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Abstract
On-chip inductance extraction and analysis is becom-

ing increasing critical. Inductance extraction can be diffi-
cult, cumbersome and impractical on large designs as in-
ductance depends on the current return path — which is
typically unknown prior to extracting and simulating the
circuit model. In this paper, we propose a new circuit ele-
ment,K, to model inductance effects, at the same time be-
ing easier to extract and analyze.K is defined as inverse of
partial inductance matrixL, and has locality and sparsity
normally associated with a capacitance matrix. We pro-
pose to capture inductance effects by directly extracting
and simulatingK, instead of partial inductance, leading
to much more efficient procedure which is amenable to full
chip extraction. This proposed approach has been verified
through several simulation results.

1 Introduction

Increasing clock speeds, die sizes, and power dissipations
have driven VLSI manufacturers to abandon the simple
scaling approach of interconnect wiring. Instead, they em-
ploy a hierarchy of metal wiring levels. Thinner wiring
levels are used at the circuit level where density is re-
quired, and thicker layers at the top or global levels in or-
der to route low-skew clock trees, low-loss power distribu-
tion buses, and the fastest signal interconnects. This trend,
coupled with the recent introduction of copper wiring (be-
cause its resistivity is approximately half that of aluminum
wiring) has made on-chip inductance modeling necessary
for clocks and the fastest signal interconnects.

Inductance extraction is difficult because mutual induc-
tance depends on the current return path — which is un-
known prior to extracting and simulating a circuit model.
Rosa introduced the concept of partial inductances to avoid
this difficulty by assuming that each segment has a return
current at infinity [2]. Ruehli introduced partial inductance
to modern ICs and proposed the PEEC (Partial Equivalent
Element Circuits) model to handle general three dimen-
sional interconnects [3, 4]. Kamon,et almore recently de-
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veloped the algorithm, FastHenry [5], to solve for effective
inductance from partial inductances with multi-pole accel-
eration.

Nonetheless, the partial inductance approach, which as-
signs portions of the loop inductances to segments along
the loop, results in a large, densely-coupled network repre-
sentation, which makes subsequent circuit simulation prac-
tical only for small examples. Moreover, unlike capaci-
tance matrices which can be truncated to represent only
localized couplings, simply discarding distant mutual in-
ductances can result in an unstable equivalent circuit model
(positive poles) [6].

As an alternative to simple truncation, a shift-truncate
potential method was proposed by Krauter,et al [7, 6].
This shift-truncate potential method assumes that segment
currents return at a finite radiusr0, instead of infinity.
Therefore, segments spaced more thanr0 apart have no in-
ductive coupling. This technique can guarantee to generate
positive definite sparse approximations of the original par-
tial inductance matrix. Nevertheless, to determine a proper
value of r0 to ensure a desired accuracy involves com-
plicated schemes and iterations. Moreover, this approach
does not work well for long wires. Shepard,et alproposed
the concept of “return-limited loop inductance” to sparsify
the partial inductance matrix [8]. It is based on the assump-
tion that the currents of signal lines return within the re-
gion enclosed by the nearest same-direction power-ground
lines. However, this may not be true when power-ground
lines are of same order of dimensions as signal lines. Re-
cently, Lin developed the 2x mutual inductance screening
rule [9]. Since this rule basically discards the consideration
of circuit topology, it cannot be applied to some complex
interconnect topology, such as mesh ground plane [6].

Thus, unlike capacitance extraction, where only the
nearest neighbor conductors need to be considered, in in-
ductance extraction, a large number of conductors are in-
volved. Techniques used in capacitance extraction, such
as library construction and analytical formulas cannot be
applied to inductance extraction.

However, althoughC matrix is sparse, the inverse of C
has been observed to be dense. We speculated that ifL is
dense, then the inverse ofL may be sparse. In this paper,
we introduce a new circuit element to represent inductance



effect, while still preserve locality for large systems. This
new circuit element,K, is basically the inverse of partial
inductance.

