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ABSTRACT
This paper describes a C compiler for a mixed Processor/FPGA
architecture where the FPGA is a Reconfigurable Functional Unit
(RFU). It presents three compilation techniques that can extract
computations from applications to put into the RFU. The results
show that large instruction sequences can be created and extracted
by these techniques. An average speedup of 2.6 is achieved over a
set of benchmarks.

1. INTRODUCTION
With the flexibilit y of the FPGA, reconfigurable systems are able
to get significant speedups for some applications. As the general
purpose processor and the FPGA each has its own suitable area of
applications, several architectures are proposed to integrate a
processor with an FPGA in the same chip.

In this paper, we talk about a C compiler for a
Processor/FPGA system. The target architecture is Chimaera,
which is a RISC processor with a Reconfigurable Functional Unit
(RFU). We describe how the compiler identifies sequences of
statements in a C program and changes them into RFU operations
(RFUOPs). We show the performance benefits that can be
achieved by such optimizations over a set of benchmarks.

The rest of the paper is organized into five sections. Section
2 discusses related work. In Section 3, we give an overview of the
Chimaera architecture. Section 4 discusses the compiler
organization and implementation in detail . In this section, we first
discuss a technique to enhance the size of the instruction
sequence: control localization. Next, we describe the application
of the RFU to SIMD Within A Register (SWAR) operations.
Lastly, we introduce an algorithm to identify RFUOPs in a basic
block. Section 5 demonstrates some experimental results. We
summarize this paper in Section 6.

2. RELATED WORK
Several architectures have been proposed to integrate a processor

with an FPGA [6,7,8,9,13,14,15]. The usage of the FPGA can be
divided into two categories: FPGA as a coprocessor or FPGA as a
functional unit.

In the coprocessor schemes such as Garp[9], Napa[6],
DISC[14], and PipeRench[7], the host processor is coupled with
an FPGA based reconfigurable coprocessor. The coprocessor
usually has the abilit y of accessing memory and performing
control flow operations. There is a communication cost between
the coprocessor and the host processor, which is several cycles or
more. Therefore, these architectures tend to map a large portion of
the application, e.g. a loop, into the FPGA. One calculation in the
FPGA usually corresponds to a task that takes several hundred
cycles or more.

In the functional unit schemes such as Chimaera[8],
OneChip[15], and PRISC[13], the host processor is integrated
with an FPGA based Reconfigurable Functional Unit (RFU). One
RFU Operation (RFUOP) can take on a task that usually requires
several instructions on the host processor. As the functional unit is
interfaced only with the register file, it cannot perform memory
operations or control flow operations. The communication is
faster than the coprocessor scheme. For example, in the Chimaera
architecture, after an RFUOP’s configuration is loaded, an
invocation of it has no overhead in communication. This gives
such architecture a larger range of application. Even in cases
where only a few instructions can be combined into one RFUOP,
we could still apply the optimization if the execution frequency is
high enough.

3. CHIMAERA ARCHITECTURE
In this section, we review the Chimaera architecture to provide
adequate background information for explaining the compiler
support for this architecture. More information about Chimaera
can be found in [8].

The overall Chimaera architecture is shown in Figure 1. The
main component of the system is the Reconfigurable Functional
Unit (RFU), which consists of FPGA-like logic designed to
support high-performance computations. It gets inputs from the
host processor’s register file, or a shadow register file which
duplicates a subset of the values in the host’s register file. The
RFU is capable of computing data-dependent operations (e.g.,
tmp=r2-r3, r5=tmp+r1), conditional evaluations (e.g., "if (b>0)
a=0; else a=1;"), and multiple sub-word operations (e.g., four
instances of 8-bit addition).

The RFU contains several configurations at the same time. An
RFUOP instruction will activate the corresponding configuration
in the RFU. An RFU configuration itself determines from which



registers it reads its operands. A single RFUOP can read from all
the registers connected to the RFU and then put the result on the
result bus.  The maximum number of input registers is 9 in
Chimaera. Each RFUOP instruction is associated with a
configuration and an ID. For example, an execution sequence
“r2=r3<<2; r4=r2+r5; r6=lw 0(r4)” can be optimized to
“r4=RFUOP #1; r6=lw 0(r4)” . Here #1 is the ID of this RFUOP
and “ r5+r3<<2” is the operation of the corresponding
configuration. After an RFUOP instruction is fetched and
decoded, the Chimaera processor checks the RFU for the
configuration corresponding to the instruction ID. If the
configuration is currently loaded in the RFU, the corresponding
output is written to the destination register during the instruction
writeback cycle. Otherwise, the processor stalls when the RFU
loads the configuration.

