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Abstract
We present a novel input pattern generator for

dynamic power network simulation. The obtained pattern
successfully identify critical voltage drop areas for a set o
industrial designs, which are difficult to be found using
functional vectors. The search engine of the pattern gener
ator for worst-case IR voltage drop is based on the multi
objective genetic algorithm. To achieve high coverage fo
critical voltage drop cells, we propose to model the searc
criteria into the maximum weighted matching of a bipartite
graph, and guide the search direction according to the
matching results. Experimental results show that, com
pared with the other approaches, our patterns give a highe
coverage of critical voltage drop cells.

1. Introduction
For designers of today’s high performance and com

plexity ICs, the accurate and efficient analysis for power n
voltage drop is very important. Excessive voltage dro
increases the transistor and gate delays, which results
unpredictable performance or performance failing to me
original design goal. To identify this problem, dynamic sim
ulation is needed for providing the profile of the voltag
drop. Therefore, generating high-quality input patterns f
simulation of the voltage drops has become a necessary
in the entire design cycle.

Recently, several Genetic-Algorithm-based (GA-base
techniques have been proposed to generate the input patt
for identifying the maximum instantaneous current [4], ma
imum power dissipation [1], and maximum voltage drop [5
Through iteratively generating the new test patterns for si
ulation based on the “good” property of the current pattern
they produce tight lower bounds for these problems. In su
a way, however, certain functional blocks whose current h
little contribution to the maximum total current or maximum
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voltage drop at theVdd pin of the chip maynot be actively

exercised during the pattern generation process. Using p
terns derived in such ways may not identify the voltage dr
problems in these blocks. On the other hand, if the bloc
are targeted one by one, the overall process could be
time consuming.

In this paper, we address the problem of generating
set of patterns that would cause high voltage drops at
Vdd ports of all the cells whose worst-case drop cou

exceed a given threshold. This problem is referred to as
critical voltage drop problem. We propose a heuristic proc
dure for this problem and attempt to maximize the covera
of these cells. Our approach extends the technique of [4]
generate input patterns for identifying the voltage dro
problem of all potential problematic blocks. We propose
induce the maximum current drawn fromeach individual
block using GA. Without losing the functional correlation
between different blocks, we transform the single-objecti
Genetic Algorithm to satisfy correlated multi-objective
simultaneously, where each objective denotes the maxim
current associated with a specific block. To achieve this,
model the search criteria in GA as the maximum weight
matching of a bipartite graph, which can be efficientl
solved by the Hungarian method [7].

We have implemented the proposed algorithm as
input pattern generator, namedVIP. The obtained patterns,
which will cause high voltage drops for all potential prob
lematic blocks, can be used by any power network simula
to analyze the critical voltage drop.VIP has been tested on a
set of benchmarks with completed physical designs, whi
is comprised of twelve large industrial designs with a wid
variety of applications such as microprocessors, DSP p
cessors, and large memory banks. Experimental res
show that, compared with the other approaches, this no
technique identifies the voltage drop sensitive portions
the designs with high accuracy in terms of identified critic
cells.

The rest of this paper is organized as follows. In Se
tion 2, we give an introduction to Genetic-Algorithm-base
approach described in [4]. Section 3 describes the details
our approach. The experimental results are shown in S
tion 4. Section 5 concludes the paper.
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2. The Genetic-Algorithm-based Technique for Generat-
ing Input Patterns Causing Maximum Instantaneous
Current

Genetic Algorithm (GA) [3] is a robust search algo-
rithm which has been applied to solve many problems effi-
ciently. The key idea is that, if solutions are represented by
strings, the string associated with the optimal solution can
eventually be found through “evolution-like” string opera-
tions. The search engine is an iterative process which
employs three operations: selection, crossover, and muta-
tion. The objective of these operations is to remove “poor”
strings and produce new strings which is comprised of parts
of “healthy” strings.

To use GA, the elements in the solution space need to
be coded into finite length strings. Each string has an associ-
ated fitness which depends on the application. An initial
population needs to be specified as the input of GA. The ini-
tial population containsN random strings of lengthL, where
N and L are parameters used in GA. Generation of a new
population is found by (1) evaluating the fitness for each
string, (2) selecting two individuals from the current popu-
lation, (3) crossing the two selected strings to generate two
child-strings from two parent-strings, and (4) mutating the
elements of the new strings with a given mutation probabil-
ity. The selection process is biased towards individuals with
higher fitness values. The next population is generated
based on the current population using the same procedure.
During the string generation process, the strings with the
highest fitness would be recorded.