Therefore, we proposed to capture on-chip inductance
effect by directly extracting and simulatingK, instead of
partial inductance. SinceK has locality, we only need to
consider a small number of neighbors. As the result, the
K matrix for circuit simulation is very sparse. Thus it can
save a great amount of CPU time and memory usage when
capturing on-chip inductance effect. Moreover, we can fur-
ther construct libraries or analytical formulas forK, which
will enable thisK-based method to be a practical one to
predict and capture inductance effect for the whole chip.
This new concept has been verified by the simulation re-
sults of practical examples.

2 Partial Inductance

Since our proposedK is defined as the inverse of the partial
inductance, we begin with a brief review of partial induc-
tance.

It’s well known that inductance is a property of closed
loops. Since for on-chip interconnects, the induced cur-
rent return paths are unknown, the prevailing inductance
models are built on partial inductance concepts. Partial in-
ductance are best understood in terms of the normalized
magnetic vector potential drop along a conductor segment
due to current in that, or another segment. Consider the
two conductor segments,i andj, as shown in Fig. 1.
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Figure 1: Partial inductance associated with magnetic vec-
tor potential drop along the conductor segments. Both seg-
ment loops are assumed to close at infinity.

The partial inductanceLij between segmenti andj is
given by

Lij =
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whereAij is the magnetic vector potential along segment
i due to the currentIj in segmentj. Segmenti has a cross
sectionaj . In magneto-statics, the relationship between the
magnetic vector potentialAij and the currentIj is given by
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whererij is the geometric distance between two points in
segmenti andj.

Substitute Eq. (2) into Eq. (1), we can get
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The partial inductance matrix for a set ofn conductors
is ann�n real symmetric matrix. The corresponding linear
system is given by
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From Eq. (3), we can see that the partial inductanceLij

only depends on the relative position and length of seg-
menti andj, and is independent of the existence of other
conductors. That is to say, the existence of other conduc-
tors has no shielding effect on the inductive coupling be-
tween segmenti andj, under this partial inductance def-
inition. Furthermore, since the integral kernel ofLij is
rij , the off-diagonal elements in the partial inductance ma-
trix decrease very slowly (at the order oflog rij ) with the
increase of spacingrij . Because of this long range induc-
tive coupling effect for partial inductance of on-chip wires,
capturing inductive couplings becomes much more diffi-
cult than capturing capacitive couplings, which is known
to be local. Moreover, it is understood that making the
matrix sparse by merely discarding the smallest terms can
render the matrix indefinite and thereby introduce positive
pole(s) in subsequent circuit simulations.

3 Circuit Element K

3.1 Definition ofK

[K] is defined as inverse of partial inductance matrix[L].

[K] = [L]�1 (5)

This definition originated from the well known relation-
ship between capacitance and inductance for transmission
line structures,

[Lloop] = �0�0[C0]
�1 (6)

where�0 and�0 are permittivity and permeability in free
space, respectively.[C0] is the capacitance matrix which
would result if all dielectric layers were replaced by free
space. This relationship inspired us that for structures other



than transmission lines, although the inverted inductance
matrix, [K] (or [L]�1), is not proportional to capacitance
matrix, [C0], [K] may still have similar local property as
[C0]. If this is true, then we can applyK extraction lo-
cally, and deriveRKC equivalent circuit models, instead
of RLC models to model the inductance effect.

Here, we should emphasize that[Lloop] have complete
different meaning with[L]. The element in[Lloop] is loop
inductance, and it was calculated with a pre-defined ground
return path. That is to say, there is only an(n � 1) �
(n � 1) [Lloop] matrix for ann conductor system. While
the element inL matrix is partial inductance, and it was
assumed all current return in infinity. For ann conductor
system, ann�nLmatrix is obtained. Therefore, although,
the K matrix has similar locality as the C matrix, it is not
related to the capacitance matrix.

