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Abstract|We present a novel approach which can be used to

obtain multiplierless implementations of �nite impulse response

(FIR) digital �lters. The main idea is to reorder �lter coe�-
cients such that an implementation based on di�erential coef-
�cients requires only a few adders. We represent this problem
using a graph in which vertices represent the coe�cients and

edges represent the resources required when the di�erential
coe�cient corresponding to the edge is used in a computation.
We also present a graphmodel for an implementationbased on
second-order coe�cient di�erences. The optimal solution to
the coe�cient reordering problem is the well known problem
of �nding the Hamiltonian path of smallest weight in this graph.

We use two approaches to �nd the smallest weight Hamilto-

nian cycle; a greedy approach, and, the heuristic algorithm
proposed by Lin and Kernighan. The power and potential of
this approach is demonstrated by presenting results for large
�lters (lengths up to > 300) which show that, in general, for

16-bit coe�cients, the total number of adders required per
coe�cient is less than 2. Hence, high performance and/or
low power �lters can be designed and synthesized using the
proposed approach.

I. Introduction

Future mobile radio and portable computing systems are
expected to provide increased services, faster data rates and
higher processing speeds at reduced power dissipation lev-
els. This provides us with a motivation to explore new ap-
proaches in low-complexity design of high-performance dig-
ital signal processing (DSP) blocks which operate at lower
power levels. Complexity reduction in FIR digital �lter im-
plementations has been of particular interest to the DSP sys-
tem design community [1]. Many previous work have been
reported [2], [3], [4] which consider simpli�ed parallel im-
plementations of FIR �lters for signed powers-of-two (SPT)
implementations. One approach uses integer linear program-
ming (ILP) to search for a �lter which conforms to desired
frequency response. Another approach is to start from a
known optimal �lter solution and search for quantizations in
the vicinity of the optimal solution which gives a lower im-
plementation cost. The prior approach is computationally
impractical as the �lter size or the number of bits used to
represent a coe�cient increases. One disadvantage of these
methods is that they are not guaranteed to yield a solution
conforming to constraints on the frequency response charac-
teristics of the desired �lter.
Low power FIR �lter realizations have also been exten-

sively studied in recent years [5], [6], [7]. The basic tech-
niques used in power reduction constitute architectural trans-
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formations, coding, quantizations, and computation reorder-

ing. The idea of computation reordering was proposed in [6]
in the context of power reduction by reducing the dynamic
range of computation using the di�erential coe�cient method

(DCM). The DCM approach computes the �lter output using
coe�cient di�erences instead of their original values. This
approach e�ectively reduces the word-length of coe�cients
from a computational point of view, thereby saving power.

In this paper, we explore complexity reduction in FIR �l-
ters from the point of view of removing computational re-

dundancy rather than following the traditional approach of
removing less signi�cant operations. We de�ne computa-

tional redundancy as the excess computation over the min-

imum number of bit operations needed for a given sequence

of operations. Our goal is to propose a methodology which
can be used to design and synthesize high-performance FIR
�lters by removing redundant computation. The main ap-
proach in removing such redundancies is to explore appro-
priate coe�cient reordering. Lower complexity in terms of
number of operations directly improves power. The result-
ing parallel �lters may be used for high-performance as well
as low-power applications. There are two ways to obtain re-
duction in power dissipation using this approach. First, we
get a direct reduction in power dissipation due to removal of
redundant computation. This advantage appears in the form
of reduced overall switching activity [8] because of relatively
fewer computational operations. Second, we obtain a high
speed multiplierless implementation which can also be used
to further reduce power levels by employing voltage scaling.

The main idea of our work is to �nd an ordering of co-
e�cients which minimizes the number of adders required in
the �lter implementation using a graph theoretic approach.
We employ a di�erential coe�cient scheme which can be im-
plemented for any coe�cient ordering in digital �lters. The
main contributions of this work are summarized below:

� The frequency response of the given �lter is not altered.
� DCMI approach is independent of the number represen-
tation scheme used and the choice of the number of bits
to represent the coe�cients.