Under this scenario, the technique in [4] transforms the
solution space of two-vector sequences causing maximum
instantaneous current into the GA search domain, and drive
the search engine to find the solution. In the transformation,
each input sequence is coded into a string, and the associ-
ated peak current corresponds to the fitness of this string.
According to this, GA starts with a population of strings and
iteratively generates successive population with likely
higher fitness. The procedure is shown in Figure 1. In this
approach, the initial set can be either generated randomly or
specified by users. To ensure high accuracy, a transistor-
level power/current simulator PowerMill [9] is used to sim-
ulate each sequence and report the peak current as the fit-
ness. The maximum instantaneous current is updated based
on the fitness for each iteration. The selection and crossover
schema used are tournament selection without replacement
[6] and one-point crossover, respectively. The process con-
tinues until no further improvement is achieved or the num-
ber of iterations reaches a pre-defined value.

3. Critical Voltage Drop Identification
In this section we will define the critical voltage drop

problem and propose a methodology for solving this prob-
lem. The term, an input pattern is regards to as a two-vector
sequence,V = (v1,v2), where the first vectorv1 is used to ini-

tialize the designs, andv2 causes the switching in the inter-
nal circuitry. Without losing generality, in the paper, a cell i
referred to a logic gate.
Definition 1 A cell is calleda critical voltage drop cellif
there exists at least one input pattern which causes hi
voltage drop at the cell’s Vdd port whose drop value exceeds

a given threshold and the duration is longer than the use
specified value.

Figure 2 shows the voltage waveform of theVdd port of
a cell after applying an input pattern. During the perio
from t1 to t2, the voltage level is less than the threshold an
this time period is longer than the specified one. This cell
thus a critical voltage drop cell. Note that there may exi
multiple input patterns which could identify the same crit
cal voltage drop cell. On the other hand, an input patte
might be capable of identifying multiple critical voltage
drop cells.
Definition 2 Thecritical voltage drop setof an input pat-
tern is the set of the critical voltage cells identified by th
pattern.

There is one corresponding critical voltage drop set f
each input pattern. The union of the critical voltage dro
sets of all input patterns represents all the critical volta
drop cells in a design.
Definition 3 Thecritical voltage drop problemis defined as
the problem of identifying all critical voltage drop cells in a
design.

One way to solve this problem would be to exhau

Initial population of input patterns

Perform PowerMill simulation and report
the peak current as the fitness values

Generate new population based on the current

Update the maximum peak current

population and fitness using genetic operations

# of trial sequences
> limit?

Maximum instantaneous current

Figure 1: GA-based approach for maximum

yes

no

                instantaneous current.
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tively simulate all possible patterns, identify their critical
voltage drop sets from simulation results, and obtain the
union of these sets. For a circuit withn primary inputs, it

would require simulation of4n patterns. This is impractical
even for circuits with a small number of primary inputs.

In this paper we propose to find a small set of input pat-
terns such that the union of their critical voltage drop sets
would be identical to the union of the sets of all input pat-
terns. We apply the Genetic-Algorithm-based technique
proposed in [4] (introduced in Section 2) to generate such
input patterns. The key issue here is the selection of a suit-
able fitness function for GA as the quality of the input pat-
terns generated by Genetic Algorithm is strongly dependent
on the fitness function used. The voltage drop computation
requires accurate simulation of the power supply network
together with the transistor netlist that drives them. If we
use voltage drop as fitness, this comprehensive simulation
needs to be performed once for each pattern. In such a way,
the overall GA-based procedure will be prohibitively slow
for most of today’s large designs with million transistors
and power netRCs. Therefore, we need to find an easy-to-
compute metric as the fitness in which high fitness corre-
sponds to the high coverage of critical voltage drop cells.

