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Abstract

Simulated annealing has been one of the most popu-

lar stochastic optimization methods used in the VLSI

CAD �eld in the past two decades. Recently, a new

Monte Carlo and optimization method, named dy-

namic weighting Monte Carlo [WL97], has been intro-

duced and successfully applied to the traveling sales-

man problem, neural network training [WL97], and

spin-glasses simulation [LW99]. In this paper, we have

successfully applied dynamic weighting Monte Carlo

algorithm to the constrained oorplan design with

consideration of both area and wirelength minimiza-

tion. Our application scenario is the constrained oor-

plan design for mixed signal MCMs, where we need

to place all the analog modules together in groups

so that they can share common power and ground

planes, which are separate from those used by the

digital modules. Our experiments indicate that the

dynamic weighting Monte Carlo algorithm is very ef-

fective for constrained oorplan optimization. It out-

performs the simulated annealing for a real mixed sig-

nal MCM design by 19:5% in wirelength, with slight

area improvement. This is the �rst work adopting the

dynamic weighting Monte Carlo optimization method

for solving VLSI CAD problems. We believe that this

method has applications to many other VLSI CAD

optimization problems.

I. Introduction

Simulated annealing (SA) [KG83] has been one of the
most popular stochastic optimization methods used in the
VLSI CAD �eld in the past two decades. However, the
e�ciency of simulated annealing depends much on the
energy landscape. If the global minimum solution has a
small basin of attraction and is well separated by many
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local minima with high energy barriers, simulated anneal-
ing tends to be trapped in a local minimum solution. The
reason is that in practice, to assure reasonable runtime,
the temperature cooling schedule used in the simulated
annealing process is exponential cooling schedule [SS94],
which is much faster than the logarithmic cooling schedule
required by theory [GG84] for achieving optimality.

In early 1990's, simulated tempering (ST) [MP92,
GT95] was introduced to overcome the drawbacks of sim-
ulated annealing by taking temperature as an additional
random variable during the optimization process. Al-
though simulated tempering can help the system jump
out of local minima in the appearance of high energy bar-
riers, it sometimes su�ers from the serious problem that
the energy distribution of two adjacent temperature levels
cannot mix well, which means that the temperature levels
have to be very closely spaced in order to preserve smooth
temperature transition. As a result, too many tempera-
ture levels have to be used to explore a large temperature
range in order to sample good solutions, which will result
in long computation time. An extension of simulated tem-
pering, called dynamic weighting Monte Carlo (DWMC)
[WL97], in which a weighting variable is employed to help
the system jump between adjacent temperature levels, has
been successfully applied to the traveling salesman prob-
lem, neural network training [WL97], and spin-glasses
simulation [KR94, LW99]. For two benchmarks (pcb442
and att532) [Re95] of traveling salesman problem (with
optimal values of 50778 and 27686), dynamic weighting
algorithm has obtained the solutions which are over the
optimal values by 0:097% and 0:114%, respectively; while
the solutions of simulated annealing are over the optimal
values by 1:264% and 2:644% [Li97], respectively.

Since dynamic weighting Monte Carlo is a general opti-
mization method, it can be used to solve many optimiza-
tion problems. In this paper, we have successfully applied
dynamic weighting Monte Carlo approach to the opti-
mization of slicing oorplan for mixed signal MCM de-
signs. To deal with this problem, we have to place all the



analog modules together in groups so that they can share
common power and ground planes, which are separate
from those used by the digital modules. Also, the cluster-
ing of analog modules makes it easy to provide shielding
for these analogy modules for signal integrity. Since the
constrained oorplan problem usually introduces many
dramatic con�guration changes, it results in more deep
local minima to trap simulated annealing algorithm. Our
experiments indicate that the dynamic weighting Monte
Carlo algorithm is especially e�ective in the constrained
oorplan designs. For a real mixed signal MCM design of
a high speed wireless modem, dynamic weighting Monte
Carlo based approach outperforms the simulated anneal-
ing based approach by 19:5% in wirelength, while gets
slight area improvement.