� We map the DCMI problem to a well-known problem
of �nding the smallest weight Hamiltonian path on a
graph. E�cient polynomial time algorithms can be em-
ployed to obtain \good" solutions.

� Our approach is general. By modifying the values of
edge costs further implementation details can also be ac-
counted for. Similarly, solutions which combine various
orders of di�erential coe�cients can also be explored.
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Fig. 1. Graph representation of an example �lter with M = 8.

This paper is organized in six sections. Section II pro-
vides a general background on FIR �ltering and the DCM
approach in [6]. Section III presents the DCMI approach
for removing the computational redundancy from the �lter
computations. Section IV presents the extension of DCMI
approach to second order di�erential coe�cients. Numerical
results are presented in section V to quantify the complexity
reduction using the proposed methods. Finally, section VI
concludes this paper.

II. General Background

Consider a linear time-invariant (LTI) FIR �lter of length
M described by an input-output relationship of the form

y(n) =
M�1X

i=0

ci x(n� i) =
M�1X

i=0

P
(n)

i
(1)

In this context, ci represents the ith coe�cient and x(n� i)

denotes the data sample at time instant n � i. P
(n)

i
repre-

sents the partial product cix(n � i) for i = 0; 1; : : : ;M � 1
computed at time instant n. Figure 1(a) shows a tour T in
a graph representation of the �lter at time instant n. In
this representation, vertices represent coe�cients and the
edges, Ei;j, i; j = 0; 1; : : :;M � 1, represent the resources
required to multiply the corresponding data sample with the
preceding vertex (i.e. coe�cient ci). Note that for both sign-
magnitude (SM) and SPT representations, the graph is undi-
rected. The coe�cients are applied such that cj+1 follows cj,
j = 0; : : : ;M�2. The appropriate data sample with the cor-
responding coe�cient are shown next to the edges. Since we
are considering a parallel �lter implementation,Ei;j depends
only on the number representation scheme and the type of
multiplier employed. For example, if an array multiplier is
used with SM number representation of coe�cients and data,
each edge represents the number of adder rows required to
compute the product of respective data sample with the co-
e�cient. The total number of adder rows in the multiplier
is equal to the number of \1" bits in the corresponding co-
e�cient (rows corresponding to 0's can be removed) and M

parallel multipliers are required to obtain the parallel imple-
mentation of the M -tap �lter.
With the above interpretation of the graph, the total re-

sources required to compute the output given by equation 1
at time instant n is given by the sum of resources required to

compute the partial products (P
(n)

i
's) along each edge in the

tour. At the next time instant, n+1, each data sample x(i),
i = n; n�1; : : :n�M +1 in the graph is replaced by x(i+1).
Next, consider the DCM [6] in the context of the graph shown
in �gure 1(a). The outputs of the �lter at time instants n�1
and n are given as y(n � 1) = c0 x(n � 1) + c1 x(n � 2) +

: : :+ cM�1 x(n�M ) = P
(n�1)
0 + P

(n�1)
1 + : : :+ P

(n�1)

M�1 and
y(n) = c0 x(n) + c1 x(n � 1) + : : :+ cM�1 x(n �M + 1) =

P
(n)

0 +P
(n)

1 + : : :+P
(n)

M�1 The �rst order DCM uses the coef-
�cient di�erence ci+1� ci, i = 0; 1; : : : ;M � 2 along the edge
Ei;i+1. Hence, in this case, Ei;i+1 represents the resources
required to compute the product of ci+1 � ci with the cor-
responding data sample x(n � i � 1), at time instant n, for
all i = 0; 1; : : : ;M � 2. Then each vertex can be replaced by
the di�erential coe�cient ci+1�ci except for c0. The partial

product P
(n)

i
is computed by adding (ci � ci�1)x(n � i) to

P
(n�1)

i�1 . P
(n)

i
thus obtained is stored in memory for com-

puting P
(n+1)

i+1 in future and removed subsequently. Hence,
multiplication of ci with x(n � i) is replaced by addition

of P
(n�1)

i�1 with the product (ci � ci�1)x(n � i). The au-
thors noticed in [6] that this approach reduced the dynamic
range of computation, thereby, saving power due to reduced
word-lengths in the multiplication operation. Higher orders
of di�erences may also be considered.