Peak current of a design is the maximum current which
the design draws in response to an input pattern. This cur-
rent distributes through the power network to transistors and
capacitances. Higher peak current tends to cause higher
voltage drop because more current flows in the resistive net-
work. Similarly, we can define the peak current of a func-
tional block as the maximum current the block draws in
response to an input pattern. If we use the peak current of an
entire design as fitness, the generated patterns may not acti-
vate all the critical voltage drop cells. This is because for
different functional blocks in a design, the times that the
peak current occurs may not coincide with each other. If
that’s the case, maximizing peak current of the whole design

only results in exhibiting the worse cases for cells in som
critical blocks, not all critical cells of the design. Consider
3-block design in Figure 3(a). The current waveform wit
respect to an input pattern for the entire design and ea
block is shown in Figure 3(b). The peak current of the enti
design occurs at timet1. Note that the peak current of block

C does not coincide with the entire design; on the contra
the current drawn by blockC at timet1 is much lower than

the one from the other blocks. For this case, peak current
block C cannot be maximized by the GA using entir
design’ peak current as the fitness.

Motivated by this, we propose to use the peak curre
of each individual block as a major factor of fitness. In th
meantime, we also include the current of the entire desi
into fitness. This is because current from other blocks a
contributes to the voltage drop of the target block. We pe
form transistor-level simulation to extract the peak curre
based on the simulation results. We use an approximate
efficient approach proposed in [11][1] to transistor-lev
simulation. During the transistor-level simulation, powe
supply network voltage drops are ignored to speed up
simulation. In other words, we simulate only the transist
netlist and assume constant voltages at power buses du
the simulation. The model for this speed-up approach
shown in Figure 4. Note that the VDD current obtained by

this approach would be higher than the one obtained by s
ulating both transistor and power network netlists. This
because the voltage drop on power network will cause low
VDD current compared to the one without voltage drop. It

important to note that this approach is used only to gener

3.3 V (Vdd)

3.0 V
threshold

duration

0.5 ns

t1 t2

time duration threshold: 0.4 ns
 voltage value threshold: 3.0 V

Figure 2: The voltage waveform for a cell’s Vdd
port w.r.t. an input pattern.

Figure 3: The current waveform for an entire design
        and each individual block w.r.t. an input patter

input
pattern

(a)

(b)
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the input patterns. After the patterns are generated, we sim-
ulate both transistor and power network netlists to these pat-
terns to identify critical voltage drop cells based on the
simulation results.

We define the voltage drop factor of an input patternv
to blockm as follows:

voltage_drop_factor (v, m) = peak_current (v, m) +α *
current (v, t) (1)

wherepeak_current (v, m)denotes the peak current of block
m with respect to input patternv. The argumentt in the term
current (v, t)represents the time whenpeak_current (v, m)
occurs.Current (v, t) is the current of the entire design at
time t to v. The correlation factorα is defined as the recipro-
cal of the number of blocks.

We use this voltage drop factor as a measure of voltage
drop. The objective, for each block, is to find the input pat-
tern with the maximum factor value. Instead of performing
GA one by one, we propose a novel approach, which uti-
lizes the “group search” feature of GA, to maximize multi-
objectives within a single GA run. The method proceeds as
follows. To make GA maximization process covering each
block, we set the population size as the number of blocks,
and perform one-to-one mapping between input patterns
and blocks. For each pattern, the fitness is referred to as the
corresponding voltage drop factor of the mapped block. We
propose to find the mapping with the maximum summation
of the fitness, and then use the fitness to generate the new
population of input patterns.

Consider an example shown in Figure 5 with four input

patterns: 1, 2, 3, and 4, and four blocks:a, b, c,andd. The
weight of edgeVij between patterni and blockj is the volt-
age drop factor. Suppose the mapping (denoted by the th
lines) have the maximum summation. Then the fitness

patterns 1, 2, 3, and 4 areV1c, V2a, V3d, andV4b, respec-
tively. The mapping is referred to as the maximum weighte
matching of a bipartite graph, which can be efficientl
solved by the Hungarian method [7].

For each iteration, we update the maximum voltag
drop factor and the associated input pattern with respec
each block. The genetic operation schema and the termi
tion condition of the process are the same as used in [
Finally, we perform the power network simulation to thes
recorded input patterns. The overall flow of our technique
shown in Figure 6.

