A C Compiler for a Processor with a Reconfigurable
Functional Unit

Zhi Alex Ye

Nagaraj Shenoy

Prithviraj Banerjee

Department of Electrical and Computer Engineering,
Northwestern University
Evanston, IL 60201, USA

{ye, nagaraj, banerjee}@ece.nwu.edu

ABSTRACT

This paper describes a C compiler for a mixed Processor/FPGA
architedure where the FPGA is a Recnfigurable Functional Unit
(RFU). It presents three @mpilation techniques that can extrad
computations from applicaions to pu into the RFU. The results
show that large instruction sequences can be aeded and extraded
by these techniques. An average speedup d 2.6 is achieved over a
set of benchmarks.

1. INTRODUCTION

With the flexibility of the FPGA, recorfigurable systems are ale
to get significant speedups for some gplications. As the general
purpose procesor and the FPGA ead has its own suitable aeaof
applicaions, severa architedures are proposed to integrate a
procesor with an FPGA in the same dhip.

In this paper, we talk abou a C compiler for a
Procesr/FPGA system. The target architedure is Chimaea,
which is a RISC procesor with a Reconfigurable Functional Unit
(RFU). We describe how the compiler identifies squences of
statements in a C program and changes them into RFU operations
(RFUOPs). We show the performance benefits that can be
adhieved by such optimizations over a set of benchmarks.

The rest of the paper is organized into five sedions. Sedion
2 discusss related work. In Sedion 3 we give an overview of the
Chimaga achitedure. Sedion 4 dscusses the mpiler
organization and implementation in detail. In this sdion, we first
discuss a technique to enhance the size of the instruction
sequence control locdizaion. Next, we describe the gplication
of the RFU to SIMD Within A Register (SWAR) operations.
Lastly, we introduce an algorithm to identify RFUOPs in a basic
block. Sedion 5 cmonstrates me eperimental results. We
summarizethis paper in Sedion &

2. RELATED WORK

Severa architedures have been propcsed to integrate aprocessor

with an FPGA [6,7,8,9,13,14,15]. The usage of the FPGA can be
divided into two caegories: FPGA as a oprocesr or FPGA asa
functional unit.

In the @procesor schemes such as Garp[9], Napa[6],
DISC[14], and PipeRench[7], the host processor is couped with
an FPGA based reorfigurable mprocesor. The mprocessor
usualy has the aility of accessng memory and performing
control flow operations. There is a wmmunicaion cost between
the mprocessor and the host processor, which is ®veral cycles or
more. Therefore, these achitedures tend to map alarge portion o
the gplicaion, e.g. aloop, into the FPGA. One cdculationin the
FPGA usualy corresponcs to a task that takes sveral hunded
cycles or more.

In the functional unit schemes aich as Chimaed[8],
OneChip[15], and PRISC[13], the hast procesr is integrated
with an FPGA based Remnfigurable Functional Unit (RFU). One
RFU Operation (RFUOP) can take on a task that usualy requires
several instructions on the host procesoor. Asthe functional unit is
interfaced only with the register file, it canna perform memory
operations or control flow operations. The wmmunicaion is
faster than the mprocessor scheme. For example, in the Chimaga
architedure, after an RFUOP’'s corfiguration is loaded, an
invocaion d it has no overheal in communicaion. This gives
such architedure a larger range of applicaion. Even in cases
where only a few instructions can be cmbined into ore RFUOP,
we @uld still apply the optimization if the exeaution frequency is
high enough.

3. CHIMAERA ARCHITECTURE

In this ®dion, we review the Chimaaa achitedure to provide
adequate badkground information for explaining the cmpiler
suppat for this architedure. More information abou Chimaega
can befoundin [8].

The overal Chimaga achitecure is sown in Figure 1. The
main comporent of the system is the Reconfigurable Functional
Unit (RFU), which consists of FPGA-like logic designed to
suppat high-performance omputations. It gets inpus from the
host processor’'s register file, or a shadow register file which
duplicates a subset of the values in the host’s register file. The
RFU is cgpable of computing data-dependent operations (e.g.,
tmp=r2-r3, r5=tmp+rl), condtional evauations (e.g., "if (b>0)
a=0; dse adl;"), and multiple sub-word operations (e.g., four
instances of 8-hit addition).