The rest of this paper is organized as follows: Section
II reviews the formulation of slicing oorplan approach.
Section III describes the dynamic weighting Monte Carlo
algorithm. Section IV discusses our algorithm for mixed
signal MCM designs. Section V shows the experimental
results. Section VI gives the conclusion.

II. Formulation of Slicing Floorplan Designs

There are two approaches for the oorplan problem:
slicing versus non-slicing. Both slicing oorplan [WL89,
YT96] and non-slicing oorplan approaches [PL93, MF95,
NF96] have been investigated extensively. Compared with
non-slicing oorplan approaches, the slicing oorplan ap-
proach is e�cient, easy to implement and produces even
better solutions [YT96, YW97]. In [YT96], the slicing ap-
proach outperforms the non-slicing approach [MF95] for
an MCNC circuit ami49 by 4.8% and 23.0% in area and
wirelength, respectively. In this work, we only consider
slicing oorplan as well.

In this paper, we assume basic modules are all rectan-
gular. For a given set of modules M = f m1, m2, ..., mn

g, each module mi can be represented by a triplet (Ai, li,
ui), where Ai is the area of module mi (1 < i < n), li and
ui specify lower and upper bounds of module i's aspect
ratio. If li = ui, then module mi is said to be rigid, oth-
erwise, it is exible. A oorplan for the given n modules
consists of a bounding rectangle, partitioned by some hor-
izontal and vertical line segments into n non-overlapping
rectangular regions, denoted by r1, r2, ..., rn. Each region
ri must be large enough to accommodate its module mi.
For the mixed signal MCM designs, the analog modules
should be put together in groups. The de�nition of the
problem can be stated as follows:

De�nition 1: Given a set of modules M , a

subset analog modules S � M and an inte-

ger k, compute a slicing oorplan such that

all modules in S are clustered in no more than

k rectangular regions (called "analog regions")

and the weighted sum of area and wirelength

of the oorplan is minimized.

Note that the digital modules in M � S should not
appear in the analog regions. Fig. 1 illustrates a simple
mixed signal MCM design. The dark blocks represents
analog modules, while these big light blocks are digital
modules. Usually, a typical mixed signal MCM design
has a lot of small analog modules and a few large digital
modules.

Analog
regions

Digital
Modules

Fig. 1. Illustration of a simple mixed signal MCM design

Polish expression representation was introduced for the
slicing oorplan in [WL89]. A slicing oorplan is a oor-
plan which can be obtained by recursively partitioning a
rectangular region into two parts either by a vertical line
or a horizontal line. The resulting area dissection corre-
sponds to a slicing tree, in which each leaf represents a
region ri (1 < i < n) and each internal node represents
a cut line. Let horizontal and vertical cut be denoted by
the operator + and *, respectively; and the modules be
denoted by operands. There exists an one-to-one map-
ping from the set of slicing trees to the set of normalized
Polish expressions. To explore di�erent oorplan con�g-
urations using Polish expression approach, three type of
moves, M1, M2, M3, were de�ned in [WL89]. Oper-
ation M1 swaps two adjacent operands; Operation M2
interchanges the operators * and + for a chain of nonzero
length of adjacent operators; Operation M3 swaps two
adjacent operand and operator.

Suppose that a oorplan con�guration is represented
by F , and total area and wirelength of F are denoted by
A(F) and W (F). The cost function given in [WL89] is as
follows:

f(F) = A(F) + �W (F) (1)

The simulated annealing [KG83] algorithm was used to
explore di�erent con�gurations using cost function de-
�ned by equation (1).



