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ABSTRACT
In this paper, we present an eÆcient approach to �nd e�ec-
tive module selections under resource, latency, and power
constraints. The framework contains two phases: choosing
a resource con�guration, and determining a module bind-
ing for each resource. The �rst phase applies inclusion
scheduling to estimate generic resources required. In the
second phase, module utility measurement is used to deter-
mine module selections. A heuristic which perturbs module
utility values until they lead to superior selections accord-
ing to design objectives are also proposed. The experiments
on well-known benchmarks show the e�ectiveness of the ap-
proach when comparing the obtained module selections with
the results from enumerating all module selections, as well
as MSSR and PSGA.
Keywords: Inclusion scheduling, Module selections, Design
exploration, Module Utility, Acceptable designs

1. INTRODUCTION
In high-level synthesis, module selection, resource binding
and scheduling are critical steps towards creating a supe-
rior design [7]. These three steps are highly dependent on
one another. This is due to the fact that operations shar-
ing the same resource must have the same module and that
the execution delays of the operations depend on the chosen
module. For today's IC systems, the cost of solving the com-
bined scheduling, binding, and module selection problem by
exhaustive search is prohibitive.
A number of research results have been published on the
module selection and scheduling/binding problem. Jain de-
veloped an integer linear programming (ILP) formulation to
solve an optimal module selection problem [6]. However, in
this formulation, schedule and resource binding are not con-
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sidered. Timmer et.al. used a mixed integer linear program-
ming (MILP) approach to select modules and then applied
resource-constrained list scheduling to check if the time con-
straint is met [10]. The number of integer variables of the
MILP, nevertheless, increases as the size of eligible module
set increases. Ramachandran and Gajski used the proba-
bility table to investigate module selection while construct-
ing a schedule [8]. However, they do not consider resource
constraints while scheduling. Torbey and Knight applied a
genetic algorithm to solve the scheduling and storage opti-
mization [11]. They, however, do not integrate the module
selection into their formulation.
In this paper, we propose a novel approach to solve the com-
bined scheduling, binding and module selection problem.
We develop a powerful model, called acceptability function,
which enables designers to consider multiple design criteria
simultaneously. Such a model represents a design objective
and embeds either �xed (crisp) or soft (fuzzy) constraints as
well as a tradeo� among conicting criteria based on a user's
willingness to accept a design. Considering the immense
module selection space, we focus on designing a technique
that eÆciently identi�es high-quality design solutions yield-
ing high acceptability. The key to our approach is the use
of a module utility metric together with inclusion scheduling
introduced in [2, 3].
Using the utility metric can give alternative solutions to de-
signers. By selecting modules with high utility values, a
small set of superior solutions (called \elite set") can be
generated. Since the elite set is very small compared to the
size of enumerated solutions, inspecting each design in the
set can be done in a short period of time. Thus our approach
allows designers to focus on multiple initial designs.

2. MODELS
Operations and their dependencies in an application are
modeled by a vertex-weighted directed acyclic graph, called
a Data Flow Graph (DFG), G = (V; E ; �), where each ver-
tex in the vertex set V corresponds to an operation and E is
the set of edges representing data ow between two vertices.
Function � de�nes the type of operation for node v 2 V.
Besides DFG, other constraints for constructing the system
are characterized by a tuple S = (F ;M; A;Q), where F
is the set of functional unit types available in the system.
M = fMfj8f 2 Fg, where each Mf contains a set of eligible
modules for functional unit f, e.g., A is a function mapping
fromMf 2M to a set of tuples (a1; : : : ; ak), where a1 to ak



represent attributes of a particular module. In this paper,
A(m) = (a1; a2) where a1 refers to the latency attributes
of module m while a2 refers to the power consumption of
module m. Finally, Q is a function that de�nes the degree
of a system being acceptable for di�erent system attributes.
If Q(a1; : : : ; ak) = 0 the corresponding design is totally
unacceptable while Q(a1; : : : ; ak) = 1, the corresponding
design is de�nitely acceptable.
Using a function Q to de�ne the acceptability of a system
is a very powerful model. It can de�ne certain constraints,
express certain design goals, and model the tradeo� between
two criteria. As an example, Figure 1(a) depicts an example
of Q concerning the tradeo� graphically. Figure 1(b) shows
the projection of the 3-dimensional acceptability model to
the latency and acceptability plane. In this �gure, each z

curve represents a projection of Q function to a latency-
acceptability plane. An inner curve (tighter latency con-
straint) corresponds to larger power values. Based on the
acceptability model, a design with high acceptability implies
an optimized design towards certain goals.
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Figure 1: Various kinds of acceptability functions

