Radix-4 Modular Multiplication and Exponentiation Algorithms for the
RSA Public-Key Cryptosystem

Jin-Hua Hong and Cheng-Wen Wu
Department of Electrical Engineering
National Tsing Hua University
Hsinchu, Taiwan 30013

R.O.C.

Abstract realized [3—6]. One of the most attractive modular mul-
We propose a radix-4 modular multiplication algorith tiplication algorithms was proposed by Montgomery [7].

, . : ontgomery'’s algorithm needsiterations in each mod-
based on Montgomery’s algorithm, and a radix-4 cellular- o . . .
o , ._.___._ular multiplication and two additions per iteration, where
array modular multiplier based on Booth’s multiplication .
. . . n is the word length. Cellular arrays based on Mont-
algorithm. The radix-4 modular multiplier can be used toOmer 's algorithm can be found in [8-10]
implement fast RSA cryptosystem. Due to reduced nw%- ysag '
ber of iterations and pipelining, our modular multiplier is
fourtimes faster than the cellular-array modular multiplier A modified Montgomery’s algorithm was first reported
based on the original Montgomery’s algorithm. The timi@ [11], where the multiplication and modular reduction
to calculate a modular exponentiation is abofitclock steps in Montgomery’s algorithm are separated such that
cycles, wheren is the word length, and the clock cyclenly one addition is required in each iteration. However,
is roughly equal to the delay time of a full adder. Thghe number of iterations in the modified algorithm is two
utilization of the multiplier is 100% by interleaving contimes that of Montgomery’s, hence the overall computa-
secutive exponentiations. Locality, regularity, and moglon time is not reduced. In [12,13], the algorithm was
ularity make the proposed architecture suitable for VL&irther modified to reduce the number of iterations, dou-

implementation. bling the speed of modular multiplication.

Keywords: cellular array, Montgomery algorithm, mod-

ular multiplication, high radix modular multiplier, public- | this paper, we reduce the number of partial products
key cryptography, RSA. by using radix-4 Booth’s algorithm, and propose a radix-
4 modular exponentiation algorithm. The proposed algo-
rithm can be implemented using a linear cellular array.
With the increasing popularity of electronic communiFor a word length o, the array has about cells, and
cation, data security is becoming more and more imp@ach cell contains two full adders and some logic gates.
tant. In 1976, Diffie and Hellman invented a new concephe two full adders in the cell are pipelined. The num-
of public-key cryptography [1]. Later, in 1978, Rivestber of iterations in the multiplication processﬁ%;f—:*] as
Shamir, and Adleman proposed the RSA public-key crypompared with & in the original multiplier. Therefore,
tosystem which is relatively secure and easy to implée speed of the proposed modular multiplier is quadru-
ment [2]. In the RSA cryptosystem, both the encryptidied. The time to calculate a modular exponentiation is
and decryption are modular exponentiation, which can B&, wheret is the delay time of a full adder.
done by a sequence of modular multiplications. There-
fore, fast modular multiplication becomes the key to real-
time encryption and decryption in such a scheme.

1 Introduction

To improve the utilization for radix-modular multipli-
cation without interleaving, we can merge tocells into

Various algorithms for modular multiplication havene processing element (PE), resulting in a digit-level ar-
been proposed in the past, and some of them have besn

2 Modular Multiplication Algorithm initial range(0,N). Therefore, post adjustment is required

)) before the next modular multiplication is performed.
In RSA, to encrypt a message using the encryption key

(E, N), we first partition the message (a string of bits) intQ_Z Radix-4 Modular Multiplication

a sequence of blocks and consider each bMdcks an in-

teger between O arld— 1. Then, we encrypt the message e present the radix-4 Montgomery algorithm. By us-
by raising each block to thEth power moduloN, i.e., ng radix-4 numbers for multiplication and modular re-
C =M" (modN), for each message blodk. Similarly, duction, the number of iterations can be reduced by half.
to decrypt the ciphertext using the decryption kBy), The number isn in Montgomery’s algorithm, which is
we raise each ciphertext block to the pouZemoduloN, equivalentto the number of partial products. To reduce the
i.e.,M =CF (modN), for each ciphertext blocg. number of iterations (and the number of partial products
be accumulated) we propose a radix-4 Montgomery al-
rithm which requires only%ﬁ iterations. The radix-
Montgomery algorithm can be implemented by Booth’s

