Low-Pawver TaskSchedulingor Multiple Devices

Yung-Hsiang Lu, fLuca Benini, Giovanni De Micheli
CSL, StanfordUniversity, USA. {luyung, nannit @stanford.edu
T DEIS, Universitidi Bologna,ltaly. Ibenini@deis.unibo.it

Abstract

Paver managemensaves power by shuttingdown idle
devices. Thesedevices often sene requestdrom con-
currently running tasks. Ordering task execution can
adjustthe lengthsof idle periodsandexploit betterop-
portunitiesfor power managementThis paperpresents
anon-line low-power schedulingalgorithmfor multiple
devices. Simulationsshawv thatit cansave up to 33%
power andreduce40% state-transitiordelays. This al-
gorithm is robust underimperfectknowledgeof future
requestandtiming constraintstherefore,it is applica-
ble to interactive systems.

1. Introduction

Dynamic power management (DPM) shutsdown un-
useddevicesto save power [3]. Whenservingrequests
(busy),a device mustbein a high-poverworking state.
Whena device is not servingary requestgidle), it can
beshutdown andputinto a sleeping state to save power.
Studiesshav that more than 50% power can be saved
by power managemen®]. Power statechangesrede-
cidedby a power manager (PM); PM wakesup adevice
to sene requestandshutsit down to save power. State
changedake time and enegy; consequentlya device
shouldbe shutdown only if it cansleeplong enoughto
compensatéhe performanceindenepgy overhead.

In moderncomputersrequestsare often generatedy
concurrentlyrunningtasks.For instanceharddisk 10’s
cancomefrom a compiler, a text editor, or a file trans-
fer program(f t p). Similarly, network transmissiorre-
guestscan be generatedby an Internet browser or a
t el net session.

Traditional power managemenfocuseson predicting
the lengthsof idle periodsandimplicitly assumeghat
requestrrival time cannotbechanged3] [9]. In reality,
however, the lengthsof idle periodscanbe adjustedby
orderingtaskexecution,i.e. by scheduling tasks.Even
thoughschedulings astandardeaturein operatingsys-
tems(OS), task schedulingfor power managementas
not beenwell studiedfor OS-basegowver management
(OSPM)[3].

Intuitively, schedulingor powermanagemeris to make
idle periodsclusteredandlong, insteadof scatteredand
short,sothatpower managemeris applicable Previous
schedulingechniquegocuson processor$d] [10] [14]
or real-time systems[4] [12]. Thesealgorithmsdeal
with only oneserviceprovider— the processorit is un-
clearhow to extendthemfor multiple devices. The au-
thorsdo not explain how to integratethealgorithmsinto
existing systems. Furthermorethey unrealisticallyas-
sumeperfectknowledgeof futurerequests.

This paperpresentsa greedyon-line schedulingalgo-
rithm to facilitate power managementor multiple de-
vices. It orderstaskexecutionsuchthatdevicescanhave
continuoudong idle periodsto be shutdown. We also
shav how to integratethis algorithminto existing sys-
tems. In additionto saving power, taskschedulinghas
anotherbenefit: clusteredidle periodsreducethe num-
bersof shutdavns, hencestate-transitiordelays. Com-
paredto a traditional schedulingalgorithmwhich does
not considempower managemengimulationsshow that
this algorithm can save 33% power and reduce40%
transitiondelays. The algorithmis robustundertiming
constraintsandwith imperfectknowledgeof future re-
quests.Thereforejt is applicableto interactve systems.

2. Background
2.1. Traditional Task Scheduling

Traditionalschedulingalgorithmsdonotconsidempower
managementinstead they focuson performancefair-
nessandsoon[13]. Figurel shawsthe flow of atypi-
cal OSschedulerspecificallytheschedulein Linux [1].
Whenthe scheduleris invoked, it checkswhetherary
gueuedtask needsto run. The taskqueueis a mecha-
nismfor device driversto requesfuture execution,such
aspolling a device [11]. Thenthe schedulerexecutes
interrupt handlers;after checkinginterrupts, it signals
taskswhosetimersexpire. Afterwards,it considergask-
specificrequirementssuchastiming constraints. The
lasttwo stepsin the schedulerareto selecta taskwith
higherpriority or with the largestunfinishedtime slice.