Based on the above model, the combined scheduling/binding
and module selection problem we intend to solve can be
formulated as follows:
Given a speci�cation containing S = (F ;M; A;Q), and G =

(V; E ; �), �nd the minimum number of functional units and
select modules m 2 Mf for functional unit f, based on the
module utilities, while maximizing the acceptability degree of
the solutions executing graph G.

3. SYSTEM CHARACTERISTICS
The proposed approach contains two major phases:

Phase I{ Determine the functional unit con�guration (the
number of functional units for each operation type)

Phase II{ Determine the module utility values based on
the con�guration derived in Phase I.

In Phase I, we apply inclusion scheduling to eÆciently esti-
mate the maximum performance that one could achieve un-
der a particular resource con�guration among various mod-
ule selections. First an initial number of resources is pro-
vided. Then inclusion scheduling constructs a representa-
tive schedule to eÆciently derive possible latency and pow-
ers. After that, its maximum acceptability value among all
pairs are estimated. If the value is still less than the de-
sired acceptable value, the number of functional units and

con�gurations are changed. After exploring several con�g-
urations, the best con�guration is �nalized and used as in-
puts to phase II. Details of inclusion scheduling can be found
in [2,3]. The algorithm is modi�ed to handle multiple crite-
ria simultaneously.

In phase II, we produce a utility measure for each module.
Ideally, modules resulting in superior designs should have
higher utility values. A heuristic which analyzes modules
' quality so as to improve the module utility assignment is
proposed. Finally, possible design solutions can be derived
by selecting the combinations of the modules with high util-
ity values.

The following section presents a heuristic to adjust module
utility.

Module Utility Adjustment
We develop a concept of module utility metric. Each mod-
ule with a utility value, which represents the usefulness of a
module with respect to a given acceptability function. Ide-
ally, the utility values of modules are either 1 or 0. The
design using those modules with utility value of 1 should be
of the highest quality. However, in reality, the usefulness
of one module is dependent on other modules. A module
may be present in both good and bad designs. To model
such uncertainty, we allow the utility value of a module
to be any real number between 0 and 1. Based on the
utility values, we model the relationship between a func-
tional unit and the module that implements this functional
unit by a fuzzy set of possible modules for the unit as fol-
lows: Assume that there are 10 possible modules of adders
ADD =fadd1, add2,: : : ,add10g and 10 possible modules of
multipliers MUL = fmult1, mult2,: : : ,mult10g. Let �fi(m)

be the utility value of module m for functional unit fi,
m 2 ADD for f1; f2 and m 2 MUL for f3. It follows that
�fi(m) can be considered as the membership function of
fi. In other words, we treat each functional unit as if it
has fuzzy execution times and powers, where each execution
time and power pair is simply the attributes of a module.
Therefore, fuzzy set theory can be used to operate arith-
metic operations between two fuzzy sets [12].

Since the initial assignment of utility values may not lead
to proper selection of modules in achieving the given design
goal, in phase II, the utility values will gradually be adjusted
to obtain better module selections. Intuitively, we attempt
to give high utility values to modules which contribute to
most highly acceptable latency and power pairs and assign
low utility values to the modules contributing to latency and
power pairs with low acceptability values. We modify the
calculation of the schedule latency and power to also tally
the number of module references for each latency and power
value. Let the number of reference to a module by functional
unit f be freq(f;m). For a given latency and power pair
(t; p), we compute the positive contribution of m by

�+(f;m) =
X

8(t;p) s.t. �(t;p)=�f(m)

freqt;p(f;m)�acc(t; p)

(1)

From Equation (1), a higher �+(f;m) value indicates that
using m can potentially lead to systems with higher accept-
ability values. Similarly, we compute the negative contribu-



tion of m by

�-(f;m) =
X

8(t;p) s.t. �(t;p)=�f(m)

freqt;p(f;m)(1 - �acc(t; p))

(2)

From Equations (1) and (2), an adjustment of the utility
value for each module of functional unit f is estimated by
Equation (3).