Exponentiation is performed by repeated (iterate[ﬁ
squaring and multiplication operations. Let the bina
representation of the expondhbee,_1e,->- - - €169, then o
ME = M2 " en1... M2 . M2€ . M®. A simple way to multiplier.
perform modular exponentiation is to repeat the modular . o pe (+3)-bitandB be (1+ 1)-bit 2's-complement

squaring 1?) and modular multiplication\); x P) oper- numbers andN = (Mn_1,...,N;,N0) be an n-bit odd
ations from the least-significant bit (LSB) &. This is integer, where—N < AB < N. Also, let PR =

called the L-algorithm. In the L-algorithmm iterations PB(ni1)»-- > PP1, PRo) represent the radix-4 Booth par-
ar_e ngeded and each iteration needs.tvx_/o modular mL{(\gT product of iteratiori. Since the radix-4 Booth recod-
plications. However, the modular muIt|pI|cat|oM'?2 and ing is considered, we haP 5.1, = 0 and—2N < PR <

M; x B can be done in parallel. To reduce the time corgi\l here 0< | ’ Nl S[T]osd'- o P_P then
plexity, we have developed a radix-4 modular multiplica= " <1 <[%57]. Supposdi = Sl + PR,

tion algorithm and designed a radix-4 modular multiplietpfa two LSBs off; (i.e.,ti1 andtio) can be used to deter-

) . . mine the modular reduction value (i.Bl, whereN; = 2N,
based on Montgomery’s modular arithmetic. . .
+N, or 0). The proposed radix-4 Montgomery algorithm
2.1 Review of Montgomery’s Algorithm is shown below.

SupposeN = (np—1,...,N1,Np) IS ann-bit odd integer. R4MGA, B,N)
Let A= (ap-1,...,a1,a0) andB = (bn_1,...,b1,bp) be {

two n-bit integers, where & A B < N. Montgomery’s S0] = 0;
modular multiplication is shown below, which generates for(i=0;i < [”_J2r3]; i++) {
a series of number§[0],51], ..., 9n] as outputs. (i, tio) = (Si] + PR) (mod 4);
MG(A, B, N) it (to = 0){
{ if (tiz =0)
S0= 0, Sli+1] = (8] + PR)/4;

else

for(i = 0;i < n; i++) { Si+1] = (S[i]+ PR+ 2N)/4;

a = (§i] +aB) (mod 2;

L1 — (Sl 4 aB 4 aN) /2 }
\ Si+1] = (Si] +aB+aiN)/2; else{
- if (tin = M)
, s S+ 11 = (S + PR - N)/4;
else

In each iteration of the above procedure we need to ac- Si+1] = (Si]+PR+N)/4;

cumulate threen-bit integers and divide the result by 2. }

This can be done by using twebit adders and right shift- }

ing by one bit the adder output. Therefore, each cell is returnS[[%ﬂ];
composed of two full adders. Futhermore, by induction, }
the value ofgn] falls in the rangg0,2N) instead of the

Procedure R4MG() has abojiterations, while previ- 3 Modular Multipliers
ous algorithms requira or 2n iterations [7,11]. In each
iteration, two additions are required, which is the san%)’e
as MG(). Therefore, it is faster than Procedures MG().
By induction, the value oS[[%ﬂ] falls in the range

1 Montgomery’s Modular Multiplier

We implement Montgomery'’s algorithm using a cellu-
o o lar array circuit. The dependence graph (DG) and signal
(=N,N), which '.S Ll sarTle as t.he |n|t|§I range. Ther?’l'ow graph (SFG) [14] of the modular multiplication al-
fore, no post adjustment is required during the entire ed(érithm are shown in Fig. 1. In the figure, the projec-
ponentiation process. tion direction vectord = (0,1), and the schedule vector
§=(1,2)T. The utilization ratio of the cells is 50%. The
2.3 Radix-4 Modular Exponentiation resulting modular multiplier is shown in Fig. 2, where the
signalg; is generated by XORing the LSB §fi] anda;B.

