
Copyright Protection of Designs Based on Multi Source IPs

Edoardo Charbon and Ilhami Torunoglu
Cadence Design Systems, San Jose, CA 95134

Abstract

This paper addresses the copyright protection problem of
integrated circuits designed with blocks which are origi-
nated from multiple design sources. The process consists
of two phases. First, a compact signature is generated
from every block independently and made public. Utiliz-
ing such signatures, a design can be decomposed into its
original building blocks, regardless of multiple hierarchies.
Then, a map of all the blocks can be built, thus allowing
to reconstruct the original copyright dependencies. The
proposed methodology can be used by foundries to ver-
ify that designs submitted for fabrication contain blocks
traceable to a legal source of intellectual property. The
verification process is also useful to intellectual property
providers and integrators, as it reduces the likelihood of
infringement, thus ultimately minimizing the risk of liti-
gation.

1 Introduction

The revolution introduced by new paradigms based on
massive design reuse and virtual block integration will
touch most aspects of current design flows. One of the
most important among emerging issues involves Intellec-
tual Property (IP) infringement. IP providers and inte-
grators will be significantly exposed to this form of in-
dustrial espionage. Nonetheless other sections of this new
industry will be at a comparable, if not higher, risk. One
of such industries is that of silicon foundries. The rea-
son for such a high degree of liability exposure is due to
the fact that foundries produce the first tangible proof of
potential infringement embedded in fabricated chips.

Currently, integrators must provide the foundry with a
complete description of all the virtual components present
in a design prior to submitting it for fabrication. Copy-
right fees due to IP providers are generally paid for at the
source, i.e. by the integrator. In some cases a design may
consist of virtual components for which a royalty agree-
ment was not settled. By agreeing to fabricate the design,
a foundry is liable of infringement and could potentially
incur in costly legal expenses to settle disputes with the
IP provider. For these reasons, detecting and tracking
espionage prior to fabrication could be a cheaper and far
more efficient alternative. Furthermore such a detection
method, if advertised, may prove to be a powerful deter-

rent to discourage potential theft.
This paper proposes a novel technique based on a two

phase process. First, from the IP a string of symbols,
or signature, is generated and made public. This phase is
called registration. Later, when such IP will be integrated
into a larger design, it will be possible to extract its signa-
ture, hence revealing the presence of the IP in the design.
The process of extracting all embedded designs by means
of their signatures is known as detection. The first phase
should be implemented by all the IP providers who wish
to protect their copyrights. The second phase should be
a prerogative of foundries to ensure that no infringed cir-
cuits are present in any given tape-out. Integrators may
also register IP signatures, so as to ensure protection of
their IP contributions to the design being fabricated.

Figure 1 shows the approach with the registration and
detection phases. Note that even though a signature can
be generated from any given design, it does not contain
sufficient information to allow one to reverse engineer the
original design. Thus, the IP signature bank could be
maintained by a third party so as to ensure impartiality
in case of litigation. For each tape-out the foundry can
construct a map of all the IPs present in the design and
compare it with the report which was provided by the
integrator. Hierarchical designs will contain multiple sig-
natures, which can be extracted in form of information
trees, thus allowing tracing infringement to the source, as
suggested in [1].

Unlike other approaches found in the literature [1, 2,
3, 4], the proposed scheme does not require any modifi-
cation of the original designs and it is used merely as a
verification methodology. Identical signatures are how-
ever extremely unlikely to be achieved in significantly dif-
ferent designs. The odds that such an event occurs are

IP1

Foundry

IP1...
IP2...
IP3...

IP2

IP3 IP*

IP*

Detection

IP Provider

IP Provider

IP Provider

Integrator Registration

IP1

IP2

IP3

IP*

Registration

Registration

Registration

Signature
Bank

Figure 1: Registration and detection

0-7803-5832-X /99/$10.00 ©1999 IEEE.

denominated as Pu. Non-extensive tampering deviates
the original signature in predictable patterns, thus allow-
ing for simple error-correction techniques to be applied.
Nonetheless, the probability Pm that a signature coincides
with one of another design is non-zero. Signatures need
be generated so as to keep these two probabilities low,
typically less than 10−10.