-—> handle interrupt
v

| order unfinished inceI

| issue timerl

| find highest priority |(—| meet timing constrain{

Figurel: typicaltaskscheduler

| Symbol | Meaning |

T timeslice
Tre break-@entime
T, E, | transitiontime/ enegy overhead

powerin working / sleepingstate
v requireddevice set(RDS)

v, currentRDS

ky lengthof ¥

lengthof idle periodfor d attime r
minimumenengy in duration! for d

Tablel: symbolsandmeanings

Time slice (alsocalledtime quantum) is thetime unit al-

locatedto eachtask[13]. A taskmay stopexecutionbe-

fore usingup its slice by, for example,issuinga system
call. If notaskcanexecute,theidle processis chosen.
Thispaperfocuseonschedulindgor interactive systems
without hardtiming constraints.In contrast,real-time
schedulingis moretightly constrainechecauseat must
meetharddeadlineg5].

2.2. Break-Even Time

Sincechangingpower stategakestime andextraenengy;,

adevice shouldbeshutdown only whenthelengthof an
idle periodis long enough.Theminimumlengthto save
power by enteringthe sleepingstateis call the break-

even time (13.). Let P,, and P; bethe power consump-
tion in the working andthe sleepingstates(P,, > F;).

T, and E, are the time and enegy overheadto shut
down andwake up the device. T3, canbe obtainedby

thisformula: Py, - The = Ep+ Ps - (Tve — To); als0,Tp,

mustbelargerthan,. Consequently

E,—-P,-T,

Tpe = max(jz Jz

1) @)

T, is adevice characteristizinafectedby requestsWe
use subscriptsto distinguishmultiple devices; for in-
stanceilie 4, isthebreak-eentime of deviced; .

o B
t, 1 2 3
t, 1 2
”
ide T idle time
:1 T 3 h
2
) 1 2 R
idle time

Figure2: two schedulesf threeindependentasks.The
secondscheduleeordersexecutionto make along, con-
tinuousidle period.

= bgsaaﬁe--

& <—d,busy

. -
t2

t3

d, idle “d,idle both idle

e ! ':h-

dyidle d, idle both idle

Figure3: schedulingor multiple devices

2.3. Execution Order and Power M anagement

Figure 2 is an example of threeindependentasksre-
quiring servicefrom adevice; T" is atime slice. A block
indicatesthat a task s running. If the task generates
requeststhe block is filled; an unfilled block indicates
thatthe taskdoesnot generataequests.In this figure,
eachtaskhasmultiple slices(labeledas1,2,and3); the
schedulercannotrearrangehe sliceswithin eachtask.
When21" < Ty < 57T, the device canbe shutdown
only in thesecondschedulébecauseheidle periodsare
tooshortin thefirst scheduleEvenif T,. < 2T, thesec-
ondschedulss still advantageouswhenT;, < 27, the
devicewill beshutdowntwicein thefirst scheduleaus-
ing delay (7,) andwastingenepgy (F,) two times. In
contrastjt is shutdown only oncein the secondsched-
ule. This exampleshaws that, comparedo shortscat-
teredidle periods along continuousdle periodcansave
power andreducedelays.

In a systemwith multiple devices,schedulingbecomes
morecomple. Figure3 shavsthreeschedulesor three
tasksandtwo devices. In the first schedulejdle peri-
odsarenot continuous.The secondschedulanakesd,
idle first andthe third schedulemakesd, idle first. If
51 < Tyea, < 7T, da canbe shutdown only in the
third scheduleOntheotherhand,if 31" < Tye g, < 57,
d; canbe shutdown only in the secondschedule.This
exampleshavs thatschedulingnay causeonedevice to
shutdown while keepinganotheiin theworking state.

3. Problem Formulation

Theschedulingoroblemfor power managemeris to ar-
range execution orders so that idle periods are clustered
instead of scattered. We first assumehatthe scheduler
canperfectlypredictwhethera device is usedby atask
in the future (¥, definedbelow). Later, we will show
how predictionaccurag affectspower saving.