4. COMPILER IMPLEMENTATION
We have developed a C compiler for Chimaera, which
automatically maps some operations into RFUOPs. The generated
code is currently run on a Chimaera simulator to gather
performance information. A future version of the compiler will be
integrated with a synthesis tool.

The compiler is built using the widely available GCC
framework. Figure 2 depicts the phase ordering of the
implementation. The C code is parsed into the intermediate
language of GCC: Register Transfer Language (RTL), which is
then enhanced by several early optimizations such as common
expression elimination, flow analysis, etc. The partially optimized
RTL is passed through the Chimaera optimization phase, as will
be explained below. The Chimaera optimized RTL is then
processed by later optimization phases such as instruction
scheduling, registers allocation, etc. Finally, the code for the
target architecture is generated along with RFUOP configuration
information.

 From the compiler’s perspective, we can consider an RFUOP
as an operation with multiple register inputs and a single register
output. The goal of the compiler is to identify the suitable
multiple-input-single-output sequences in the programs and
change them into RFUOPs.

Chimaera Optimization consists of three steps: Control
Localization, SWAR optimization and Instruction Combination.
Due to the configuration loading time, these optimizations can be
applied only in the kernels of the programs. Currently, we only
optimize the innermost loop in the programs.

The first step of Chimaera optimization is control localization.
It will t ransform some branches into one macroinstruction to form
a larger basic block. The second step is the SIMD Within A
Register (SWAR) Optimization. This step searches the loop body
for subword operations and unrolls the loop when appropriate.

The third step is instruction combination. It takes a basic block as
input and extracts the multiple-input-single-output patterns from
the data flow graph. These patterns are changed into RFUOPs if
they can be implemented in RFU. The following subsections
discuss the three steps in detail .

4.1 Control Localization
In order to get more speedup, we want to find larger and more
RFUOPs. Intuitively, a larger basic block contains more
instructions, thus has more chances of finding larger and more
RFUOPs. We find that control localization technique [11][13] is

Figure 1. The overall Chimaera architecture
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useful in increasing the size of basic blocks. Figure 3 shows an
example of it. After control localization, several branches are
combined into one macroinstruction, with multiple output and
multiple input. In addition to enlarging the basic block, the
control localization sometimes finds RFUOPs directly. When a
macroinstruction has only one output, and all the operations in it
can be implemented in the RFU, this macroinstruction can be
mapped into an RFUOP. This RFUOP can speculatively compute
all operations on different branch paths. The result on the correct
path where the condition evaluates to true is selected to put into
the result bus. This macro instruction is called as “CI macroin”
and can be optimized by Instruction Combination.

4.2 SWAR Optimization
As a method to exploit medium-grain data parallelism, SIMD
(single instruction, multiple data) has been used in parallel
computers for many years. Extending this idea to general purpose
processors has led to a new version of SIMD, namely SIMD
Within A Register (SWAR)[4]. The SWAR model partitions each
register into fields that can be operated on in parallel. The ALUs
are set up to perform multiple field-by-field operations. SWAR
has been successful in improving the multimedia performance.
Most of the implementations of this concept are called multimedia
extensions, such as Intel MMX, HP MAX, SUN SPARC VIS, etc.
For example, “PADDB A, B” is an instruction from Intel MMX.
Both operands A and B are 64-bit and are divided into eight 8-bit
fields. The instruction performs eight additions in parallel and
stores the eight results to A.

However, current implementations of SWAR do not support a
general SWAR model. Some of their limitations are:

• The input data must be packed and aligned correctly, causing
packing and unpacking penalties sometimes.

• Most of current hardware implementations support 8, 16 and
32-bit field size only. Other important sizes such as 2-bit and
10-bit are not supported.

• Only a few operations are supported. When the operation for
one item becomes complex, SIMD is impossible. For
example, the following code does not map well to a simple
sequence of SIMD operations:

char out[100],in1[100],in2[100];
for(i=0;i<100;i++) {
if ((in1[i]-in2[i])>10)
   out[i]=in1[i]-in2[i];
else
   out[i]=10;}

With the flexibilit y of the FPGA, the RFU can support a more
general SWAR model without the above disadvantages. The only
requirement is that the output fields should fit within a single
register. The inputs don’ t need to be stored in packed format, nor
is there limitation on the alignment. In addition, complex
operations can be performed. For example, the former example
can be implemented in one RFUOP.