3.2 Locality of K

The following example demonstrate the locality ofK ma-
trix. Consider a layout example with five parallel buses,
shown in Fig. 2. The length of all buses is 20�m, the cross
section is 2x2�m, and the spacing between the buses is 5
�m.
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Figure 2: Layout Example with 5 Parallel Buses

We calculated the partial inductance matrix,L, using
FastHenry [5],

[L] =

2
6664

11:4 4:26 2:54 1:79 1:38
4:26 11:4 4:26 2:54 1:79
2:54 4:26 11:4 4:26 2:54
1:79 2:54 4:26 11:4 4:26
1:38 1:79 2:54 4:26 11:4

3
7775 pH; (7)

and then invertedL to getK matrix.

[K] =

2
6664

103 �34:1 �7:80 �4:31 �3:76
�34:1 114 �31:6 �6:67 �4:31
�7:80 �31:6 115 �31:6 �7:80
�4:31 �6:67 �31:6 114 �34:1
�3:76 �4:31 �7:80 �34:1 103

3
7775�109H�1

(8)
From Eq. (7) and Eq. (8), we can see that the partial mu-

tual inductanceL51 is 1.38/11.4 or12:1% of the partial self
inductanceL11, while jK51j is only 3.76/103 or3:7% of
the self termK11.

Meanwhile, we also calculated the capacitance matrix

of the above structure shown in Fig. 2 using FastCap [10].

[C] =

2
6664

555 �202 �43:8 �23:5 �20:9
�202 631 �187 �37:0 �23:5
�43:8 �187 634 �187 �43:9
�23:5 �37:0 �187 631 �202
�20:9 �23:5 �43:9 �202 555

3
7775 pF

(9)
It can be observed the amazing similarity of the decreas-

ing trend of the off-diagonal elements in bothK andC ma-
trix. For example, the absolute value of mutual capacitance
jC51j is about 20.9/555 or3:8% of the self capacitanceC11.

That is to say, the off-diagonal elements inK matrix
decrease faster than that of the partial inductance matrix,
and at a similar speed as that in capacitance matrix, which
we callK matrix has locality. The physical explanation of
this locality forK matrix is provided in [1].

3.3 K-based method

SinceK has locality, we only need to consider a small
number of conductors enclosed in small window when ex-
tractingK. Our approach can be summarized as follows.
� Calculate the partial inductance matrix,L, of a small

structure which is enclosed in a small window.
� Calculate the smallK matrix by inverting the corre-

spondingL matrix.
� Compose the bigKall matrix by the column in each

smallK matrix, which is corresponding to the aggres-
sor, like the techniques used in capacitance extraction.

� Simulate the subsequentRKC equivalent circuit.
As we mentioned before, in order to be a practical ap-

proach,K-based method has to guarantee the stability of
the subsequentRKC equivalent circuit. The proof of the
stability abide by the following steps [1]:
� K matrix in general is diagonal dominant.
� The sparseKall matrix constructed byK-based

method is still diagonal dominant.
� Kall matrix is positive definite. Therefore, the subse-

quentRKC equivalent circuit is stable.
Due to space limitation, please reference [1] for detailed
proof.

Therefore, for a large system,K-based method will
generate a very sparse and stable system in later circuit
simulation. Thus it can save a great amount of CPU time
and memory usage when capturing on-chip inductance ef-
fect.

4 Experiment Results

To simply illustrate the accuracy ofK-based method, we
still use the 5 parallel buses example shown in Fig. 2. We
calculate the loop inductance between bus 1 and 5 with
and without the coupling termK15. That is we calculate
the loop inductance between bus 1 and 5 associated with
matrix [K] and [K 0], stated in Eq. 8 and Eq. 10, respec-
tively. Since directly calculating loop inductance usingK



matrix involves complicated calculation, we use the corre-
sponding partial inductance matrices,[L] and [L0], stated
in Eq. 7 and Eq. 11, respectively.