III. The DCMI Approach

Once again, consider the graph representation of the FIR
�lter of equation 1 in �gure 1. We note that the order of com-
putation shown in �gure 1(a) is not the only possible order,
i.e. ci+1 immediately followed by ci, for i = 0; 1; : : : ;M � 1
(Note that DCM only considers this particular order.). Con-
sider �gure 1(b) where arrows indicate the order in which
successive coe�cients are applied. It is quite possible that
this order yields di�erential coe�cients which are simpler to
implement than the order shown in �gure 1(a) (e.g. they
may be powers-of-two), and hence, the implementation so
obtained has lower complexity. Note that in this example,
the ordering is given by c0; c4; c5; c1; c2; c6; c7; c3. The corre-
sponding data sample x(n � i) migrates from the edge Ei;j

to Ei;k, such that if T 0 is the new tour, Ei;k 2 T 0, k 6= j.
This is shown in �gure 1 which shows that x(n� i)
Let K = fk0; k1; : : : ; kM�1g be the set representing the

indices of coe�cients in the new ordering. Hence, for the
example in �gure 1(b), K = f0; 4; 5; 1;2;6; 7; 3g. Then, the
new di�erential coe�cients for the order sequence in K are
given by cki+1 � cki , i = 0; 1; : : : ;M �1 and we can calculate
the partial products using

P
(n)

ki
= (cki � cki�1 )x(n� ki) + P

(n�ki+ki�1)

ki�1
(2)

for i = 1; : : : ;M � 1 (the �rst partial product P
(n)

k0
is com-

puted directly as ck0x(n � k0)) where i = 0; 1; : : :;M � 1.

As an example, consider the computation of P
(n)
4 = (c4 �

c0)x(n � 4) + P
(n�4)

0 . Similarly, we can compute P
(n�1)

4 =

(c4 � c0)x(n� 5) + P
(n�5)
0 . Notice that in this approach we

�rst need to calculate the partial products P
(j)

ki
, for all time

instants j = 0; 1; : : :; n before calculating P j

ki+1
. Hence, ap-

parently this approach yields a block �lter where the compu-
tations of output are performed \column-wise", rather than
\row-wise" as in DCM. In the worst case, a maximum of n
storage elements are required to store the intermediate par-
tial products using a straight-forward implementation. How-



ever, by re-timing the �lter, a transpose-direct form can be
obtained for any coe�cient ordering. Figure 2 shows the
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Fig. 2. Implementation of the 8-tap example �lter using DCMI.

implementation details of an 8-tap �lter using the DCMI ap-
proach assuming that it is asymmetric (in symmetric �lter
case, half of the �lter \folds-over"). Figure 2(a) reveals the
structure of the DCMI �lter. Note that the implementation
of this example �lter requires reference to future values of

partial products (P
(n+4)

5 and P
(n+4)

7 ). The partial products

required to compute P
(n)

i
's for i = 0; 1; : : : ;M � 1 are shown

in �gure 2(b). Clearly, at any time instant n, only M such
products are required.