Our compiler currently supports 8-bit field size, which is the
size of “char” in C. In current implementation, the compiler looks
for the opportunity to pack several 8-bit outputs into a word. In
most cases, this kind of pattern exists in the loop with stride one.
Therefore, the compiler searches for the pattern such that the
memory store size is a byte and the address changes by one for

each loop iteration. When such patterns are found, the loop is
unrolled four times. In the loop unrolli ng, conventional
optimizations such as local register renaming and strength
reduction are performed. In addition, the four memory stores are
changed to four sub-register movements. For example,

“store_byte r1,address;
  store_byte r2,address+1;
  store_byte r3,address+2;
  store_byte r4,address+3;”
 are changed into

“(r5,0)=r1; (r5,1)=r2;
 (r5,2)=r3; (r5,3)=r4;” .

The notation (r, n) refers to the nth byte of register r.  We generate
a pseudo instruction "collective-move" that moves the four sub-
registers into a word register, e.g. “ r5=(r5,0) (r5,1) (r5,2) (r5,3)” .
In the data flow graph, the four outputs merge through this
“collective-move” into one. Thus a multiple-input-single-output
subgraph is formed. The next step, Instruction Combination, can

ALGORITHM: FindSequences
INPUT:DFG G, NCI, CI, Live-on-exit registers R
OUTPUT: A set of RFU sequences S
begin
      S=∅
      for each node n∈G
            Color(n) ←WHITE
      end
      for each node n∈NCI
            Color(n) ←BLACK
            for each node p∈Pred(n)
                  if  p∈CI then
                         Color(p) ←BROWN
                  endif
             end
       end
       for each register r∈R
              n← the last node that updates r in G
              if n∈CI then
                 Color(n) ←BROWN
              endif
       end
       for each node n∈G
               if Color(n)=BROWN then
                   sequence=∅
                   AddSequence(n, sequence)
                   if sizeof(sequence)>1 then
                       S=S∪{ sequence}
                   endif
               endif
        end
end

AddSequence( n, sequence)
begin
        if Color(n)=(BROWN or WHITE) then
              sequence←sequence∪{ n}
               for each p∈Pred(n)
                     AddSequence(p, sequence)
               end
        endif
end

Figure 4: Algorithm to find RFU sequences



recognize this subgraph and change it to an RFUOP when
appropriate. Finally, a memory store instruction is generated to
store the word register.  The compiler then passes the unrolled
copy to the instruction combination step.

4.3 Instruction Combination
The instruction combination step analyzes a basic block and
changes the RFU sequences into RFUOPs. It first finds out what
instructions can be implemented in the RFU. It then identifies the
RFU sequences. At last, it selects the appropriate RFU sequences
and changes them into RFUOPs.

We categorize instructions into Chimaera Instruction (CI) and
Non-Chimaera Instruction (NCI). Currently CI includes logic
operation, constant shift and integer add/subtract. The
“collective_move”, “subregister movement” and “CI macroin” are
also considered as CI. NCI includes other instructions such as
multiplication/division, memory load/store, floating-point
operation, etc.

The algorithm FindSequences in Figure 4 finds all the
maximum instruction sequences for the RFU. It colors each node
in the data flow graph(DFG). The NCI instructions are marked as
BLACK. A CI instruction is marked as BROWN when its output
must be put into a register, that is, the output is li ve-on-exit or is
the input of some NCI instructions.   Other CI instructions are
marked as WHITE. The RFU sequences are the subgraphs in the
DFG that consists of BROWN nodes and WHITE nodes.

The compiler currently changes all the identified sequences
into RFUOPs. Under the assumption that every RFUOP takes one
cycle and the configuration loading time can be amortized over
several executions, this gives an upper bound of the speedup we
could expect from Chimaera. In the future, we will t ake into
account other factors such as the FPGA size, configuration
loading time, actual RFUOP execution time, etc.

5. EXPERIMENTAL RESULTS
We have tested the compiler’s output through a set of benchmarks
on the Chimaera simulator. The simulator is a modification of
SimpleScalar Simulator[3]. The simulated architecture has 32
general purpose 32-bit registers and 32 floating point registers.
The instruction set is a superset of MIPS-IV ISA. Presently, the
simulator executes the programs sequentially and gathers the

instruction count.