The RFU contains svera configurations at the same time. An
RFUORP ingtruction will adivate the arrespondng configuration
in the RFU. An RFU configuration itself determines from which
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Figure 1. The overall Chimaera architecture

registers it reals its operands. A single RFUOP can read from all
the registers conreded to the RFU and then put the result on the
result bus. The maximum number of inpu registers is 9 in
Chimaga. Each RFUOP instruction is asciated with a
configuration and an ID. For example, an exeation sequence
“r2=r3<<2; r4=r2+r5; ré=lw 0(r4)" can be optimized to
“rd=RFUOP #1; r6=Iw 0(r4)". Here #1 is the ID of this RFUOP
and “r5+r3<<2” is the operation d the rrespondng
configuration. After an RFUOP instruction is fetched and
demded, the Chimaga procesor chedks the RFU for the
configuration correspondng to the instruction ID. If the
configuration is currently loaded in the RFU, the mrrespondng
output is written to the destination register during the instruction
writebadk cycle. Otherwise, the processor stalls when the RFU
loads the configuration.

4, COMPILER IMPLEMENTATION

We have developed a C compiler for Chimaega, which
automaticdly maps sme operations into RFUOPs. The generated
code is currently run on a Chimaga simulator to gather
performanceinformation. A future version o the compiler will be
integrated with a synthesistodl.

The mpiler is built using the widely available GCC
framework. Figure 2 depicts the phase ordering of the
implementation. The C code is parsed into the intermediate
language of GCC: Register Transfer Language (RTL), which is
then enhanced by several ealy optimizaions sich as common
expresson elimination, flow analysis, etc. The partialy optimized
RTL is passd through the Chimaea optimizaion plese, as will
be eplained below. The Chimaga optimized RTL is then
proceseed by later optimization phases uch as instruction
scheduling, registers alocdion, etc. Finaly, the wmde for the
target architedure is generated along with RFUOP configuration
information.

From the compiler's perspedive, we can consider an RFUOP
as an operation with multi ple register inpus and a single register
output. The goal of the cmpiler is to identify the suitable
multi ple-inpu-single-output  sequences in the programs and
change them into RFUOPs.

Chimaga Optimization consists of three steps: Corntrol
Locdizaion, SWAR optimizaion and Instruction Combination.
Due to the monfiguration loading time, these optimizaions can be
applied orly in the kernels of the programs. Currently, we only
optimizethe innermost loopin the programs.

Thefirst step of Chimaega optimizationis control locdizaion.
It will transform some branches into ore maaoinstruction to form
a larger basic block. The secmnd step is the SMD Within A
Register (SWAR) Optimizaion. This gep seaches the loop bogy
for subword operations and urrolls the loop when appropriate.

RTL
GCC Early
Optim zations
Control
Local i zati on
SWAR
optim zation
I nstruction
Conbi nati on

RTL optimized for Chimaea

GCC Later
Optim zations

Chimaega
Optimizaion

assembly code with RFUOP
and configuration information

Figure 2: Phase ordering of the C compiler for Chimaera

The third step is instruction combination. It takes a basic block as
inpu and extrads the multi ple-inpu-single-output patterns from
the data flow graph. These patterns are thanged into RFUOPs if
they can be implemented in RFU. The following subsedions
discussthe threestepsin detail .

4.1 Control Localization

In order to get more speedup, we want to find larger and more
RFUOPs. Intuitively, a larger basic block contains more
instructions, thus has more dances of finding larger and more
RFUOPs. We find that control locdizaion technique [11][13] is

@) (b)

Figure 3: Control Localization

(@) control flow graph before control localization.
Each oval is an instruction, and the dashed box
marks the code sequence to be control
localized.