The paper is organized as follows. The signature gen-
eration techniques are outlined in Section 2. Section 3
presents the scheme utilized in the detection phase. Ex-
periments showing the suitability of the approach are dis-
cussed in Section 4.

2 Generating Signatures

Let Σ∗ be the set of all strings in a finite alphabet Σ, e.g.
Σ = {0, 1}. Assume there exists a compact representation
or signature for a given design at some abstraction level.
Let s ∈ S be one of all possible physical implementations
of the design, let σs be its signature. Define signature
mapping S → Σ∗ : M as the mapping of a subset of
all the layout features onto a signature σs = M(s). Let
us define S → S : F as a mapping which transforms
implementation s onto a new implementation s′ = F(s).
If σ′s = σs, then F(s) is said to be signature-invariant.

Let us now describe the particular mapping used in this
paper to generate design signatures. Let us assume that
the granularity of the circuit is given. As a result, the set
of fundamental components, such as transistors or univer-
sal standard cells, is determined. Call such components
atomic blocks and Ω their set. In s, every component
ω ∈ Ω may have multiple instantiations.

A layout implementation defines a set of all relative po-
sitions and orientations of every component instantiation
in the circuit. Interconnect can be represented in a similar
fashion where components are replaced by pins, Steiner
points, and bends. A composition, containing the details
of all relative positions and orientations, is called topology.
Let us now use the layout’s atomic blocks, pins, Steiner
points, and interconnect bends, which are in turn repre-
sented by a set of primitives called bubbles, as proposed in
[5]. A bubble is a point associated with a given layer. Let
B be the set of all bubbles in the design. Every atomic
block is mapped onto m distinct bubbles according to a
specific mapping Ω → B : B, where m is a finite natu-
ral number. For simplicity, but without loss of generality,
suppose that m is constant over Ω. Note that |B| grows
linearly with the number of atomic blocks and pins.

Paths can be represented by a continuous curve of finite
length which begins and ends in a bubble. Such curve is
known as rough routing [6]. The design rules of a given
technology can be seen as minimum spacing constraints
between the perimeters of bubbles and paths. Alterna-
tively, after proper scaling of the design rules, one can
consider bubbles as points, and paths as curves of zero-

1

2

3

4

5

6

7

8 9

0

(a) (b)

Figure 2: Bubbles and rough routings

thickness. For simplicity we have adopted this conven-
tion. Let topological routing be an equivalence class of
rough routings connecting its pins. Two rough routings
of a wire are equivalent when one can be obtained from
the other by continuous deformation with no violations
of any of the scaled design rules. Assume that every pair
of bubbles is connected by an edge, then if a topologi-
cal routing crosses such an edge, it is said to intersect
topologically the edge.

If every region in the layout is partitioned in sim-
ply connected regions, each containing no bubbles, then
such regions are called simple regions. Figure 2(a) shows
an interconnect and some obstacles, while Figure 2(b)
depicts the corresponding partition into simple regions.
The rough routing connecting bubble 4 to 0 can be
represented in terms of the sequence of all topological
intersections. In this case such a sequence is: σ =
(23,13,37,36,38,58,59,50). Note that symbol Xi Xj rep-
resents the topological intersection of the rough routing
with the edge spanned by bubbles Xi and Xj . Define E`
as the set of all simple regions in a given layer ` and a
planar subset T` ⊂ E` as one in which distinct edges do
not intersect or they intersect at only one of the vertices.
In addition, if T` has a convex boundary or convex hull, it
is said to be maximally planar. Under these conditions,
T` is called triangulation [7]. Let us now assume that an
arbitrary triangulation T` is in place for each layer. Let
B` be the set of all the bubbles associated with T`. For
convenience, although not needed, let us set four bubbles
at the extremities of the union of all the layers, so as to
encompass every layer.