3.1. Required Device Sets

We define¥ (¢, n) astherequired device set (RDS) for
running task ¢+ during its n-th time slice; ¥(¢t,n) =
{d: t usesd atthen-th slice}. In Figure3, ¥(¢;,1) =

{dl}, \I/(tz,g) = gb, \I/(t'g,, 2) = {dz}, and\I/(tz,4) =
{dy,ds}. We call the currentRDS ¥; it is the RDS
of thelatestrunningtask. Let I;(r) bethelengthof the
idle periodfor deviced uptotime . ¥(7) is theRDSof
therunningtaskat r. Obviously, I;(7) = 0 if d € ¥(7)
sincethis device is usedand cannotbe idle. Table 2
shavstherelationshipbetweenl;(7) andIy(r + 1).

3.2. DeviceEnergy

E(1) is the minimum enegy of a device duringanidle

period of length /. If the idle periodis long enough
(I > Ty.), thedeviceis shutdown; otherwisejt remains
in the working state. F() is the minimum enegy dur-

ing /; it canbe achiezedby an“oracle” power manager
suchasoff-line analysiof request$6]. An oraclepower

managehasfull knowledgeof futurerequestandshuts
down a devicefor all idle periodslongerthanTy,.

if I > The

E(l)—{ Bot B (1= 10) it <1, @

Tl Puw-l

We add subscripts, F4(l), to distinguish differ-
ent devices when necessary Considera sequence
of N tasks to execute and their RDS's are ¥,
Uy, ..., Uy. These RDS's will create a se-
ries of idle and busy periodsfor eachdevice. Let
(Ld[l], By [1], Ld[2], By [2] . Ld[nd], Bd[nd]) be the
lengthof theseriesfor device d; L4[1] and By[1] arethe
lengthsof the first idle and busy periodsrespectiely.
L4[0] and By[0] are definedas zero. For example,in
the third scheduleof Figure3, (L1[1], B1[1], 1[2]) =
(2,5,2) for d; and(L2[1], B2[1], L2]2]) = (0,2,7) for
ds. Theenengy of thesedevicesduringthe V slicesis

E =Y (Fa(Lalil) + Pua- Balil) (3

d =1

Thetwo termsexpressthe enegy duringthoseidle and
busyperiods.

3.3. Scheduling for Energy Minimization

Thegoalof schedulingor powermanagemens to find
a sequencg¥q, Uy, ..., Uy) to minimize % N is
calledlook-ahead; it is the numberof slicesthe sched-
uler considersn advance.

| de(U(r),¥(r+1))? | Iy(r) andly(7 + 1) |
Y,Y) Iy(r) =14(7 +1) =0
(Y, N) Ig(r) =0, Ig(r+1) =1
(N,Y) I(t+1)=0
(N,N) Id(T+1):Id(T)+1

Table2: ¥(r), ¥(r+1) andly(r) determinedy(r+1).

schedule a task to continie,
v

find a taskto shut down devicesi
v

select a tasko maximize
the possibility of shutdowng

Figure4: stepsof selectingasks

Theorem Optimal schedulingcannotbe obtainedby
looking aheadh finite numberof slices.

Dueto spacdimit, we omit theproofin this paper This
theoremimplies thatwe cannotfind a globally optimal
schedulewithout consideringall slices. Sometasks,
suchast csh, may executearbitrarily long; therefore,
it is impossibleto considerall slicesin advance.

4. Scheduling for Power M anagement

4.1. Scheduling Boundaries

Sinceoptimalschedulings impossibleby lookingahead
a finite number of slices, we needto determinethe
numberof slicesto look ahead. We use a heuristic
way for finding the numberof slices; our algorithm
finds the scheduling boundary of eachtask. It is the
boundarywhen the task startsgeneratingrequestsfor
a device which could have beenidle previously. It is
the largestm suchthat ¥(t,m — 1) 2 ¥(t,m) and
W(t,m) NV, m+ 1) # U, m+ 1) for tasks. In
otherwords, ¥(t, m) is a subsetof ¥(¢,m — 1) while
¥(t,m+ 1) isnotasubsebf (¢, m). A limit, M, can
be setfor the schedulingboundarysothatm < M to
reducethe numberof slicesconsidered.For dependent
tasks, M cancauseonetaskto wait until the otheris
scheduled. Theseboundariescreatea group of ¥'s to
schedule.