(b) control flow graph after control localization



useful in increasing the size of basic blocks. Figure 3 shows an
example of it. After control locdization, severa branches are
combined into ore maaoinstruction, with multiple output and
multiple inpu. In addition to enlarging the basic block, the
control locdizaion sometimes finds RFUOPs diredly. When a
maaoinstruction has only one output, and all the operationsin it
can be implemented in the RFU, this maaoinstruction can be
mapped into an RFUOP. This RFUOP can speaulatively compute
all operations on dfferent branch paths. The result on the mrrea
path where the mndtion evauates to true is sleded to pu into
the result bus. This maao instruction is cdled as “Cl maaoin”
and can be optimized by Instruction Combination.

4.2 SWAR Optimization

As a method to exploit medium-grain data paralelism, SIMD
(single instruction, multiple data) has been used in perdlé
computers for many yeas. Extending this ideato genera purpose
procesrs has led to a new verson d SIMD, namely SSMD
Within A Register (SWAR)[4]. The SWAR model partitions eah
register into fields that can be operated onin perallel. The ALUs
are set up to perform multiple field-by-field operations. SWAR
has been succesul in improving the multimedia performance
Most of the implementations of this concept are cdl ed multimedia
extensions, such as Intel MM X, HP MAX, SUN SPARC VIS, etc.
For example, “PADDB A, B” is an instruction from Intel MM X.
Both operands A and B are 64-bit and are divided into eight 8-bit
fields. The instruction performs eight additions in paralel and
storesthe e@ght resultsto A.

However, current implementations of SWAR do nd suppat a
general SWAR model. Some of their limitations are:

*  Theinpu data must be packed and aligned corredly, causing
pading and unmding penalties sometimes.

*  Most of current hardware implementations sippat 8, 16 and
32-hit field sizeonly. Other important sizes such as 2-hit and
10-bit are not suppated.

*  Only afew operations are suppated. When the operation for
one item bewmmes complex, SIMD is impossble. For
example, the following code does nat map well to a simple
sequence of SIMD operations:

char out[10Q],in1[100],in2[10Q;
for(i=0;i<100;i++) {
if ((in1]i]-in2[i])>10)
out[i]=in1[i]-in2[i];
ese
out[i]=1G;}

With the flexihility of the FPGA, the RFU can suppat a more
general SWAR model withou the @ove disadvantages. The only
requirement is that the output fields $odd fit within a single
register. The inpus don't need to be stored in packed format, nor
is there limitation on the dignment. In addition, complex
operations can be performed. For example, the former example
can beimplemented in ore RFUOP.

Our compiler currently suppats 8-bit field size, which is the
sizeof “char” in C. In current implementation, the compiler looks
for the oppatunity to padk several 8-bit outputs into a word. In
most cases, thiskind d pattern exists in the loop with stride one.
Therefore, the cmpiler seaches for the pattern such that the
memory store size is a byte and the aldress changes by one for

ALGORITHM: FindSequences
INPUT:DFG G, NClI, Cl, Live-on-exit registers R
OUTPUT: A set of RFU sequences S
begin
S=0
for each node nOG
Color(n) « WHITE
end
for each node nNONCI
Color(n) « BLACK
for each node pOPred(n)
if pOCI then
Color(p) - BROWN
endif
end
end
for each register rOR
n— thelast nodethat updcetesrin G
if nOCI then
Color(n) - BROWN
endif
end
for each node nOG
if Color(n)=BROWN then
sequence=[]
AddSequence(n, sequence)
if sizeof(sequence)>1 then
S=S0{ sequence}
endif
endif
end
end

AddSequence( n, sequence)
begin
if Color(n)=(BROWN or WHITE) then
sequence sequencel{n}
for each pOJPred(n)
AddSequence(p, sequence)
end
endif
end

Figure 4: Algorithm to find RFU sequences

ead loop iteration. When such petterns are found the loop is
unrolled four times. In the loop unolling, conventiona
optimizations such as locd register renaming and strength
reduction are performed. In addition, the four memory stores are
changed to four sub-register movements. For example,

“store_byte rl,address
store_byte r2,addresst1;
store_byte r3,addresst2;
store_byte r4,addresst3;”

are dhanged into

“(r5,0)=r1; (r5,1)=r2;
(r5,2)=r3; (r5,3)=r4;".