Our modular exponentiation algorithm is based on tyge yse twon-bit adders to addi], &B, andgN. The
L-algorithm. LetR=4/""1 andC = R? (modN), then pipeline technique is applied to the design to reduce the
the proposed exponentiation procedure is as shown belgiyck period. We divide a cell into three subcells which
where the final valu®, is equal toME (modN). Also, as pelong to different pipeline stages. As shown in Fig. 2,
discussed above, the range for the intermediate numhgesp flip-flops (FFs) are inserted where the dashed lines
(Mi’s andR’s) will not grow since we use R4AMG(). cross the signals. The clock period is about the delay time

of a full adder.

R4AMEM, E,N)
{ T0 X
Hyperpl by
Mo = RAMGQM,C, N); - ypepiene ; 1 NN T
I:)0 = 11 T3 %Do a;
. . . G
for (i=0;i < n;i++) { T < T Y40
vk 7
Mit1 = RAMGM;, M;,N); :: a=a n=n
if (ej=1) bo=b G=Seab
T {(;)[les(}ZQO'n\+ S\"'a'h
P11 =R4MGM;,R,N); T8
else 19 s mb
Pi1=R; '
T11 g';« «g;
.} T12 GI10] +\?_2\‘;(-‘1[10]
if (Pn<0) LY
Pn=Py+N; S : Schedule vector (1,2) &z ﬁ gbzg\i
returnpPy; g : Projection directiono,1) {Q,[O],Il‘ij} =a;b +s+ GO
} {

Table 1: Intermediate values of Procedure R4AME().

i 0 1 2 3 . n
Mi | M-R MZR MR ME.R = Figure 1: The DG and SFG of a 4-bit modular multiplier.
P 1 M MZEteo &t Zete ... ME

3.2 Radix-4 Modular Multiplier

Note that we keep intermediate restMsandp in the The recoding rules for the radix-4 Booth algorithm are

range(—N,N) during the entire exponentiation procesg, gy, in Table 2 [15]. The signals Code[2:0] are used to
and convert only the final resui, to the range&0,N) by selecttB, +2B, or 0 as the partial product.
addingN to P, if P, < 0. The intermediate values are

shown in Table 1. We can perform the exponentiation for The DG and SFG of the radix-4 modular multiplication
one message block concurrently when we read the nalgorithm are shown in Fig. 3. We let the projection direc-
message block and write the previously processed cipkien vectord = (0,1) and the schedule vectse= (1,3)T.

block (with post adjustment). Note that the utilization ratio of the cells is 33%. The

'S : Schedule vecter,3) X
Hyperplane “d : Projection directior,1)
yperp v

T0
Tl
T2
T3
T4
15
8 T6
Si+1], Si+1]3 Sli+1], Sli+1], Sli+1]y 7
T8
T9

Figure 2: A 4-bit Montgomery modular multiplier. T10

Table 2: Radix-4 Booth’s recoding rules.

& @-1 @_» | Boothcode| Action | Code[2:0]
0 0 0 00 +0 000
0 1 0 01 +B 001
1 0 0 10 —2B 110
1 1 0 01 -B 101
0 0 1 01 +B 001 by
0 1 1 10 +2B 010
1 0 1 01 -B 101 Code [20] Codg [2:0] Code [2:0
1 1 1 00 +0 000 ol &) Code [2:0)
$
Wbt by Bo
Codg [2:0] =Codg [2:0] Codg [2:0]=Codq [2:0] Codg [2:0] =Codg [2:0]
{No, Mo F{N;, Ni-x } {clo], iy} =PP + s €[0] {Gl0],tio =Py +sp+ Code [2]
utilization can be improved by interleaving as shown irfbe. be1}={i. bis} (GULS}=m +& &0 Gll=to
{Gn §}=PR+s G0 4001 = q;[0] 601 =tj

Fig. 4, where inputga,b) are interleaved with the in- (qu.)= +§ Goll] = ty

puts(a,b'). Interleaving two modular multiplications in- % = el taeh

creases the utilization to 67%. As described in R4MGQiglure 3: The DG and SEG of a radix-4 modular multi-
we must determine the modular reduction veluewhere pier.