Sequence σ is a non-unique representation of all the
rough routings associated with the class of this topological
routing. Hence, to make such representation resilient to
minor modifications, it is necessary to convert it onto a
canonical form. This is done simply removing adjacent
identical edges, which form so-called loops. The unique
canonical form of an arbitrary topological routing τ is
called topological signature στ . The complexity of loop
removal is higher when it involves a large number of rough

(a) (b)

Figure 3: (a) Layout; (b) Associated triangulation

routings. The process in this case must be recursively
performed.

Triangulations are not unique. However if the method
used to obtain a certain triangulation is an invariant,
then the signature is also invariant for a certain design.
Figure 3(a) for example shows a simple layout based on
standard cells organized in two rows with the correspond-
ing interconnect. Figure 3(b) shows a possible triangu-
lation of the associated topology. The computational
scheme and circuit topology determine the final result [7].

The uniqueness of a signature is defined by probabil-
ity Pu, its robustness by Pm. Topological intersections
are unique for a given design and triangulation, while
a triangulation is determined by the utilized algorithm
and by set B. For each layer the number of possible tri-
angulations grows factorially as (|B`| − 1)!/3!, hence it
is reasonable to choose a layer `∗ which maximizes |B`|
over all layers. By a conservative estimate, NT , the to-
tal number of possible triangulations over all layers, is
then NT ≥ (|B`∗ | − 1)!/3!. Suppose now that all N`∗
topological routings in `∗ consist of Ni i-terminal nets,
i = 2, . . . , Nmax. Then, all N`∗ topological routings can
be represented in terms of N ′ two-terminal sub-routings,
with N ′ =

∑Nmax
i=2 Ni (i−1). As a consequence, the num-

ber of possible topological signatures can be computed

as Nσ ≥ NT (N ′
2), hence the estimate of Pu becomes

Pu ≤ 1
Nσ

. For example, suppose that for a given design
|B`∗ | = 20, N`∗ = 10, N2 = 3, N3 = 5, N4 = 2. Then,
Nσ ≥ (20−1)!171/3! = 3.5×1018, hence Pu ≤ 2.9×10−19.

In the absence of tampering Pm = 0, i.e. the signa-
ture extracted from a topology matches 100% with the
one which is registered in the signature bank. If tam-
pering has occurred, it needs to be modeled in order to
properly estimate its effects on Pm. Let us consider the

following tampering attempts: (1) routing modification,
(2) atomic block modification, and (3) atomic block move
and/or addition/deletion. Attempt (1) does not change
triangulation, however it may cause changes in the sig-
nature. Such changes are of three basic types: symbol
addition, deletion and swap. More than one symbol may
be involved in the change at any time, however, when this
occurs, the change can be modeled in terms of a compo-
sition of simple symbol modifications. Attempts (2) and
(3) may change the triangulation. However, their effects
can be modeled in terms of simple symbol operations.

Define Pr as the probability that a symbol change oc-
curs. Then, the probability that a signature of size t mu-

tates is Pt =
∑t
j=1(

|B|
j

) [Pr]j × [(1 − Pr)]|B|−j . Hence,

for example, if t = 1 and Pr = 10−5, then Pm ≤ 9×10−6.

3 Detecting Signatures

Signature detection consists of the following phases

1. bubble extraction
2. transformation inference
3. bubble matching
4. triangulation
5. signature computation

The initial layout is flattened and all its layers are ex-
tracted and deconstructed into polygons or basic standard
cells. Using standard slicing techniques [8], the layout
is partitioned in rectilinear areas encompassing exactly
one atomic block. The complexity of this operation is
O(|Ω| log|Ω|) where |Ω| is the number of objects in the
layout. Using mapping B, the design is entirely converted
into a bubble-based representation in O(|Ω|) time (phase
1).