The notation (r, n) refersto the nth byte of register r. We generate
a pseudo instruction "colledive-move" that moves the four sub-
registers into a word register, e.g. “r5=(r5,0) (r5,1) (r5,2) (r5,3)".
In the data flow graph, the four outputs merge through this
“colledive-move” into ore. Thus a multiple-inpu-single-output
subgraph is formed. The next step, Instruction Combination, can



reaognize this subgraph and change it to an RFUOP when
appropriate. Finally, a memory store instruction is generated to
store the word register. The cmpiler then passes the unrolled
copy to the instruction combination step.

4.3 Instruction Combination

The instruction combination step analyzes a basic block and
changes the RFU sequences into RFUOPSs. It first finds out what
instructions can be implemented in the RFU. It then identifies the
RFU sequences. At last, it seleds the gpropriate RFU sequences
and changes them into RFUOPs.

We cdegorize instructions into Chimaea Instruction (Cl) and
Non-Chimaaa Instruction (NCI). Currently Cl includes logic
operation, constant shift and integer add/subtrad. The
“colledive_move”, “subregister movement” and “Cl maaoin” are
also considered as Cl. NCI includes other instructions such as
multiplicatiorvdivison, memory load/store, floating-point
operation, etc.

The dgorithm FindSequences in Figure 4 finds al the
maximum instruction sequences for the RFU. It colors ead noce
in the data flow graph(DFG). The NCI instructions are marked as
BLACK. A CI instruction is marked as BROWN when its output
must be put into a register, that is, the output is live-on-exit or is
the input of some NCI instructions. Other Cl instructions are
marked as WHITE. The RFU sequences are the subgraphs in the
DFG that consists of BROWN nodes and WHITE nodes.

The acmpiler currently changes al the identified sequences
into RFUOPs. Under the assumption that every RFUOP takes one
cycle and the onfiguration loading time can be amortized over
several exeautions, this gives an upper bound & the speedup we
could exped from Chimaega. In the future, we will take into
acournt other fadors such as the FPGA size corfiguration
loading time, adual RFUOP exeaution time, etc.

5 EXPERIMENTAL RESULTS

We have tested the compiler’s output through a set of benchmarks
on the Chimaega simulator. The simulator is a modificaion o
SimpleScdar Simulator[3]. The simulated architedure has 32
general purpose 32-hit registers and 32 floating point registers.
The instruction set is a superset of MIPS-1V I1SA. Presently, the
simulator exeautes the programs sequentialy and gathers the

insnl | insn2 | Speedup | IC CL SWAR
dcmp 374M | 327M 1.14 100% 0 0
cmp 342M | 286M 1.20 80% 20% 0
jchi 2.1M 1.3M 163 94% 6% 0
life 6.7M 5.0M 1.34 100% 0 0
dct 784M | 52.6M 1.49 10% 82% 8%
rcn 1M 2.6M 4.23 6% 10% 84%
rst 22.3M 3.1M 7.19 16% 0 84%
avg - - 2.60 2% | % 61%

Table 1. Performance results over some benchmarks. The
"avg" row isthe average of all benchmarks.
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Figure5: Distribution of the kernel instructions
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Figure 6: The frequency of RFUOP sizes. IC, CL and SWAR
are the RFUOPs generate by Instruction Combination,
Control Localization and SWAR respectively.

instruction court.

Early results on some benchmarks are presented in this
sedion. Each benchmark is compiled in two ways: one is using
“gcc -02", the other is using our Chimaeaa wmpiler. We studied
the differences between the two versions of assembly codes as
well as the simulation results. In the benchmarks, decompressc
and compressc ae from Honeywell benchmark[10Q], jacobi and
life ae from Raw benchmark[2], image recnstruction[12] and
dct[1] are implementations of two program kernels of MPEG,
image restoration is an image processng program. They are noted
as dcmp, cmp, life, jchi, dct, ren andrst in the foll owing figure.