We can simplify the implementation shown in �gure 2(a)
by re-timing the �lter. The �rst step is to move the delay ele-
ments to the multiplier inputs. Consequently, the ith branch
containing a multiplier has i delay elements on it after the
�rst step is completed. Next, we can move the delay elements
further down such that the the multiplier precedes the de-
lay elements, and then, move them even further down such
that the overhead add operations also precede these delay
elements as shown in �gure 2(c). Finally, the delay elements
are moved out of these branches to get the implementation
shown in �gure 2(d). By a careful consideration of appro-
priate partial products at various branches in the �gure, we
obtain the adder network for the re-timed implementation
shown in �gure 2(d). Hence, the �lter output is available
with an extra delay equal to M -adders due to the overhead
add network. However, the structure of �gure 2(d) can be
pipelined to eliminate this delay.

A. Computing Coe�cients for DCMI

The DCMI approach computes the set K = f k0; k1; : : : ;

kM�1g, such that the coe�cient sequence ck0 ; ck1; : : : ; ckM�1
yields the least number of resources required in the imple-
mentation. In order to computeK, we represent this problem
using a graph, G = (V;E), in which the set V represents ver-
tices fc0; c1; : : : ; cM�1g for an M -tap �lter and E represents
the edges, Ei;j, for i; j = 0; 1; : : : ;M � 1. Figure 3(a) shows
the graph for a 4-tap (M = 4) �lter. The edge Ekj;kj+1

con-
nects vertex ckj to ckj+1 and represents the number of adders
required to represent the di�erence ckj+1�ckj in a given num-
ber representation scheme. Hence, the values assigned to the
edges take into consideration the scheme used for number
representation. As an example, if SM number representa-
tion is used, c(ki) = 17, and, c(ki+1) = 33, then Ekj;kj+1

is
assigned a value of 1 because ckj+1 � ckj = 33 � 17 = 16
requires only one adder in implementation of the multiplier.
Note that G is undirected and complete [9]. There are M ele-
ments in V andM (M�1)=2 elements in E. Hence, jV j = M

and jEj = M (M � 1)=2 independent of the word-length or
the number representation scheme used in the �lter imple-
mentation.
The implementation which requires least number of re-

sources (total number of adders) can be obtained by com-
puting the Hamiltonian path [9] with smallest weight in G.
A Hamiltonian path is de�ned as a path which visits each

vertex exactly once. In our work, for simplicity, we will com-
pute the Hamiltonian cycle instead of the Hamiltonian path.
A Hamiltonian cycle is a simple cycle [9] in which each vertex
in G is visited. For example, �gure 1 shows two Hamiltonian
paths inG. We can remove any link in a Hamiltonian cycle to
obtain a Hamiltonian path. This o�ers us added convenience
as we can select the �rst coe�cient such that the �rst col-
umn computation (P

(j)

0 , for j = 0; 1; : : : ; n) requires only one
adder, rather than a full multiplier. This is always possible
if one of the coe�cients is always �xed to a known power-of-
two value and the remaining coe�cients are calibrated with
respect to it. For example, if c4 in the �lter in �gure 1 is �xed
at 215 in a 16-bit SM representation scheme, and the graph
in �gure 1(b) represents the minimum weight Hamiltonian
cycle for this �lter, then the DCMI implementation would
use the sequence fc4; c5; c1; c2; c6; c7; c3; c0g, thereby, avoid-
ing the use of a full multiplier for the �rst partial product
column computation. Hence, Hamiltonian cycle computa-
tion is more advantageous.

B. Finding the Hamiltonian Cycle

The Hamiltonian cycle can be solved by employing one of
the known methods of solving the traveling salesman prob-

lem (TSP) [9], [10]. In our work, we use two well-known ap-
proaches to obtain the Hamiltonian cycle for a given graph.
The �rst approach uses a greedy strategy which starts at
a given node and extends the cycle in a depth-�rst search