4.2. Task Selection

Figure4 shows the stepsto selecttasks.First, it selects
ataskwhoseRDSis thesameasV¥; then,it findsatask
thatcancausesomedevicesto be shutdown. If neither
stepsucceedst selectsataskwith the bestpotentialto

sase power in the nearfuture. Thesestepsfollow the
proceduren Figurel, socertainpropertiesn the origi-

nal systemssuchasprioritiescanstill hold. Wheneera
taskis selectedW . is updatedaccordingly

The schedulefirst triesto find ataskwhoseRDSis the
sameas V¥, to avoid possiblestatetransitions. If ¥,
cannotcontinuebecauseall remainingtaskshave ¥'s
differentfrom ¥, theschedulefindsataskthatcanshut
down somedevicesthatwerebusy previously. Because
the schedulemlwaystriesto continue¥ ., this stepwill
find asetof taskswith thesame¥. Suppose¢hereareky
slicesof taskswith thesame¥ andthecurrenttimeis 7.

Ii(t + kg) is updatedby therulesin Table2. This step
triesto minimize the averagepower duringthe k slices
by choosing¥:

32 Fala) @

If nodevice canbebeshutdown, (4) is thesamefor all
¥’s. Theschedulefindsataskwith the best‘potential”
to save themostpower. This potentialis calculatedoy

sd
maxz Tbed — Id (r+ kqx)) ®)

It findsa ¥ thathasthe bestchancein the future (small
The o —Ia(T+ ky)) to savethemostpower (large P,, ¢ —
P, 4). If a¥ cancauseary deviceto beshutdown, it will
be selectedby (4). Consequentlywhenthe scheduler
reacheq5), Tye ¢ > Ia(7 + kv) for all device andthe
denominatofs alwayspositive.

This algorithm takes a “greedy” stratgyy in selecting
tasks;its complexity is O(n logn) wheren is the num-
berof ¥’'s determinedy the schedulingpboundaries.

4.3. Example

In Figure 3, all tasksneedboth devices afterr = 9.
The schedulingooundariedor thesetasksare4, 3, and
2. Theschedulecanselect¥, = {d,} or ¥, = {d};
theirlengthsarek, = 5 andk, = 2. Also, I, (k,) = 2,
Idz (km) =5, Idz (ky) = Idl (km) =0,and¥, = o.

For simplicity, we assumethat thesedevices consume
the samepower in either state (P, 4, = P4, and
P, 4 = P q,). Supposelye ¢, = 317 and1ie q, = 71

E 1(1 1 (R)) Bay(Tay (kx)) _
For ¥, formula(4) gets —21--2 2

Pu0 4 Puwd — p,. The formula producesthe same
resultfor W¥,,. Neitherdevice canbe shutdown immedi-
ately; theschedulemovesto thethird step.For ¥, (5)

is (Py— Ps)- (3 +7); for &, itis (P, — P5)- (555 +

%). ¥, hasbetterpotentialto save power; consequently
the algorithmselects¥,, andupdates¥. = {d,}. The
schedulercontinues¥ .., sothe secondsliceis alsooc-

cupiedby ¢3. Now, dueto the sequenceénsidet; and
t2, the only choicethe schedulelhasis to selecttasks
whoseRDS'sare{d; }. ¥, is updatedo {d;} andthis

RDS continuesup to five slices. Finally, therearetwo

slicesthatuseneitherdevices. Theresultis shovn atthe
bottomof Figure3.

5. Experiments

Evaluating scheduling algorithms can be achieved
by mathematicaknalysis,simulation, or implementa-
tion [13]. We usea Linux-basedschedulingsimulator
for deterministicanalysisof differentworkloads.

5.1. Timing Constraints

We definetiming constraintsaasthe maximumnumbers
of slicesbetweenwo executionsof atask.For example,
if asliceis 5 millisecondandthetiming constrainis 200
slices,the taskwill executeat leastonceevery second.
Timing constraintsare essentiafor interactve systems
to maintainresponsienesssuchasreactingto mouse
movement.We startwith a constraintof 1000slicesand
reduceit to 100slices. The constraintdimit the sched-
uler'schoicesmeanwhilethey provide shorterresponse
time andimprovesinteractvity.