[K 0] =

2
6664

103 �34:1 �7:80 �4:31 0
�34:1 114 �31:6 �6:67 �4:31
�7:80 �31:6 115 �31:6 �7:80
�4:31 �6:67 �31:6 114 �34:1

0 �4:31 �7:80 �34:1 103

3
7775�109H�1

(10)

[L0] =

2
6664

11:3 4:17 2:42 1:60 0:89
4:17 11:4 4:20 2:46 1:60
2:42 4:20 11:4 4:20 2:42
1:60 2:46 4:20 11:4 4:17
0:89 1:60 2:42 4:17 11:3

3
7775 pH;

(11)
As we all know,Lloop15 = L11 + L55 � L15 � L51. With
the coupling termK15, we getLloop15 = 2 � (11:4 �
1:38) = 20:04pH . Without the coupling termK15, we
getL0

loop15 = 2 � (11:3 � 0:89) = 20:82pH , which is
3.9% more than the exact valueLloop15. However, if we
approximateLloop15 by directly ignoringL15 in [L] matrix,
we will getL00

loop15 = 2�11:4 = 22:8pH , which is 13.8%
overestimation, a much larger error compared toK-base
method.

Next, consider the two power planes depicted in Fig. 3.
This is the same example presented in Fig. 5 of [7]. When
power plane inductance andK matrix are modeled, power
planes such as these are meshed into separatex andy con-
ductor segments. (Even solid power planes are meshed into
separatex andy conductors.) Because orthogonal conduc-
tors do not couple magnetically, the resulting inductance
matrix andK matrix are block diagonal matrices.

10 cm

10 cm

0.1 mm

plane thickness = 0.025 mm

z
y

x

Figure 3: Two Power Planes for Inductance Effect Model-
ing

To compare our approach with the conventional and the
shift-truncate method in [7], we calculate the eigenvalues
of partial inductance matrix in the conventional and the
shift-truncate method by strictly following Krauter’s paper
[7].

That is, for the two planes depicted in Fig. 3, we created,
using FastHenry [5], a partial inductance matrix to model
the magnetic coupling in thex direction. Each plane was

meshed into 100 equal 10 mm square segments along the
x direction, and uniform current flow was assumed along
all segments (FastHenry parameters nhinc and nwinc were
set to one).

Firstly, to visualize the decrease speed of the off-
diagonal elements inL matrix andK matrix, we plotted
the normalized mutual couplings between the left-bottom
most segment and other segments in the same power plane
with respect to the self term of the left-bottom most seg-
ment for bothL andK matrix, depicted in Fig. 4 and Fig. 5,
respectively. We observed that the off-diagonal elements in
K matrix decrease much faster than those of the partial in-
ductance matrix, which again illustrated the locality ofK
matrix compared toL matrix. SinceK has locality, we
only need to consider a small number of conductors en-
closed in small window when extractingK.
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Figure 4: Normalized mutual couplings between the left-
bottom most segment and other segments in the same
power plane with respect to the self term of the left-bottom
most segment forL matrix
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Figure 5: Normalized mutual couplings between the left-
bottom most segment and other segments in the same
power plane with respect to the self term of the left-bottom
most segment forK matrix



Secondly, from this FastHenry partial inductance ma-
trix, we created two sparse approximations of the full ma-
trix. The first approximation was formed using the shift-
truncate procedure. That is, we set the current return radius
r0 equal to 12 mm, and when the result was negative, the
matrix term was set to zero. The projection onx-y coor-
dinate of the small representing structure enclosed in the
current return shell is shown in Fig. 6.

x

y

1 cm

1 cm

current return shell

r0

Figure 6: The Representing Structure in Modeling the Two
Power Planes

The second sparse approximation was formed by dis-
carding all mutual inductances less than 0.75 nH. In both
cases, 38,160 of the total 40,000 matrix terms were set to
zero, (i.e. both approximations were> 95% sparse). Fi-
nally, the eigenvalues of the full matrix and the two sparse
approximations were computed. The 200 eigenvalues for
each matrix are plotted in Fig. 7.
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Figure 7: Eigenvalues for Full and 95% SparseL Matrices
Modeling the Two Power Planes in Fig. 3

In ourK-based approach, we calculated theK matrix
of the conductor segments included in the small window as
those enclosed in the current return shell in shift-truncate
method to ensure same sparsity. Therefore, the wholeK
system has exactly same sparsity (> 95%) as those in shift-
truncate and truncation only method. SinceK matrix is the
inverse ofL matrix, the eigenvalues ofK matrix should

also be the inverse of those ofL matrix. For better illustra-
tion, we plotted the inverse ofK ’s eigenvalues in Fig. 8.