(DFS) manner. Initially, all nodes are colored white and the
start node is initialized to a given node. Next, it looks at
the white colored neighboring nodes of the given start node
and selects the one which can be reached using the smallest



weight edge (minimum resources). The selected node be-
comes the start node in the next step and is colored black.
This process is repeated till all the nodes are colored black.
Since the graph is complete, this method produces a tour
by visiting each node exactly once. The complexity of this
algorithm is �(jV j + jEj) = �(M2) [9]. This algorithm is
repeated by initializing the start node to each vertex in V .
Hence, the complexity of the greedy approach used in this
work is �(M3).
Another popular approach used for solving the TSP is the

heuristic algorithm due to Lin and Kernighan [10]. The ba-
sic approach in this method is to complete a tour and then
perform a local search to improve the tour. When an im-
provement is found, the algorithm does not necessarily use it
immediately, but continues search hoping to �nd an even
greater improvement. An interested reader is referred to
[10] for a detailed description of the algorithm. In general,
this approach is quite powerful and produces tours which
are within 2% of the optimal tour [10] which is acceptable
accuracy in the DCMI problem.

IV. Second Order DCMI

The approach presented in section III addresses �rst-order
DCMI. Similar to the DCM [6], we can use higher order
di�erential coe�cients to de�ne higher order DCMI. Let
�1
i�1;i represent the �rst order coe�cient di�erence, ci�ci�1,

and �2
i�2;i represent the second order coe�cient di�erence,

(ci � ci�1) � (ci�1 � ci�2) = ci � 2ci�1 + ci�2. Then, it can

be shown [6] that P (n)

i
can be calculated as

P
(n)

i
= ci�1x(n� i) + �1

i�2;i�1x(n� i) + �2
i�2;ix(n� i) (3)

where i = 2; 3; : : : ;M � 1. Hence, using two overhead stor-
age and two addition operations per partial product, we can
implement the second order DCM as explained in detail in
[6]. It can be veri�ed that the second-order DCMI can be
obtained by computing

P
(n)

ki
= cki�1x(n�ki)+ �1

ki�2;ki�1
x(n�ki)+ �2

ki�2;ki
x(n�ki)

(4)
for i = 2; 3; : : :;M �1, where ki's give the ordering sequence
for the second-order DCMI. Hence, the second order DCMI
requires twice as much overhead of add operation similar to
the second order DCM. However, similar to the �rst-order
DCMI, by choosing ck0 to be a power-of-two, we can elim-
inate the full multiplication in the computation of the �rst
column of partial products.

A. Computing Second-Order DCMI Coe�cients

The second-order DCMI problem cannot be solved using
the graph representation presented in section III. This is
because in the second order DCMI, a second-order di�er-
ential coe�cient, �2

i�2;i, requires reference to three coe�-
cients, ci; ci�1 and ci�2. Hence, if we were to use an edge
to express the number of adders required to implement a
multiplier with �2

i;j
(i 6= j) at one input, we would require

counting the number of adders required to implement �2
i;j

in
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Fig. 3. Graph (G and ~G) Representations of an Example Filter with
M = 4.

the given number representation scheme. For a given M -
tap �lter, the second order di�erential coe�cients compris-
ing ci and cj as the end points would be cj � 2ck+ ci, where
k = 0; 1; : : : ;M � 1; k 6= i; k 6= j and, hence, it would require
M � 2 edges between coe�cients ci and cj in the graph.
Therefore, the graph representation of section III needs to
be modi�ed to account for all possible (M � 2) intermediate
nodes between the given two nodes.

Figure 3 shows the modi�ed graph for a 4-tap �lter for
second order DCMI problem. The vertices are represented by
continuous circles. Each pair of coe�cients has M � 2 edges
between them. This is shown using dashed circles which
indicates the intermediate vertex corresponding to the edge.
Note that the dashed circles do not represent vertices, rather,
these illustrate the vertex considered to be the intermediate
vertex in the particular edge. Hence, the modi�ed graph,
~G = (V; ~E), for the second order DCMI can be obtained from
G by insertingM�2 edges between each pair of edges. In the
new graph, jV j = M as in G, and, jEj = M (M�1)(M�2)=2.