4. Experimental Results
We perform the following experiment to validate th

effectiveness of theVIP. For small benchmark circuits, we
simulated the power network and the transistor netlist usi
HSPICE for all possible input patterns and then report
the critical voltage drop cells. These cells are used to co
pare with the ones derived by simulating only the patter
which are generated byVIP and [4], which uses to the peak
current of the entire designs as the fitness of each patte
Due to the large number of simulation runs needed for c
cuits with a large number of primary inputs, this validatio
experiment is only applied to circuits with a small numbe
of inputs. Before performing the simulation, we partitio
each circuit into blocks based on the sizes and topology
circuits. The simulation are performed for three sets of inp
patterns: (1) patterns generated byVIP (the number is the
same as the number of blocks for each circuit), (2) patter
generated by [4] (the number is the same as theVIP uses),
and (3) all possible input patterns.Table 1 shows the num

Figure 4: The model for transistor-level simulation
                speed-up approach.

assuming no voltage drop

VDD network
VDD1 VDD4

VDD2 VDD3

GND1

GND2 GND3

GND4

assuming no voltage drop

GND network

input patterns blocks

1

2

3

4

a

b

c

d

V1c

V2a

V3d

V4b

Figure 5: The fitness determination for input patterns.
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of critical voltage drop cells identified by the three sets of
patterns for the 7 small MCNC91 benchmark circuits. All
the experimental results are based on a 0.25µm with supply
voltage 2.5V library.

The number of critical voltage drop cells and normal-
ized values by (1)VIP, (2) [4], and (3) all patterns are shown
in Columns 2-3, 4-5, and 6-7, respectively. All normalized
values are with respect to the values derived by all patterns.
Column 8 gives the number of blocks for each circuit where
this number is the same as the number of simulated patterns
used byVIP and [4]. Columns 9 and 10 show the specified
threshold voltage drop and threshold time period. The
experimental results show that, on average, four patterns
generated byVIP identify 96% of the critical voltage drop
cells.

VIP is also tested to a set of industrial designs with a
wide range of applications such as CPUs, DSP processors,
and large memory banks. The number of transistors ranges
from 61K to 1.14M, and the technology from 0.25µ to 0.8µ.

An industrialRC extraction tool Arcadia [8] is used based
on the layout database to extract the power/ground netRCs,
and generate the power/ground netlists. PowerMill [9]
used as the embedded simulator to report the current for
ness computation. Table 2 shows the design statistics. C
umns 2, 3, and 4 show the number of primary input
process technology, and power supply voltage. The numb
of transistors and power netRCsare shown in Columns 5
and 6, respectively. Columns 7 and 8 show the specifi
threshold voltage drop and time period.

A power network simulator RailMill [10] is used to
simulate the designs by the obtained input patterns. To ev
uate the quality of the generated patterns, we compare
results with those produced by using the same simulator
applying two different pattern sets: (1) generated by [4], (
functional verification vectors given by the designers. Tab
3 shows the comparison for the 12 tested industrial desig

The numbers of the critical voltage drop cells found by (1

Perform PowerMill simulation on transistor netlist to

Perform simulation on transistor and power network netlists

Compute the voltage drop factor for each pattern

# of trial patterns
> limit?

yes

no

obtain the peak current for each block and the entire design

Build and solve the bipartite weighted graph to

Assign the fitness for each pattern based on
the matching results

Update the maximum voltage drop factor
and the associated pattern for each block

Initial population of input patterns

Generate new population based on the current

Critical voltage drop cells

population and fitness using genetic operations

obtain the maximum matching

(randomly generated or specified by users)

Figure 6: The overall flow of our technique for critical
              voltage drop problem.

Table 1: The comparison of critical voltage drop cells
for three sets of input patterns.

Ckt.

# of the identified critical voltage drop cells

#. of
blocks

threshol
d

voltage
drop
(mV)

threshol
d time
period
(ns)

VIP [4]
all possible

patterns

#. norm. #. norm. #. norm.

cm42a 4 1.00 4 1.00 4 1.00 3 5.6 0.02

cm82a 5 1.00 4 0.80 5 1.00 3 4.1 0.02

cm85a 6 0.86 2 0.29 7 1.00 3 9.9 0.02

cm138a 5 1.00 4 0.80 5 1.00 4 4.7 0.02

cmb 0 1.00 0 1.00 0 1.00 4 5.7 0.02

cu 1 1.00 1 1.00 1 1.00 3 9.7 0.02

vda 18 0.86 11 0.52 21 1.00 8 53.1 0.04

Ave. - 0.96 - 0.77 - 1.00 4 - -

Table 2: Design statistics.