Ni = (Ni(ny1), - -, Niz, Nio). Three control signals g[2:0] are
used to selectl?, =N, or 0 as the reduction value, where
q[0] = tio, q[1] = ti1, andq[2] = tj; @ ni1. Note that sub-
tractingN is easier than addindg\8 so we subtrad¥l when

tio = 1 andtj; = n;. Therefore, a’®complement modular
multiplier is required. In Z-complement multiplication,
sign extension is needed when we accumulate the partiak
products. This can be done by using sigratd andctr2 ﬁ
and theppis XNOR gate as shown in Fig. 4. T

TR
figiciit it

obbbbk bl p

N

As shown in Fig. 5, we need to add at most three D FFs
in each cell. However, the utilization ratio is reduced to
25% due to pipelining. Fortunately, in RSA, a message
to be encrypted is divided into a sequence of blocks, and
each block is raised to tHeth power moduldN indepen-
dently, so the modular exponentiations of the successive
message blocks can be done in parallel by interleavi .91],,
Furthermore, in a modular exponentiation, the computa-
tion of M2 andM; x P, can also be interleaved. Our design Figure 4: The radix-4 modular multiplier (n=3).
thus can execute four modular multiplications at the same
time by thisdouble interleaving The utilization is then
increased to 100%. Since the number of partial products

Nio=to

is reduced in half, the number of iterations is so reduced3 to 1/2. In a radix-4 digit-level cellular array, each PE
Compared with [12, 13], we have two times the speed acaintains two 2-bit adders. The critical path is equal to the
1.5 times the hardware cost. The extra 50% hardware cslay of three full adders. Therefore, the clock period is
is due to the interleaving control circuit and the pipelineughly 3.

registers.

'S : Schedule vector (1,2) X —= 1
Hyperplane d : Projection direction(0,2) v

T0 ©h) O G O @O s d
oM W O) (0

Figure 5: The pipeline radix-4 modular multiplier.

The time to compute four interleaved modular multi- (ctr2,ctr1()0
plications is about 2 clock cycles, and the time to com-
pute a modular exponentiation is abawtclock cycles.
Table 3 compares the hardware and time complexity of S g 2 52
several linear-array RSA systems. In the tablegndt
are roughly the area and delay of a full adder cell, respédgure 6: The DG and SFG of a radix-4 digit-level multi-
tively. We normalize the clock period to the delay timBlier.

1. From the table, our architecture has the lowest com-
putation time as compared with other works. When the Though the number of iterations is reduced, the hard-
size of the message block and encryption key are 512 piare complexity and the clock period increase. As Fig. 7

the encryption throughput rate is about 300K bps using30Ws: each PE of a radix-16 multiplier containshan
150MHz clock. Selector circuit, 8-Selector circuit, and two 4-bit adders.

For n-bit modular multiplication, the number of iterations
is (“—f] , but the clock period is roughlytgi.e., logr + 1).
Because the utilization is 50%, we need roughlglock

L%@i—-

Table 3: Comparison of linear-array RSA systems.

Approach| Time | Area cycles to compute two interleaved modular multiplica-
[8] 4n’t | 4na tions. We can reduce the clock period by using a fast 4-bit
[9] 4t | 2na adder (such as the carry look-ahead adder), but this is ba-
[11] 4n’t | 2na sically a tradeoff between computation time and silicon
[12] 2n°t | 2na area. Another possibility is that the signed digit number
(13] 2nt | 2na system can be used to avoid carry propagation in the PE
Ours n’t_| 3na and hence increase the speed of the high-radix modular

multiplier.
4 Digit-Level Modular Multiplier 5 Conclusions

For a radixr system, the number of iterations is We have presented radix-4 modular multiplication and
[oedl]. However, the utilization is reduced tomodular exponentiation algorithms. In the algorithms,
mﬁ- To increase the utilization of a radixmodular we are able to keep the intermediate results in the range
multiplier without interleaving, we can merge Iogells (—N,N), so no post adjustment is required for each mul-
into one processing element (PE) and form a digit-levilication during the modular exponentiation process. A
array multiplier. For example, in Fig. 6 two cells areellular-array modular multiplier based on the algorithm
merged into one PE, so the utilization is increased fraand Booth’s multiplication has been presented, which is