Next, we need to formulate rules for traversing ~G. Let the
edge between vertices ci and cj , with intermediate vertex ck

be represented as Ei;k;j 2 ~E, i; j; k = 0; 1; : : : ;M � 1; i 6=
j 6= k. Now, if Ei;k;j is traversed, this implies that we have
selected the coe�cient order ci followed by ck followed by cj.
Hence, ci and ck have already been visited and no subsequent
edge may be visited which has ci or ck as an intermediate or
terminal node. The only exception to this rule is when all
vertices have already been visited and the tour is completed
by one more step. In that case, the �rst node from which
the tour computation was initially started must be visited as
the terminal vertex.

Consider the bold path in �gure 3, for example. This path
shows a valid tour represented by the coe�cient sequence
c0; c1; c2; c3 and contains two edges E0;1;2 and E2;3;0. Then,
after arriving at c2, we cannot visit c1 because it has already
been visited through E0;1;2. Further, c0 can only be visited
as the terminal node in order to complete the tour, but it
cannot be used as an intermediate node. Hence, E2;3;0 is the

only edge which can be visited without violating ~G traversal
rules. Hence, for any k 2 0; 1; : : : ;M � 1, if ck has been
visited, this implies that before the next edge is traversed,
all edges in the graph with ck as the intermediate vertex must
be disallowed. Similarly all edges originating from the vertex
ck must also be disallowed. Next, it is possible to devise a
greedy algorithm which would start at a given initial node
start and constructs a tour which visits all the vertices in
the graph based on the best selection at the given time. At



each step, the algorithm keeps track of three vertices, start,
middle and last. This corresponds to the coe�cient order
cstart; cmiddle; clast. Initially, all nodes are colored white and
a user selected node, initial, is taken as the start node. Next,
a decision is taken at cstart and the best edge Estart;middle;last

is selected such that cmiddle and clast are white nodes. Next,
cmiddle is marked black and it becomes the next start node.
Similarly, clast becomes the new middle node and search
for the next best clast is performed such that the start and
middle nodes are already known and clast must be a white
node other than initial. If no such node can be found, then
the tour is completed by selecting clast = cinitial. In terms
of �gure 3, if the tour shown in bold were to be the best
tour, the edge sequence visited will be E0;1;2; E1;2;3 andE2;3;0

which corresponds to the coe�cient order c0; c1; c2 and c3.
The algorithm is repeated by initializing the start node to
each vertex in V .

B. The Modi�ed LK-Algorithm

The algorithm presented in section IV-A uses a greedy
strategy to �nd a good coe�cient order for second or-
der DCMI. However, we may use better tour computation
schemes such as the LK-algorithm. The basic LK-algorithm
must be modi�ed such that it does not violate the graph
traversal rules outlined in section IV-A. The main idea is to
perform a local search around a given tour to �nd a better
tour. This is done by forming a �-path shown in �gure 4.
Starting at a node v, the algorithm tries improvement on
both its neighboring edges. When a node w is located such
that the cost of �-path shown in �gure 4(b) is smaller than
the cost of the initial tour T , the �-path is converted into an-
other tour which updates the best tour found so far. In the
algorithm shown below, c(T ) represents the cost of a tour T .
Figure 4(c) shows the improved tour obtained using the

�-path. We note that the modi�cation required in this algo-
rithm is to move the intermediate nodes p and r so that no
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Fig. 4. Tour improvement in modi�ed LK-algorithm.
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rules are violated while improving the tour. We note that
this is not the only possible approach. Better solutions may
be obtained by considering the best edge Eu;q;w, where q

may be any node in T other than u and w. The tour may
be completed such that none of the graph traversal rules are
violated on ~G. The approach presented in this paper is the
simplest way to modify the LK-algorithm such that it can
execute on ~G. More sophisticated and better approaches for
tour update will be a subject of subsequent publication. The
modi�ed LK-algorithm is shown below.