adjf(m) =
�+(f;m) - �-(f;m)

�+(f;m) + �-(f;m)
(3)

The term adjf(m) is a relative change to current �f(m)

value. From Equation (3), if adjf(m) is negative, a mod-
ule tends to cause more bad latency and power pairs. Then
�f(m) should be decreased. On the other hand, if adjf(m)

is positive, �f(m) is increased.
In our experiments, we have used the following method to
calculate new �f(m), denoted by � 0

f(m):

�
0

f(m) =

8>>>><
>>>>:

�f(m)� adjf(m) + �f(m)

if 0 < adjf(m) � 1

�f(m)

2
+ (1+ adjf(m))� �f(m)

2

if - 1 � adjf(m) < 0

(4)

Since the value of adj(m) is always between [-1; 1], if adjf(m)

equals 1, we double the value of �f(m) and if adjf(m) equals
-1, �f(m) is reduced by half. If adjf(m) is between (-1; 0],
the change of �f(m) is proportional to half of �f(m) and
if adjf(m) is between (0; 1), the change of �f(m) is pro-
portional to �f(m). After the adjustment for all modules
is made, � 0

f(m) are normalized with respect to the highest

one, i.e., norm(�f(m)) =
� 0

f
(m)

maxm � 0

f
(m)

; 8m 2 Mf. If � 0

f(m)

is the same as �f(m) from the previous iteration for every
m, the adjustment is no longer needed.
By normalizing �f(m), norm(�f(m)) produces a relative
utility among all modules eligible for implementing f. After
successively updating �f(m), some module utility value be-
comes zero. A module whose utility value is zero indicates
that its contribution to superior solutions is not so signif-
icant as others. Such a module is then excluded from the
elite set. The elite set is formed by inspecting the rest of the
modules and choosing the ones with higher utilty values.

4. EXPERIMENTAL RESULTS
The proposed approach in this chapter has been implemented
in a software package called WIZARD. In this section, we
summarize our results on selected benchmarks. Finally, the
comparison of WIZARD and other schemes: PSGA [1] and
MSSR [5] is presented.
We tested our approach on examples including Discrete Co-
sine Transform (DCT), and Voltera �lter. We randomly
assign the initial values of these modules in such a way that
the modules with the smallest power is the best. As compar-
ison, we exhaustively generate the schedules for all the the
module con�gurations for these benchmarks. Then, we con-
sider the acceptability of the latencies and powers of these
schedules and record the best acceptability.
Table 1 shows the comparison of the estimation obtained
byWIZARD and the exhaustive approach for various tests.
The design goals assumed for each benchmark are 5t+p and
5t+3p respectively. In Column \WIZARD est.", we present

maximum acceptability obtained by inclusion scheduling in
phase I for various resource con�guration for each bench-
mark. Column \Exhau" displays maximum acceptability
values obtained by the exhaustive approach. These val-
ues are close to each other. More importantly, they show
the similar trend when increasing adder and/or multiplier
units. The highlighted numbers in ColumnWIZARD show
the maximum acceptability for each benchmark leading to
the suggested functional unit con�gurations (see the corre-
sponding rows). In these experiments, the worst case CPU
timeWIZARD used for these estimations is about 200 sec-
onds while using the exhaustive approach may take up to
50,000 seconds.

Table 1: Estimating functional unit con�guration
#FU spec. DCT (5t+ p) Voltera (5t + 3p)

WIZARD est.Exhau WIZARD est.Exhau
2 1ADD 1MUL 0.34 0.34 0.46 0.48
3 1ADD 2MUL 0.98 0.93 0.77 0.67

2ADD 1MUL 0.38 0.38 n/a n/a

4 1ADD 3MUL 0.99 0.99 0.88 0.86
3ADD 1MUL 0.39 0.4 n/a n/a
2ADD 2MUL 0.98 0.95 n/a n/a

5 4ADD 1MUL 0.39 0.4 n/a n/a
3ADD 2MUL 0.98 0.94 n/a n/a
2ADD 3MUL 0.99 0.99 n/a n/a