Designs # of PIs
technolo
gy (µ)

supply
voltage

(V)

#. of
transistors

#. of
power

net’ RCs

threshold

voltage
drop (V)

threshold

time
period
(ns)

1 35 0.25 2.5 1.0M 898K 0.09 0.03

2 194 0.28 2.2 27.9K 83K 0.10 0.04

3 112 0.5 3.3 1.01M 1.81M 0.60 0.06

4 165 0.5 3.3 472K 937K 0.45 0.05

5 108 0.5 3.3 508K 602K 0.55 0.06

6 109 0.6 3.3 1.14M 1.19M 0.50 0.03

7 135 0.8 4.0 628K 590K 1.05 0.1

8 97 0.8 4.0 329K 863K 1.50 0.15

9 112 0.8 5.0 208K 375K 1.25 0.07

10 175 0.8 5.0 62K 310K 0.80 0.08

11 14 1.0 5.0 61K 52K 0.75 0.1

12 98 1.0 5.0 73K 88.5K 0.10 0.1
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VIP, (2) the technique of [4], and (3) functional vectors are
shown in Columns 2, 3, and 4, respectively. Columns 5-7
show the level of the obtained maximum voltage drop. The
total number of patterns used for running both PowerMill
and RailMill is shown in Columns 8-10. Table 4 gives the
CPU time for each technique. The CPU time consumed by
VIP for (1) solving the bipartite graph for the maximum
weight matching, (2) PowerMill simulation, (3) RailMill
simulation is shown in Columns 2, 3, and 4, respectively.
Column 5 gives the overall CPU timeVIP consumes. The
CPU time for technique [4] is shown in Columns 6-8. Col-
umn 9 gives the time for functional vectors used by RailMill
simulation.

For designs D3, D6, and D8,VIP identifies a large

number of critical voltage drop cells and none of them ca
be found by the other two approaches. For designs D2 a
D12, no critical voltage drop appears and these two desig
qualify the voltage drop test. For all the other designs, t
number of critical cells found byVIP is much higher than
those by the others.VIP also obtains higher or equal maxi-
mum voltage drop compared to those by [4] for 11 out
the 12 tested designs. For design D4,VIP obtains lower
maximum voltage drop than [4]. However, the number
critical nodes found is 2.6 times higher. For the large
design D6, simulating the functional vectors needs 68
hours, andVIP needs only 7.0 hours.

5. Conclusion
We propose a robust input pattern generator for verif

ing reliability of deep submicron designs. Experiment
results show that the use of the generated input patterns s
cessfully identify cells that encounter critical voltage drop
which cannot be found by other sources of vectors. Th
generator can be included in the design cycle for accur
reliability analysis.
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Table 3: The comparison for voltage drop analysis.

Design
s

# of critical cells max. voltage drop (V) #. of patterns

VIP [4] func.
vec.

VIP [4] func.
vec.

VIP [4] func.
vec.

D1 1976 1300 525 0.09 0.09 0.09 168 152 323

D2 0 0 0 0.05 0.05 0.02 1800 1200 720

D3 1179 0 0 0.70 0.55 0.57 108 180 551

D4 3953 1520 119 0.47 0.56 0.45 360 250 1400

D5 344 285 0 0.60 0.58 0.53 696 400 2000

D6 1322 0 0 0.62 0.48 0.35 120 140 500

D7 816 700 18 1.10 1.10 1.05 240 360 1431

D8 2059 0 0 1.74 1.40 1.05 130 110 488

D9 1191 760 58 1.30 1.30 1.26 252 200 160

D10 2280 1170 0 0.86 0.84 0.34 840 680 823

D11 64 52 35 0.90 0.90 0.90 100 120 983

D12 0 0 0 0.04 0.04 0.04 228 160 650

Ave. 1265 482 63 - - - 420 329 836

Table 4: The comparison of CPU time of three
techniques for voltage drop analysis.

Designs
CPU time (min.)

VIP [4] func.
vec.solving

graph
Power-

Mill
RailM-

ill
total Power-

Mill
RailM-

ill
total

D1 5 174 121 300 157 129 286 554

D2 3 308 5 316 204 6 210 17

D3 6 391 153 550 414 136 550 830

D4 8 380 187 575 410 174 584 1612

D5 6 278 54 338 163 51 214 1784

D6 5 313 100 418 365 90 455 4096

D7 5 210 88 303 205 90 295 443

D8 4 254 106 364 200 110 310 389

D9 4 106 10 120 89 11 100 924

D10 5 153 178 336 102 170 272 840

D11 3 72 4 79 91 4 95 17

D12 3 94 9 106 68 10 78 207

Ave. 5 228 85 317 206 82 288 976
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