III. Dynamic Weighting Monte Carlo

Algorithm

There is a deep connection between global optimization
and Monte Carlo simulation. In optimization, our goal is
to search for a con�guration x that minimizes some cost
function f(x). In Monte Carlo, we attempt to sample
the con�guration x according to a Boltzmann probability
density

�i = �ie
�

f(x)
ti (2)

where at a �xed temperature t = ti, �i is the normalizing
constant. If ti is small, then with high probability the
sampled con�guration will have a cost close to the glob-
ally minimal cost value. This is the basis of simulated an-
nealing. It has been observed that for practical annealing
scheme (for example, geometric decrease of temperature),
SA tends to be trapped in a local minimum.To overcome
this di�culty, DWMC [WL97] employs advanced Monte
Carlo technique to sample con�gurations at a �xed ladder
of temperatures t1 > t2 > :::: > tm in order to sample low
energy con�gurations. Similar to SA, it is an iterative
process that produces a sequence of con�gurations. At
step j in the iteration, there is a temperature level t(j)
and the corresponding con�guration x(j) can be thought
of as being sampled form the Boltzmann distribution (2)
with temperature t(j) which takes value in ft1; t2; :::; tmg.
However, unlike SA, the temperature t(j) is not a de-
terministic and monotonically decreasing sequence but
rather it is treated as a part of the system to be updated
together with the con�guration x(j). Speci�cally, the al-
gorithm alternates between attempts to change the con-
�guration x and the temperature t. The moves involving
the change of con�guration x with the temperature level
�xed are made in exactly the same way as in SA, i.e. a
proposal to move to a new con�guration is accepted or
rejected stochastically based on the energy di�erence be-
tween the new and the old con�gurations, relative to the
temperature. The moves involving temperature change
with the con�guration �xed are more complicated and
will be discussed in more detail below. The important
property of these moves is that they ensure the genera-
tion of a sequence of con�gurations, each with an attached
temperature and a weighting factor, so that expectations
with respect to the Boltzmann distribution at any tem-
perature level tk can be estimated by a weighted average
of the values sampled at that temperature level. Thus, in
this scheme it is possible for the temperature to decrease
to a low value ti to sample low energy con�gurations and
then increase back to a high value tj where the con�g-
uration can undergo large changes and to escape from
local traps. However the temperature changes are sub-
ject to strict stochastic transition rules in order to ensure
that the Boltzmann distribution is sampled correctly at
all temperature levels, thus maintaining the crucial con-
nection between Monte Carlo simulation and global opti-
mization.

We now turn to the detailed speci�cation of the transi-
tion rules for temperature changes. Suppose the current
temperature is t = ti and the current con�guration is x
with a weighting factor w. First we propose to move the
temperature either up or down one level with equal proba-
bility, except at the two extreme temperature level where
the proposal can only be going to the adjacent level. We
then compute a quantity

r = c
�j

�i
e
�f(x)( 1

tj
�

1
ti
)

(3)

where tj is the proposed temperature level and c = 1=2
when ti is an extreme temperature level and c = 1
otherwise. This proposal is accepted with probability
minf1; wr

wr+1
g. If the proposal is accepted, the temper-

ature is moved from ti to tj and the weight is changed
from w to wr + 1. If the proposal is rejected, then the
temperature remains at ti but the weight is changed from
w to w(wr + 1).
For this method to work it is important to use an appro-

priate temperature ladder. In general, the high tempera-
ture t1 is chosen so that large movements of the con�gura-
tion is possible at that temperature, and the low temper-
ature tm is chosen so that con�gurations with cost higher
than the global minimum by a large magnitude (large rel-
ative to tm) will be unlikely to be sampled from the Boltz-
mann distribution. We note that with the weights set to
be identically 1, the algorithm reduces to another simula-
tion scheme known as simulated tempering (ST) [MP92].
With ST often many intermediate temperature levels are
needed before the proposals for temperature changes (in
either directions) are accepted with reasonably high prob-
ability. With help of the weighting factor, DWMC typi-
cally works well even with a modest number of levels (say,
10-20). Since computational complexity grows quadrati-
cally with the number of levels, this is a very useful feature
of DWMC. The values of the intermediate levels and the
adjustable constants are usually obtained from a short pi-
lot run using a learning algorithm. Further details on the
theory of DWMC and numerical results on various exam-
ples from machine learning, combinatorial optimization
and statistical physics can be found in [WL97, LW99].