"L p15-b13

(7]

(8]

¥ T
Sli+lhs-12 S+l -5 5(' Ur-a Si+ls-o

(9]

Figure 7: A radix-16 digit-level modular multiplier.

efficient especially for RSA cryptosystem where modyi10]

lar multiplications are performed iteratively. Compared
with previous designs, the number of clock cycles of our
pipelined radix-4 modular multiplier for a modular ex-

ponentiation is about?t, wheret is roughly the delay

of a full-adder.

The proposed multiplier is four time

faster than those based on the original Montgomery al-
gorithm, and is two times faster than those reported in
[12,13]. A high-radix digit-level modular multiplier was
also discussed. Extending the design for a larger mOCtLirQ]
is straightforward.

References

[1]

(2]

[3]

[4]

(5]

[6]

W. Diffie and M. E. Hellman, “New directions
in cryptography,’lEEE Trans. Information Theory [13]
vol. 22, pp. 644—-654, Nov. 1976.

R. L. Rivest, A. Shamir, and L. Adleman, “A method
for obtaining digital signatures and public-key cryp-
tosystems,"Communications of the ACMol. 21, [14]
pp. 120-126, Feb. 1978.

C. K. Kogcand C. Y. Hung, “Bit-level systolic arrays[15]

for modular multiplication,J. VLSI Signal Process-
ing, vol. 3, pp. 215-223, 1991.

C. K. Kog, “RSA hardware implementation,” tech-
nical report, RSA Laboratories, RSA Data Security,
Inc., Redwood City, CA, 1995.

N. Takagi and S. Yajima, “Modular multiplication
hardware algorithms with a redundant representa-
tion and their application to rsa cryptosystehgEE
Trans. Computersvol. 40, pp. 887—891, July 1992.

N. Takagi, “A radix-4 modular multiplication hard-
ware algorithm for modular exponentiationEEE
Trans. Computers/ol. 41, pp. 949-956, Aug. 1992.

P. L. Montgomery, “Modular multiplication without
trial division,” Math. Computationwvol. 44, pp. 519—
521, 1985.

P. Kornerup, “A systolic, linear-array multiplier for
a class of right-shift algorithms|EEE Trans. Com-
puters vol. 43, pp. 892-898, Aug. 1994.

C. D. Walter, “Systolic modular multiplication,”
IEEE Trans. Computersol. 42, pp. 376-378, Mar.
1993.

M. Shand and J. Vuillemin, “Fast implementation of
RSA cryptography,”irProc. 11th IEEE Symp. Com-
puter Arithmeti¢ (Windsor, Ontario), pp. 252-259,
June 1993.

1] P.-S. Chen, S.-A. Hwang, and C.-W. Wu, “A sys-

tolic RSA public key cryptosystem,” iRroc. IEEE
Int. Symp. Circuits and Systems (ISCA@}lanta),
pp. 408—411, May 1996.

C.-C. Yang, T.-S. Chang, and C.-W. Jen, “A new
RSA cryptosystem hardware design based on Mont-
gomery'’s algorithm,/IEEE Trans. Circuits and Sys-
tems II: Analog and Digital Signal Processing
vol. 45, pp. 908-913, July 1998.

C.-Y. Su, S.-A. Hwang, P.-S. Chen, and C.-W.
Wu, “An improved Montgomery algorithm for high-
speed RSA public-key cryptosystemEZEE Trans.
VLSI Systemsol. 7, pp. 280—-284, June 1999.

S.-Y. Kung, VLSI Array Processors Englewood
Cliffs, New Jersey: Prentice-Hall Inc., 1988.

I. Koren, Computer Arithmetic AlgorithmsEngle-
wood Cliffs, New Jersey, 07632: Prentice-Hall Inc.,
1993.

	ASP-DAC2000
	Front Matter
	Table of Contents
	Session Index
	Author Index