Early results on some benchmarks are presented in this
section. Each benchmark is compiled in two ways: one is using
“gcc -O2”, the other is using our Chimaera compiler. We studied
the differences between the two versions of assembly codes as
well as the simulation results. In the benchmarks, decompress.c
and compress.c are from Honeywell benchmark[10], jacobi and
li fe are from Raw benchmark[2], image reconstruction[12] and
dct[1] are implementations of two program kernels of MPEG,
image restoration is an image processing program. They are noted
as dcmp, cmp, li fe, jcbi, dct, rcn and rst in the following figure.

Table 1 shows the simulation results of the RFU
optimizations. Insn1 and insn2 are the instruction counts without
and with RFU optimization. The speedup is calculated as
insn1/insn2. The following three columns IC, CL and SWAR
stand for the portion of performance gain from Instruction
Combination, Control Localization and SWAR respectively. The
three optimizations give an average speedup of 2.60. The best
speedup is up to 7.19.

To ill ustrate the impact of each optimization on the kernel
sizes, we categorize instructions into four types: NC, IC, CL and
SWAR. NC is the part of instructions that cannot be optimized for
Chimaera. NCI instructions and some non-combinable integer
operations fall i n this category. IC, CL and SWAR stand for the
instructions that can be optimized by Instruction Combination,
Control Localization and SWAR optimization respectively. Figure
5 shows the distribution of these four types of instructions in the
program kernels. After the three optimizations, the kernel size can
be reduced by an average of 37.5%. Of this amount, 22.3% is
from Instruction Combination, 9.8% from Control Localization
and 5.4% from SWAR.

insn1 insn2 Speedup IC CL SWAR

dcmp 37.4M 32.7M 1.14 100% 0 0

cmp 34.2M 28.6M 1.20 80% 20% 0

jcbi 2.1M 1.3M 1.63 94% 6% 0

li fe 6.7M 5.0M 1.34 100% 0 0

dct 78.4M 52.6M 1.49 10% 82% 8%

rcn 11M 2.6M 4.23 6% 10% 84%

rst 22.3M 3.1M 7.19 16% 0 84%

avg - - 2.60 22% 7% 61%

Table 1: Performance results over some benchmarks. The
"avg" row is the average of all benchmarks.
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Further analysis shows that 58.4% of the IC portion comes
from address calculation. For example, the following C code “int
a[10], ...=a[i]” is translated to "r3=r2<<2, r4=r3+r1, r5=lw 0(r4)"
in assembly. The first two instructions can be combined in
Chimaera. The large portion of address calculation indicates that
our optimizations can be applied to a wide range of applications,
as long as they have complex address calculations in the kernel.
Furthermore, as the address calculation is basically sequential,
existing ILP architectures like superscalar and VLIW cannot take
advantage of it. This suggests that we may expect speedup if we
integrate a RFU into an advanced ILP architecture.

Figure 6 ill ustrates the frequencies of different RFUOP sizes.
For Instruction Combination and Control Localization, most of
the sizes are from 2 to 6. These small sizes indicate that these
techniques are benefiting from the fast communication of the
functional unit scheme. In the coprocessor scheme, the
communication overhead would make them prohibitive to apply.
The SWAR optimization generally identifies much larger
RFUOPs. The largest one comes from the image reconstruction
benchmark, whose kernel is shown in Figure 7. In this case, a total
of 52 instructions are combined in the RFU, which results in a
speedup of 4.2.

The presented results are based on an in-order execution
model. We have also simulated the architecture in an out-of-order
execution environment. We considered a superscalar host
processor, different latencies of RFUOPs, and configuration
loading time. These results are reported in [16].

In summary, the results show that the compilation techniques
are able to create and find many instruction sequences for the
RFU. Most of their sizes are several instructions, which
demonstrate that the fast communication is necessary. The system
gives an average speedup of 2.6.

6. CONCLUSION
This paper describes a C compiler for the Processor/FPGA
architecture when the FPGA is served as a Reconfigurable
Functional Unit (RFU).

We have introduced an instruction combination algorithm to
identify RFU sequences of instructions in a basic block. We have
also shown that the control localization technique can effectively
enlarge the size of the basic blocks and find some more
sequences. In addition, we have ill ustrated the RFU support for
SWAR. By introducing “sub-register movement” and “collective-
move”, the instruction combination algorithm is able to identify
complex SIMD instructions for the RFU.

Finally, we have presented the experimental results, which
demonstrate that these techniques can effectively create and

identify larger and more RFU sequences. With the fast
communication between RFU and the processor, the system can
achieve considerable speedups.
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