1. Initially, compute the best tour, T , using the greedy
approach. Let B = T .

2. (Edge Scan) For each vertex v in ~G and for each ver-
tex uv incident with v in turn (note that there is an
intermediate node on these edges), perform steps 3-6

3. Let u0 = u. Remove edge u0v and �nd another edge
u0w0, w0 6= v, such that it has smaller cost than that
of the removed edge. This yields a �-path. Set i=0.
If no such w0 can be found, break the loop and go to
step 2 and try the next node/edge.

4. Construct a tour from the �-path. Call it T (i). If
c(T (i)) < c(B), let B = T (i).

5. (Build-nest �-path) Let ui+1 be the other neighbor of
wi. If ui+1wi was already added to a �-path in this
iteration, go to step 5. Otherwise, �nd a wi+1 such
that ui+1wi+1 is not in T and the resulting � path has
a cost smaller than c(T ). If no such node exists, go to
Step 6, otherwise, set i=i+1 and goto Step 4.

6. If a tour is found with cost less than c(T ), replace T
with this tour. Return to Step 3 if untested node/edge
remain.

V. Numerical Results

We now present some numerical results to demonstrate
the power and potential of the proposed approaches. Both
SM and SPT number representations for implementing dif-
ferential coe�cients are considered. Table I shows a rel-
ative comparison1 of �lter implementations obtained using
the proposed DCMI approach when the coe�cients are ex-
pressed with N = 16 bit SM and SPT representations2 . fs
and fp represents normalized passband and stopband fre-
quencies, respectively and Rp and Rs represent the passband
ripple and stopband attenuation, respectively. None of the
solutions presented in this paper required more than a few
minutes of CPU time on a Sun Ultra 30 workstation. A
close observation of the table reveal some interesting results.
The di�erence in the solutions using the greedy strategy and
the LK-algorithm are negligible. Hence, near-optimal so-
lutions are obtainable using the greedy strategy alone, as
LK-algorithm is known to yield a tour which is very close
to the optimal solution [10]. Further, second-order DCMI
does not o�er any signi�cant advantage as compared to the
�rst-order DCMI. In many cases, it provides a slightly worse

1The entries containing \|" could not be computed due to time
constraints and will be provided in the �nal version of the paper.
2Note that by \[Symmetric]" in the speci�cation of �lter F in the

tables, we mean that it is symmetric about f = 0:5.
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solution. Hence, one may only consider higher-order DCMI if
one were to investigate a hybrid solution which combines �rst
and second-order solutions. We also note that the SPT repre-
sentation o�ers signi�cant advantage of SM representation in
many cases. Finally, we note that the number of adders per
coe�cient required in DCMI implementation is less than 2,
in general, for SPT representation. This compares favorably
to the published results of multiplierless �lters in literature.
Figures 5 and 6 show a relative comparison of the average

number of adders per di�erential coe�cient obtained using
the �rst-order DCMI solutions for SM and SPT number rep-
resentations, respectively. In the table, BW , EP , PM and
LS abbreviate Butter-worth, elliptic, Parks-McClellan and
least squares �lters, respectively. We compare the number
of adders per di�erential coe�cient for 8, 16 and 24 bit co-
e�cients. The example �lters considered were 28-tap PM,
41-tap LS, 119-tap PM, 172-tap LS, 131-tap PM, 170-tap
LS, 151-tap PM, 217-tap LS, respectively, with speci�ca-
tions shown in table I. These results were obtained using the
greedy strategy for �rst-order DCMI. We note that SPT im-
plementations require less adders than SM implementations
for all word-lengths. We also observe a linear relationship
between the average number of adders per di�erential coef-
�cient with the word-length. This relationship is exhibited
in all the cases considered. Further, the average number of
adders per di�erential coe�cient reduces, in general, as the
length of the �lter increases. We note that traditional ap-
proaches of �nding multiplierless implementations for word-
lengths > 16 would take enormous computational e�ort and
may not yield good solutions. In contrast, our technique
takes polynomial time, independent of the word-length and
the number representation scheme, and can be used to obtain
good DCMI solutions for large �lters within a few minutes
of CPU time.

