machines, time spent in state graph exploration grows
linearly, rather than exponentially, with the complexity (amount
of signal concurrency and number of level signals) of the specifi-
cation. The notion of compacted states is also exploited to signifi-
cantly reduce the time spent in solving the binate and unate cover



problems necessary to find hazard-free minimal solutions, as the
size of the cover tables is significantly reduced.

Second, the presented per-output single-cube minimization al-
gorithm naturally divides the problem of finding a solution into
smaller sub-problems of finding local unique solutions for each
excitation region separately, which are then merged into a final
minimal solution for the entire output function. This divide and
merge strategy works especially well for gC controllers due to
the relatively few required cubes (excitation regions), and sub-
sequently local solutions, present in extended burst-mode con-
trollers. The number of local solutions for a given output func-
tion is the limiting factor of the unate cover problem in the merge
step of the extended single cube algorithm, and presently also the
limiting factor for the whole minimization algorithm.

6 Conclusions
A very fast algorithm for per-output literal-exact logic min-

imization of extended burst-mode gC finite state machines is
presented. The method is based on state graph exploration and
the efficient single-cube cover algorithm which is extended to
handle the extended burst-mode hazard model and generate
per-output minimized covers. Synthesis time for very large
controllers has been significantly reduced by introducing the
concept of compacted state graphs and compacted binate cover
tables. New extensions to the original single-cube algorithm
allowing extremely fast generation of per-output literal-exact
solutions have also been developed. With the achievement
of sub-second exact logic minimization of even the largest
burst-mode benchmarks to date on a 333 MHz microprocessor,
the method presented in this paper has opened up the possibility
of truly interactive and iterative design space exploration of exact
solutions for large controllers.
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