In observing Fig. 7, note that the approach of simply dis-
carding the smallest terms in the inductance matrix, yields
both an inaccurate and an unstable approximation as it fails
to match the eigenvalues of the full matrix at both extremes
and in the middle. Although the smallest 100 eigenvalues
of the shift-truncate method match those of the fullL ma-
trix, and shows the same discontinuous jump between the
100th and101st eigenvalue, there are significant difference
for larger eigenvalues between the shift-truncate method
and the full matrix.
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Figure 8: Eigenvalues for FullL matrix and 95% Sparse
K Matrix Modeling the Two Power Planes in Fig. 3

Fig. 8 shows the excellent match of the eigenvalues be-
tween sparseK matrix and fullL matrix.

Finally, to compare the effects of full inductance ma-
trix and sparseK matrix in circuit simulations, we choose
a structure presented in Fig. 8(b) of Krauter’s paper [7].
The circuit is illustrated in Fig. 9. We deliberately chose
this circuit topology because the current loops were larger
than that in Fig. 8(a) of Krauter’s paper [7]. Thus, it will
be more obvious whether or not theK-based method can
capture enough mutual inductance coupling. In this struc-
ture, each conductor has cross section of 2x2�m square,
d1 = 10�m, d2 = 40�m, andd3 = 1600�m. Each con-
ductor was broken into forty equal segments in order to
create a large yet illustrative partial inductance matrix.

To make the inductive effects dominate,Rs andRt were
set to 1 and 10 ohms, and a rise time (0.1ns) was employed
to simulate the frequency of on-chip interconnect applica-
tion.

In our approach, the window size was assumed to in-
clude at most 3 segments of each conductor. The sparsity
of the resultedK matrix is about 92.6%. The circuit sim-
ulation is performed by Ksim [1], which simulatesRKC
equivalent circuit, instead ofRLC. The simulation results
is shown in Fig. 10. We can see good agreement in terms
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Figure 9: Circuit Example same as Fig. 8 from Krauter’s
paper[7]

of circuit simulation results between the fullL matrix and
the sparseK matrix.
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Figure 10: Simulation Results for Circuit Example in Fig. 9

5 Conclusion

Partial inductance are extremely useful in modeling circuit
inductances when the induced current loops are unknown.
Unfortunately, these matrices are dense and defy conven-
tional simplifications (i.e. the smallest matrix cannot be
indiscriminately discarded).

In this paper, we introduce a new circuit element,K,
as the inverse of partial inductance. We found out thatK
is capable of capturing inductance effect, while still pre-
serve locality. SinceK matrix is a sparse diagonally dom-
inant matrix, we only need to consider a small number of
neighbors. Therefore, we proposed to capture on-chip in-
ductance effect by directly extracting and simulatingK,
instead of partial inductance. As the result, theK matrix
for circuit simulation is very sparse. Thus it can save a
great amount of CPU time and memory usage when cap-
turing on-chip inductance effect. This new concept has
been verified by the simulation results of practical exam-
ples, and showed remarkable accuracy over other sparsi-
fication techniques, such as the shift-truncate method and

truncation only method.
We further understand the physical meaning ofK and

the reason thatK has local property [1]. Most importantly,
it can be proved that the sparse system matrix constructed
by ignoring far away mutualK is positive definite [1].

Therefore, we can later construct libraries or analytical
formulas forK, which will enable thisK-based method to
be a practical one to predict and capture inductance effect
for the whole chip.
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