VI. Conclusion

We presented a novel approach which can be used to ob-
tain design and synthesize multiplierless implementations of
FIR digital �lters. The basic idea presented in this technique
is to remove computational redundancy by reordering �lter
coe�cients such that an implementation based on di�erential
coe�cients requires only a few adders. This approach does
not compromise the frequency response characteristics of the
given �lter. We presented a graph representation model for
the �rst and second order DCMI approaches in which vertices

represent coe�cients and edges represent the corresponding
resources required in computation. The optimal solution to
the coe�cient reordering problem is the Hamiltonian path

in the problem graph. We used two approaches to �nd the
smallest weight Hamiltonian cycle; a greedy approach, and,
the heuristic algorithm proposed by Lin and Kernighan. The
greedy approach was shown to yield solutions that are very
close to the ones obtained using the LK-algorithm. The
power and potential of this approach was demonstrated by
presenting results for �lters with length up to > 300. In
general, for implementations using 16-bit SPT number rep-
resentation and �rst order di�erential coe�cients, the total
number of adders required per coe�cient is less than 2.
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M Total DCMI-1 DCMI-2

Type Adds Greedy LK Greedy LK

A: Low-pass (fp = 0:25; fs = 0:3;Rp = 3 dB;Rs = �50 dB)

BW 20 94 (76) 45 (35) 44 (35) 38 (33) 38 (33)

EP 6 40 (28) 19 (17) 19 (17) 13 (11) 13 (11)

PM 28 140 (118) 63 (53) 62 (53) 62 (51) 57 (49)

LS 41 206 (178) 74 (66) 72 (66) 74 (66) 70 (61)

B: Low-pass (fp = 0:27; fs = 0:2875; Rp = 2 dB;Rs = �50 dB)

BW 71 220 (158) 76 ( 68) 75 (67) 78 ( 64) 70 (62)

Elliptic 8 52 (40) 25 ( 22) 25 (22) 18 ( 15) 18 (15)

PM 119 578 (500) 151 (134) 145 (130) 154 (140) 153 (138)

LS 172 734 (606) 160 (146) 156 (142) 177 (165) 175 (165)

C: Low-pass (fp = 0:27; fs = 0:29;Rp = 2 dB;Rs = �100 dB)

PM 189 850 (694) 183 (176) 179 (168) 198 (185) 198 (181)

LS 326 1054 (874) 202 (190) 200 (179) 228 (215) 227 (209)

D: Low-pass (fp = 0:25; fs = 0:2625;Rp = 2 dB;Rs = �73 dB

PM 165 774 (598) 173 (157) 170 (155) 185 (164) 178 (159)

LS 236 912 (752) 187 (172) 185 (170) 216 (194) 212 (193)

E: Notch (fp1 = 0:3; fs1 = 0:32; fs2 = 0:68; fp2 = :7)

PM 131 390 (280) 102 ( 74) 101 ( 72) 113 ( 96) 111 (91 )

LS 170 880 (740) 202 (184) 196 (182) 217 (195) 215 (193)

F: Notch [Symmetric] (fp1 = 0:2; fs1 = 0:22; fs2 = 0:38; fp2 = :4)

PM 151 428 (356) 111 (104) 110 (103) 127 (113) 126 (111)

LS 217 494 (392) 129 (111) 125 (109) 145 (126) 143 (123)

TABLE I

Total Number of Adders in Multipliers Obtained Using DCMI

for minimally scaled 16� bit SM and SPT Number

Representations, Respectively for Various Example Filters.


	Main Page
	ISSS'99
	Front Matter
	Table of Contents
	Session Index
	Author Index