5.2. Device Parameters and Task Generation

Fourhypotheticablevicesareshavnin Table3. Thesys-
tem have five tasksgeneratingrequests. Studiesshav
that requestsare often bursty [2]; bursty requestsare
simulatedby clustersusingclusterinterval and cluster
lengthdistributionsin Table4. Eachdistribution hastwo
parametersmeanandstandarddeviation. For anexpo-
nentialdistribution, the standardleviationis determined
by themean,so“-" is shawvnin thetable.

5.3. Power Saving and Overhead Reduction

Three scheduling algorithms are compared: base
scheduling,task grouping, and task scheduling. The
comparisonsstart by assumingthat ¥'s are perfectly
predicted;later, we shav how imperfectpredictionaf-
fects power saszing. The baseschedulingimplements
Figure 1 exceptinterrupthandling. The task grouping
algorithmimprovesthe basealgorithmby includingthe
first stepin Figure4; thetaskschedulingalgorithmuses
all three steps. After the executionordersare deter
mined,a 2-competitve power managef2CPM)decides
power states A 2CPMis anon-line power management
algorithmusing”. 4 asthetimeoutvalue;it consumes
at most twice of power comparedto an oracle power
managef7]. Table5 summarizeshesimulationresults.
Thesedevices consumetotally 30 W in their working
states. Approximately 10% power can be saved when
applyingpower managemenb the basescheduling.

Comparedo the basescheduling,additional20% and
33% power can be saved by the grouping and the
schedulingalgorithms.Becauséhe groupingalgorithm
doesnot considerwhich ¥ follows V., it canreduce
only 10% statechanges.The schedulingalgorithmcan
reducethe numberof statechange$y morethan40%.
Since statechangescausedelay and consumeenengy;,

fewer changeseducestate-transitioroverhead’7,, and
E,). In otherwords, task schedulingcan save power

| Device | Py | Ps | T, | Eo | Tpe |
dy 8 2 55| 88 | 12.8
do 10 1 4.4 | 91 9.6
ds 5 05108 21 4.6
ds 7 1.5 10 | 62 8.5

Table3: hardwareparameterstime unit: 7’

device

3

7

(E, 60,-) (U, 10,5)

(E, 50,-) (E, 20,-)

(U, 40, 20) (N, 30, 20)

(N, 50, 20) (U, 15,10)

(N, 50,20) (N, 20, 15)

(N, 30,10) (U, 20, 15)

(N, 70,40) (N, 20, 20)

(U, 90,30) (U, 10, 10)

task 1 | 2
1 | (N, 40,20)(U, 10,5) | (U, 40,30)(N, 10,5)
2 | (E,50,9)(E 10,-) | (N,50,40)(E, 20,-)
3 | (E,60,-) (N, 12,20) | (U, 20,6) (U, 10,5)
4 | (E 80,9 (E 10, (E,90,-) (E, 15,
5 | (U, 90,60)(E, 15,-) | (N, 50,20)(N, 20, 15)

(U, 60,30) (E, 12,-)

(E, 100,-) (N, 15, 10)

Table4: clusterinterval andclusterlengthdistributions. Distribution: U— uniform; E—exponential;N— normal.

and reduce overhead. Whentiming constraintdbecome
tighter, the schedulerhas fewer choicesin selecting
tasks. Our simulationsshow that the schedulingalgo-
rithm can save 20 % power whenthe constraintis 10
times tighter. Finally, we considerinaccuratepredic-
tion of ¥'s becausean on-line algorithm unlikely has
perfectknowledgeof ¥'s in advance. A predictionis
inaccuratelf an actualRDS is differentfrom the pre-
dictedone.Inaccuratgredictionmaymakeidle periods
shorterthanexpectedandwake up devicesearlier Fig-
ure 5 shows power ratio comparedo basescheduling
whenthepredictionaccurag changesWhile lesspower
canbe savedwhenaccurag deterioratesthe algorithm
canstill save nearly 20% power whenthe accurag re-
ducesby 10%. Becauseof its robustnessindertiming
constraintsaandimperfectknowledgeof futurerequests,
this algorithmcanbe appliedto interactve systems.