IV. Implementation of DWMC for Floorplan

Design

We modi�ed the Polish expression representation ap-
proach [WL89] and applied the dynamic weighting Monte
Carlo algorithm for the slicing oorplan optimization.
Two new operations are de�ned. Operation M10 swaps
any two randomly selected operands; Operation M30

swaps any two randomly selected operand and operator,
if the resulting Polish expression is still normalized. The
original M2 operation stays the same. By changing op-
eration M1 and M3 to M10 and M30, we can make some
global con�guration change and speed up the algorithm.



For the constrained oorplan of mixed signal MCM de-
signs, suppose there is a digital or analog modulemi 2M ,
the corresponding operand of module mi in the Polish
expression is denoted by oi. If module mi is an analog
module (i.e. mi 2 S), the analog region it belongs to is
denoted by R(mi). We de�ne all the operands of analog
modules in region R(mi) to be an analog operand group,
denoted by g(oi). Because we want to place all analog
modules in R(mi) together, we should let the operands
in group g(oi) form a subtree in the whole slicing tree.
This subtree can be represented by a consecutive subse-
quence of operands and operators, denoted by s(g(oi)), in
the entire Polish expression. If the original entire Polish
expression is normalized, this subsequence of Polish ex-
pression is still normalized. The corresponding rectangle
enclosing all modules of this subtree can be viewed as a
big complex module.

In order to handle constrained oorplan design, opera-
tion M10, M2, and M30 have to be modi�ed. Operation
M10 involves swapping two operands. Suppose the two
randomly selected operands are oi and oj . the variation
of M10 operation for the constrained oorplan design can
be described as follows:

� If both operands are in the same analog group or
not in any groups, perform M10 operation as in the
unconstrained case.

� If both operands are in the di�erent groups, perform
M10 operation for subsequence s(g(oi)) and sequence
s(g(oj)).

� If one operand oi (or oj) is in group g(oi) (or g(oj)),
and another one is not in any analog groups, do M10

for subsequence s(g(oi)) (or s(g(oj))) and operand oj
(or oi).

Operation M30 involves swapping an operand and an
operator, which can be treated similarly as in operation
M10.

For a oorplan F , the commonly used cost function
is given in equation (1). However, two terms A(F) and
W (F) in the cost function (1) may be of very di�erent
scale. One often has to adjust coe�cient � for each indi-
vidual oorplan instance to obtain result with both small
area and short wirelength. We choose to use the following
normalized cost function in this paper.

f(F) = 
A(F)

Aref

+ (1� )
W (F)

Wref

; (0 �  � 1) (4)

where  is a constant between 0 and 1; Aref andWref are
pre-calculated by a very fast simulated annealing run. If
the area and wirelength are considered equally important,
we can set  to be 0:5. In our current implementation,
routing area is not considered.

TABLE I
Test Circuits

circuit #modules # nets # pads

apte 9 97 73

xerox 10 203 2

hp 11 83 45

ami33 33 123 43

ami49 49 408 22

playout 62 2506 192

TABLE II
Results before and after simulated annealing

circuit Before SA After SA
area(mm

2) WL(�m) area(mm
2) WL(�m)

apte 48.50 226614 48.50 226412
xerox 21.21 405829 20.43 383909

hp 10.00 128986 9.58 118472
ami33 1.40 53964 1.29 45923
ami49 41.20 896539 42.23 670845

playout 102.81 5684780 97.35 4575894

V. Experimental Results

We have implemented simulated annealing and DWMC
algorithms for both unconstrained and constrained mixed
signal oorplan designs. In our implementation, the co-
e�cient  in the cost function (4) is set to be 0.5. For
DWMC algorithm, the number of sampled solutions is set
to be 5. For unconstrained oorplan designs, we tested
six MCNC benchmarks, which are listed in Table I. For
constrained oorplan design, we tested a real high speed
wireless modem in mixed signal MCM design, which con-
tains 133 modules and 245 nets.