In order to detect the presence of blocks with known
signatures embedded in the design, one has to infer the
most likely orientation of every candidate block. This op-
eration is performed by matching complex interconnect
patterns present in both the host and the embedded de-
sign. Consider the designs of Figure 4. Suppose the in-
terconnects shown in shaded lines are to be used to deter-
mine the orientation of the embedded circuit within the
host. Let us first catalog all the interconnects present in
both layouts in order of size (equal to the number of in-
terconnect segments) in O(n log n) time. Then, for each
pair of interconnects of identical size, a transformation
(4x,4y, θ, sx, sy) is derived which maximizes the num-
ber of points that can be transformed from the embedded
to the host design. Note that sx, sy represent a possible
scaling operation. Deriving (4x,4y, θ, sx, sy) requires
the solution of a system of eight linear equations for each
pair of candidate interconnects in the worst case. Then,
the most frequently occurring transformation is selected.
The solution time of each system of equations is constant,

(a) (b)

Figure 4: Transformation inference: (a) embedded, (b)
host design

Figure 5: Principle of range search

the worst case time complexity is therefore quadratic in
the number of interconnects of identical size. (phase 2).

Next, the bubble representation of the host needs to
be matched with that of the transformed embedded de-
sign. This procedure is accomplished by superimposing
the designs and by assigning every bubble in the host
to exactly one in the embedded design which minimizes
the Euclidean distance. The search is initially performed
within a zero range, which is augmented multiple times
by a unit length until a neighbor is found. Figure 5 shows
the range search process (phase 3).

Finally, using optimal algorithms, a Delauney triangu-
lation is computed in O(|B| log|B|) time for both designs
[7, p. 241] (phase 4). The line segment intersection al-
gorithm is used for the computation of the edges being
intersected by each topological routing. The complexity
of this operation is again O(|B| log|B|) [7, p. 285]. The
signature is derived from this information in a straight-
forward way (phase 5). In summary, the complexity of
entire signature detection process is O(n log n), where n
is the number of atomic blocks, pins and Steiner points
in the topology.

4 Results

A complete pass in the flow of Figure 1 was simulated in
order to verify the suitability of the approach. The tools
utilized in the flow were implemented in C/C++ running

circ. nn/ dev./ ECO density re- CPU
Nn IO/nets 5 % 10 % des. [s]

s27 2/∞ 69/5/96 99.05 96.68 8.24 76.9

s27 3/∞ 100 100 7.80 53.0

s27 10/∞ 100 100 4.28 43.0

s444 2/∞ 709/9/932 100 93.0 10−6 1598

s444 10/∞ 100 93.5 10−6 1087

s832 4/∞ 1686/37/2127 100 - 10−6 1950

s832 10/∞ 100 - 10−6 1620

s1196 10/∞ 2105/28/2682 100 96.0 10−6 2383

Table 1: Signature matching with ECOs and re-design

under UNIX/LINUX operating systems. All CPU times
are referred to a Sun UltraSparc 2 with 256MB of mem-
ory. The experiments were based on a set of MCNC 86
and ISCAS 85/89 benchmarks. Each circuit was synthe-
sized and mapped to a SCMOS technology using Sis[9].
Place&route was performed by TimberWolfSC-4.1[10].

To simulate the registration phase, a signature was gen-
erated for each benchmark. Then, small modifications
were introduced in every benchmark to check whether the
signature was resilient to “official” Engineering Change
Orders (ECOs) and scaling. Later, a variable number
of random non signature-invariant mappings F were per-
formed on the benchmark’s layout so as to maximize the
potential damage to the circuit. F introduced changes on
atomic blocks, pins, Steiner points, and nets, uniformly
distributed over the entire circuit. Three types of modi-
fications were implemented: (1) translation/rotation, (2)
swap, and (3) stretch, aimed at simulating illegal tam-
pering. The signatures associated to the modified designs
were compared with the original ones. Finally, the bench-
marks were entirely redesigned and the signatures were
again compared to the original ones, thus estimating the
event that a design could be mistakenly detected even
when a “legal” redesign had taken place.

Table 1 reports circuit data, such as device, IO pin, and
net count. The signature matching rates are given for sev-
eral modification densities, simulating an ECO applied to
the circuit. The signature was constructed with a mini-
mum net size nn of 2, 3, 4 or 10 terminals, while no net
size upperbound Nn was used. As expected, small ECOs
generally resulted in perfect matching, while re-designs
resulted in very low matching rates. Moreover, small cir-
cuits were less robust to tampering than large ones, due
to the lower number of degrees of freedom available to
their design.