1ADD 4MUL 0.99 0.99 0.9 0.9

6 4ADD 2MUL 0.97 0.94 n/a n/a
1ADD 5MUL n/a n/a 0.9 0.9
Avg. Err 1.2% 2.8%

Figures 2(a){2(b) depict the design characteristics (latency
and power) and their acceptabilities derived for these bench-
marks for various con�gurations. We only show the best
module selection whose acceptability is the highest for each
case. In practice, one only needs to explore the module se-
lections for the speci�c resource con�guration derived from
phase I as highlighted in the box.
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Figure 2: Latency, power, and acceptability for various
benchmark designs based on selected modules

We also compare our results with some existing module se-
lection schemes including: MSSR [5] and PSGA [1]. Both
schemes consider �xed latency and area constraints and their
objective is to �nd a design which minimizes area under la-
tency constraint. In MSSR, the search for the module selec-
tion starts by considering the modules with the largest area.
Then, it iteratively investigates modules with smaller areas
until the latency constraint is violated. One drawback of
the approach is that it assumes a �xed schedule during each



iteration of changing modules. PSGA is a mixed genetic
algorithm-based and heuristic. It models a chromosome as-
sociated with a node priority, selected modules, and number
of functional units. A list-based algorithm is used as a ba-
sis to calculate the �tness value of each chromosome. Each
type of functional units contains only 3 modules.

We modi�ed WIZARD so that it works with latency and
area criteria. The acceptability function is de�ned as a crisp
constraint on latency axis within region (0,x), for a given
latency x, and as a linear fuzzy constraint on the area axis
within region (0,y), where y is the estimated maximum area.
In this case, by inspecting the graph, we use y = 1072. The
initial number of functional units for the experiments were
computed using [9].

Column \lat", these numbers are used as an x value under
each test. WIZARD uses an acceptability function which
favors a design with less area under each latency constraint.
According to the benchmark characteristic, we determine
the maximum number of functional units to be seven. Since
there can be at most 4 parallel multipliers, the estimated
loose upper bound on area will be 1072. Column \module
set" under MSSR, PSGA, andWIZARD shows the module
selection results for each approach. The scheduling method
in [4] is used to �nd the schedule after the module selection is
found. Columns \latency" and \area" presents the schedule
latency and area of corresponding module selections. From
the table, it is obvious that WIZARD can give a design
which has smaller latency and/or area.

Table 2: Comparison results for Digital Elliptic Filter
latency MSSR PSGA WIZARD
constr module set lat. areamodule setlat.areamodule setlat.area
14 4 a1 2 m1 14 576 3 a1 2 m1 14 560 4 a1 1 m1 14 320
18 2 a1 1 m1 18 288 2 a1 1 m1 18 288 2 a1 1 m1 16 288
30 1 a1 1 m1 27 272 1 a1 1 m1 26 272 1 a1 1 m1 26 272
60 3 a1 4 m2 60 176 3 a1 4 m2 59 176 3 a1 4 m2 58 176
300 2 a3 1 m2 288 36 n/a n/a n/a 2 a3 1 m2 256 36
1050 2 a3 4 m3 1040 12 2 a3 4 m3 976 12 2 a3 4 m3 960 12

Comparing the eÆciency of these methods, WIZARD used
only an average CPU time of 1.75 seconds on Ultra Sparc 30
to �nd the module selections while MSSR takes 9.5 seconds
to compute the above solutions on DEC3100. For PSGA,
as reported in [1], PSGA computes on average 2400{4800
schedules to arrive at good solutions. On the other hand,
WIZARD performs 1-2 scheduling iterations (the predicted
initial number of functional units are o� by one at most)
and each of the scheduling process generates 20-500 possible
latency and area values to �nd the above solutions. The time
to compute this would be equal to calculate approximately
20-1000 schedules. Therefore, the saving in the scheduling
time is more than 80%.

5. CONCLUSION
We have presented an eÆcient module selection framework
that determines both the type and number of modules to
use. The framework evaluates module selections by taking
scheduling/binding, and resource sharing into account. It
can also handle more than one design attribute such as la-
tency and power constraints. Our framework consists of two
main steps: resource con�guration estimation and module
selection for the derived con�guration. Both phases rely on

the inclusion scheduling as well as a utility measure. In-
clusion scheduling is a technique to gather information for
resource approximation and module usefulness evaluation.
The utility metric is a measurement that determines whether
a module is a good one or not. A collection of the modules
with high utilities forms a good module selection to achieve
a given design goal.
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