0.9

0.85

e e
s -
-

0.8
whedu\ing
078 \
0.7
0.65
90%

Ratio

T T T 1
94% 96% 98% 100%

Prediction Accuracy

T
92%

Figure5: ratio of power consumptiorfor differentpre-
diction accurag whentiming constraintis 500-slice.

6. Conclusions

We presenta schedulingalgorithm that controls the
lengthsof idle periodsto exploit the opportunitiesof
power managemenfThis algorithmsavespowerandre-
ducesstate-transitioroverhead. Simulationsshawv that

timing power changeatio
constraint| P, | P, | P Ry% | R %
1000 27.0] 21.8| 180 90.8 | 57.0
500 27.0] 21.8| 185(90.9 | 61.3
100 27.0] 219 21.5(91.7 | 84.9

Table5: power consumptiorandratio of statechanges.
P,: base;P,: grouping; P, scheduling.R,, R;: ratio of
numbersof statechangego thebasescheduling.

it cansave 33% power andreduce40% statechanges.
It is robustundertiming constraintsandwith imperfect
knowledgeof futurerequests.

7. Acknowledgments

This work was supportedn part by MARCO/DARPA
GigascaleSilicon ResearctCenterandin partby NSF
undercontractCCR-9901190.

8. References

M. Beck,H. Bohme,M. Dziadzka,U. Kunitz, R. Magnus,and
D. Verworner Linux Kernel Internals. Addison-W\esley, 1997.
L. Benini, A. Bogliolo, S. Cavallucci, andB. Ricco. Monitor-
ing SystemActivity for OS-DirectedDynamicPaver Manage-
ment. In International Symposium on Low Power Electronics
and Design, pagesl85-190,1998.

[3] L. Benini, A. Bogliolo, andG. D. Micheli. A Surey of De-
sign Techniquesfor System-Lgel Dynamic Pover Manage-
ment. |EEE Transactions on VLS Systems, March 2000.
J.J.Brown, D. Z. Chen,G. W. Greenwod, X. Hu, andR. W.
Taylor. Schedulingfor Pover Reductionin a Real-Time Sys-
tem. In International Symposium on Low Power Electronics
and Design, pages84-87,1997.

G. C. Buttazzo. Hard Real-Time Computing Systems: Pre-
dictable Scheduling Algorithms and Applications. Kluwer,
1997.

E.-Y. Chung, L. Benini, A. Bogliolo, and G. D. Micheli.
Dynamic Pover Managementfor Non-StationaryServiceRe-
questsin Design Automation and Test in Europe, pages’7—-81,
1999.

A. Karlin, M. Manassel.. McGeoch.andS. Owicki. Competi-
tive RandomizedAlgorithmsfor NonuniformProblems.Algo-
rithmica, 11(6):542-571Junel994.

J.R. Lorch and A. J. Smith. SchedulingTechniquesor Re-
ducing ProcessoEnegy Usein MacOS. Wreless Networks,
3(5):311-3241997.

Y.-H. Lu, E.-Y. Chung, T. Simunk, L. Benini, and G. D.
Micheli. Quantitatve Comparisorof Paver Managemenl-
gorithms.In Design Automation and Test in Europe, 2000.

G. QuandM. Potlonjak. Paver Minimization using System-
Level Partitioning of Applicationswith Quality of ServiceRe-
quirementsIn ICCAD, pages343-346,1999.

A. Rubini. Linux Device Drivers. O'reilly, 1998.

Y. ShinandK. Choi. Poner Conscioud-ixed Priority Schedul-
ing for Hard Real-Time Systems. In DAC, pages134-139,
1999.

A. SilberschatandP. B. Galvin. Operating System Concepts.
Addison-W\ésley, 1994.

M. Weiser B. Welch,A. DemersandS. Shenler. Scheduling
for Reduced”PUEnegy. In Symposium on Operating Systems
Design and Implementation, pagesl3-23,1994.

(1]
(2]

(4]

(5]

(6]

[20]

[11]
[12]

[13]

[14]

	Main Page
	CODES'00
	Front Matter
	Table of Contents
	Session Index
	Author Index