For the detection phase a large benchmark was selected
as the host design. Small benchmarks were embedded, at
random locations, in the host. The detection algorithm
was run on this example to extract the original signa-
ture of the host as well as that of the embedded designs.
In various experiments the embedded circuits made up
1% to 10% of the entire host. Finally, tampered circuits

Figure 6: Detection of embedded circuit

embedded host nn/ ECO density CPU
circ. circ. Nn 0 % 10 % [s]

s27 s1196 1/∞ 73.8 73.8 218

s27 s1196 2/∞ 72.7 72.7 218

s27 s1196 5/∞ 72.7 72.7 218

s1196 - 1/∞ 100.0 99.2 1241

s1196 - 2/∞ 100.0 99.0 1241

s1196 - 5/∞ 100.0 98.6 1241

Table 2: Signature matching with embedded circuits

were embedded in the host to verify the robustness of
the approach in the presence of multiple levels of tam-
pering. Figure 6 shows an example of a single inclusion
of benchmark “s27” into “s444”. Table 2 summarizes the
results of the detection experiment. Despite the presence
of embedded circuits, the host still maintained high sig-
nature matching (rows 3-6 in Table 2). The recognition
algorithm performed well in identifying both untampered
embedded circuits and heavily tampered ones.

5 Conclusions

A method has been proposed for protecting the copyrights
of designs in which several virtual blocks, originated from
multiple sources, have been integrated. The process con-
sists of two phases. In the first phase, virtual components
are mapped onto a signature, which is made public. In the
second phase, a signature detection algorithm is applied
to a circuit submitted for fabrication to produce a map
of all virtual blocks present in the design. The method
is effective in detecting and tracing intellectual property
infringement before fabrication, thus minimizing potential
litigation.

6 Acknowledgements

The authors are grateful to Sylvio Triebel for useful dis-
cussions and for assistance in the implementation aspects
of this work.

References
[1] E. Charbon, “Hierarchical Watermarking in IC Design”, in Proc.

IEEE Custom Integrated Circuit Conference, pp. 295–298, May
1998.

[2] J. Lach, W. H. Mangione-Smith and M. Potkonjak, “FPGA Fin-
gerprinting Techniques for Protecting Intellectual Property”, in
Proc. IEEE Custom Integrated Circuit Conference, pp. 299–302,
May 1998.

[3] E. Charbon and I. Torunoglu, “Watermarking Layout Topologies”,
in Proc. IEEE Asia South-Pacific Design Automation Confer-
ence, January 1999.

[4] J. Lach, W. H. Mangione-Smith and M. Potkonjak, “Robust
FPGA Intellectual PropertyProtection through Multiple Small Wa-
termarks”, in Proc. IEEE/ACM Design Automation Conference,
pp. 831–836, June 1999.

[5] T. Whitney, Hierarchical Composition of VLSI Circuits, PhD
thesis, California Institute of Technology, 1985.

[6] J. Valainis, S. Kaptanoglu, E. Liu and R. Suaya, “Two-Dimensional
IC Layout Compaction Based on Topological Design Rule Check-
ing”, IEEE Trans. on Computer Aided Design, vol. CAD-9, n. 3,
pp. 260–275, March 1990.

[7] F. P. Preparata and M. I. Shamos, Computational Geometry. An
Introduction, Springer, second Edition, 1988.

[8] R. H. J. M. Otten, “Automatic Floorplan Design”, in Proc.
IEEE/ACM Design Automation Conference, pp. 261–267, June
1982.

[9] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai,
A. Saldanha, H. Savoj, P. R. Stephan, R. K. Brayton and A. L.
Sangiovanni-Vincentelli, “SIS: A System for Sequential Circuit
Synthesis”, Memorandum UCB/ERL M92/41, UCB, Univ. of Cal-
ifornia, Berkeley, CA 94720, May 1992.

[10] C. Sechen and A. L. Sangiovanni-Vincentelli, “Timberwolf3.2: A
New Standard Cell Placement and Global Routing Package”, in
Proc. IEEE/ACM Design Automation Conference, pp. 432–439,
1986.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