Table 1 shows the simulation results of the RFU
optimizaions. Insnl and insn2 are the instruction courts withou
and with RFU optimizaion. The speedup is cdculated as
insnl/insn2. The following three olumns IC, CL and SWAR
stand for the portion o performance gain from Instruction
Combination, Control Locdizaion and SWAR respedively. The
three optimizaions give an average speedup d 2.60. The best
speadupisupto 7.19.

To illustrate the impad of eath ogimizaion on the kernel
sizes, we cdegorize instructions into four types: NC, IC, CL and
SWAR. NC is the part of instructions that canna be optimized for
Chimaga. NCI instructions and some non-combinable integer
operations fal in this caegory. IC, CL and SWAR stand for the
instructions that can be optimized by Instruction Combination,
Control Locdizaionand SWAR optimization respedively. Figure
5 shows the distribution o these four types of instructions in the
program kernels. After the threeoptimizaions, the kernel size ca
be reduced by an average of 37.5%. Of this amourt, 22.3% is
from Instruction Combination, 9.8% from Control Locdization
and 54% from SWAR.



Further analysis ows that 58.4% of the IC portion comes
from addresscdculation. For example, the following C code “int
a[1q], ..=di]” istrandated to "r3=r2<<2, r4=r3+rl, r5=lw 0(r4)"
in asembly. The first two instructions can be cmbined in
Chimaga. The large portion o address cdculation indicates that
our optimizations can be gplied to a wide range of applications,
as long as they have complex address cdculations in the kernel.
Furthermore, as the aldress cdculation is basicdly sequential,
existing ILP architedures like superscdar and VLIW canna take
advantage of it. This siggests that we may exped speedup if we
integrate aRFU into an advanced |ILP architedure.

Figure 6 ill ustrates the frequencies of different RFUOP sizes.
For Instruction Combination and Control Locdizaion, most of
the sizes are from 2 to 6. These small sizes indicae that these
techniques are benefiting from the fast communicaion o the
functional unit scheme. In the procesor scheme, the
communicaion overhead would make them prohibitive to apply.
The SWAR optimization generally identifies much larger
RFUOPs. The largest one comes from the image recnstruction
benchmark, whose kernel is shown in Figure 7. In this case, atotal
of 52 instructions are cmbined in the RFU, which results in a
speadup d 4.2.

(1) char x[64], y[64], idct[64];

...

(3) for (i=0;i<64;i++) {

4 ...

(5) temp=(x[i]+y[i]+1)>>1+idct[i];

(6) if (temp<0) temp=0;

(7) if (temp>255) temp=255,

(8)...
Figure 7: kernel of the"rcn" benchmark. The compiler
unrolled the loop 4 times and mapped the operationsin
(5), (6), and (7) to an RFUOP.

The presented results are based on an in-order exeaution
model. We have dso simulated the achitedure in an ou-of-order
exealtion environment. We nsidered a superscdar host
procesor, different latencies of RFUOPs, and configuration
loading time. These results are reported in [16].

In summary, the results sow that the compil ation techniques
are ale to creae and find many instruction sequences for the
RFU. Most of their sizes are several instructions, which
demonstrate that the fast communicaion is necessary. The system
gives an average speedup d 2.6.

6. CONCLUSION

This paper describes a C compiler for the Processor/FPGA
architedure when the FPGA is rved as a Remnfigurable
Functional Unit (RFU).

We have introduced an instruction combination algorithm to
identify RFU sequences of instructions in a basic block. We have
also shown that the cntrol locdizaion technique can effedively
enlarge the size of the basic blocks and find some more
sequences. In addition, we have ill ustrated the RFU suppat for
SWAR. By introducing “sub-register movement” and “coll edive-
move”, the instruction combination algorithm is able to identify
complex SIMD instructions for the RFU.

Finally, we have presented the eperimental results, which
demonstrate that these techniques can effedively cregde ad

identify larger and more RFU sequences. With the fast
communicaion between RFU and the processor, the system can
adhieve mnsiderable speedups.
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