We designed our experiment as follows: we ran simu-
lated annealing algorithm 25 times and reported the best
result. For DWMC algorithm, we ran it 5 times, each time
we pick the best �ve uncorrelated solutions and subject
each to a fast simulated annealing at low temperature.
This allows us to have roughly the same total run time
between simulated annealing and DWMC algorithms. We
show oorplan results before and after applying simulated
annealing algorithm for unconstrained MCNC oorplan
design in Table II. It is clear from the data that DWMC
provides good sampling points and the �nal fast simulated
annealing step can furthur improve the results.

For unconstrained oorplan design, we compared
DWMC with TimberWolf 1.3.3 [TW98] (which uses sim-
ulated annealing algorithm) and relaxed simulated tem-

pering [CK99] (which is a variant of simulated temper-
ing). For the comparison with TimberWolf, we did the
experiments in two ways. First, we turn o� TimberWolf's



routing space estimation ability to let TimberWolf gener-
ate solutions without routing space, as our oorplan tool
currently does not reserve routing space. 1 Second, we
allow TimberWolf to reserve routing space, but we then
use a compaction tool to abut modules together in order
to make a fair comparison. Table III shows the minimum
area results and minimum wirelength results by running
TimberWolf 25 times. In Table III, we also report the av-
erage runtime 2 of TimberWolf; for DWMC, two times are
reported (in average for 5 runs): the time spent in DWMC
(column st) and the overall runtime (column overall) (in-
cluding DWMC time and the �nal simulated annealing
time). Table III shows that DWMC results are better
than those of TimberWolf's by up to 15.7% and 53.6% in
area and wirelength.

The comparison with relaxed simulated tempering algo-
rithm [CK99] is also favorable for DWMC: using compa-
rable or less CPU time, DWMC achieves better results.
For example, for the largest test case playout, DWMC
used only about half of the CPU time needed by relaxed
simulated tempering, and improved the wirelength result
by 10%, while had a slightly worse (3%) area result.

To show the e�ectiveness of DWMC algorithm for con-
strained oorplan design, we compared the results with
simulated annealing. 3 In our test, we set k to 2, which
means all the analog modules have to be placed into two
analog regions. As shown in Table IV, DWMC algorithm
reduces the wirelength by 19:5%, compared with simu-
lated annealing algorithm.

Figure 2 shows the slicing oorplan solution obtained
by using DWMC algorithm for circuit playout. We also
show the oorplan result for the wireless modem in Fig-
ure 3.

Fig. 2. A slicing oorplan obtained by using dynamic weighting

Monte Carlo for circuit playout

1TimberWolf allows the overlap of modules, if the compaction
and global router are not activated in a placement re�nement stage.
In our test, we do compaction/de-compaction to remove any over-
laps if they exist.

2CPU times are measured on a Sun ULTRA SPARC II (168MHz)
workstation.

3TimberWolf cannot handle analog module constraints, so we
implemented our own version of simulated annealing, which is shown
to be e�cient and e�ective [CK99].

Fig. 3. A slicing oorplan obtained by using dynamic weighting

Monte Carlo for a wireless modem

VI. Conclusion

This paper presents a new application of dynamic

weighting Monte Carlo algorithm in VLSI oorplan de-
signs. By introducing the importance weight as a dy-
namic variable, this approach allows the system to jump
out of local minima more easily and thus sample better
solutions. In this paper, we modi�ed the Polish expres-
sion representation approach [WL89] to handle mixed sig-
nal MCM oorplan designs. Our experiments indicate
that the dynamic weighting Monte Carlo algorithm is e�-
cient and e�ective for both unconstrained and constrained
oorplan designs. This is the �rst work adopting dynamic
weighting Monte Carlo algorithm for solving optimization
problems in the VLSI CAD �eld. We believe that this
method has applications to many other VLSI CAD opti-
mization problems.
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