
Direct Synthesis of Timed Asynchronous Circuits

Sung Tae Jung and Chris J. Myers
Electrical Engineering Department

University of Utah
Salt Lake City, UT 84112

Abstract

This paper presents a new method to synthesize timed asyn-
chronous circuits directly from the specification without gener-
ating a state graph. The synthesis procedure begins with a de-
terministic graph specification with timing constraints. A tim-
ing analysis extracts the timed concurrency and timed causality
relations between any two signal transitions. Then, a hazard-
free implementation of the specification is synthesized by an-
alyzing precedence graphs which are constructed by using the
timed concurrency and timed causality relations. The major re-
sult of this work is that the method does not suffer from the
state explosion problem, achieves significant reductions in syn-
thesis time, and generates synthesized circuits that have nearly
the same area as compared to previous timed circuit methods.
In particular, this paper shows that a timed circuit — not con-
taining circuit hazards under given timing constraints — can be
found by using the relations between signal transitions of the
specification. Moreover, the relations can be efficiently found
using a heuristic timing analysis algorithm. By allowing sig-
nificantly larger designs to be synthesized, this work is a step
towards the development of high-level synthesis tools for sys-
tem level asynchronous circuits.

1 Introduction

Speed-independent asynchronous circuits are very robust since
they are guaranteed to work independent of the delays associ-
ated with their gates, and many synthesis methods for speed-
independent circuits have been proposed [1, 2, 3, 4]. However,
speed-independent circuits can be overly conservative when
timing constraints are available. Methods have been proposed
to use timing constraints to synthesize timed circuits. Such cir-
cuits work correctly under the given timing constraints [5, 6]
and tend to be more efficient in area and speed than speed-
independent circuits [6].

The synthesis techniques in [1, 2, 3, 4, 5, 6] have the state
explosion problem because they are based on a state graph.
To overcome the state explosion problem, direct methods have
been proposed for speed-independent circuits [7, 8, 9, 10]. The
method in [7] approximates a set of states as a cube by us-
ing a concurrency relation between transitions of the specifi-
cation. It then finds an initial approximation of the implemen-
tation using these cubes. If this approximation does not satisfy
correctness criteria, then iterative refinement is performed us-
ing state machine decompositions. This method is restricted

This research is supported by a grant from Intel Corporation, an NSF CA-
REER award MIP-9625014, and a post-doctoral fellowship from the Korea Sci-
ence and Engineering Foundation.

to state machine decomposable specifications. The method in
[8] uses an approach similar to [7] but it allows for a wider
class of specifications by finding an initial approximation and
refining it using STG-unfolding segments. The method in [9]
constructs a characteristic graph for the given signal transition
graph and generates a hazard-free implementation by finding
a strongly connected subgraph. The method in [10] constructs
a precedence graph for each transition of output signals and
generates a hazard-free implementation by finding paths in the
graph. Whereas a characteristic graph encapsulates all feasible
solutions of the original STG, a precedence graph encapsulates
all feasible solutions for a single transition of an output signal.

Even though several direct methods have been suggested
for the synthesis of speed-independent circuits, no method has
been suggested for the synthesis of timed circuits. The main
goal of this work is to develop a method which generates timed
asynchronous circuits for the specifications that cannot be syn-
thesized by the previous techniques due to the large size of the
state space. The solution to this problem is found by the use
of timing analysis to obtain the necessary timing information
directly from the specification. Timing analysis is used to de-
termine the timed concurrency relation and timed causality re-
lation between any two signal transitions in a circuit specifica-
tion. After timing analysis, the algorithm synthesizes efficient
timed circuits by constructing a precedence graph and finding
all the paths in the graph in a method similar to that in [10].

This paper compares the new method to the previous meth-
ods using many benchmark examples and two parameteriz-
able examples: SCSI and FIFO. Whereas previous methods
can only synthesize 8 SCSI controllers and 5 FIFO stages, the
new method can synthesize 180 SCSI controllers and 100 FIFO
stages. By allowing significantly larger designs to be synthe-
sized, this work is a step towards the development of high-level
synthesis tools for system level asynchronous circuits.

2 Timed Specifications

Figure 1 shows a timed deterministic signal transition graph
(STG) specification for a SCSI protocol controller specification
[6]. In Figure 1, a node denotes a rising or falling signal tran-
sition. A transition of an input signal is underlined. An arc
denotes an ordering relation between two transitions. If there
is an arc from to , is called the enabling transition
and is called the enabled transition of the arc. A solid circle
on an arc denotes a token. Each arc is associated with a tim-
ing constraint , where denotes the lower bound and
denotes the upper bound.

A timing constraint is said to be satisfied if a token has been
on an arc longer than the lower bound for that arc. It is said

0-7803-5832-X /99/$10.00 ©1999 IEEE.

Figure 1: The timed STG for a SCSI controller.

to be expired if the amount of time exceeds the upper bound.
A signal transition cannot occur until all the timing constraints
of the input arcs are satisfied. A transition must always occur
before every timing constraint on the input arcs has expired.
Since a transition may be enabled by multiple transitions, it
is possible that the difference in time between the firings of
enabling transitions exceeds the upper bound of their timing
constraints, but not for all enabling transitions. When a signal
transition is fired, all the tokens on the input arcs are removed
and a token is added to each output arc.

When an enabled transition is a transition of an input signal,
the timing constraint can be determined from interface specifi-
cations or datapath delay estimates. When an enabled transition
is a transition of a non-input signal, the timing constraint can be
estimated based on the delays for the gates in the library to be
used. After a circuit is generated, it should be analyzed using
a timing analysis tool to verify that the timing constraints used
are correct. If the circuit violates the timing constraints, it must
be resynthesized with more conservative timing constraints.

In order to synthesize timed circuits, timing analysis must
be applied to the specification to deduce timing information.
The timing information needed is the minimum and maximum
time separation between any two signal transitions in the cir-
cuit specification. For timing analysis, the synthesis procedure
uses the polynomial-time heuristic algorithm in [6]. The tim-
ing analysis algorithm starts with a cyclic graph specification
and unfolds the specification into an infinite acyclic graph. It
then examines two finite acyclic subgraphs of the infinite graph
to determine a sufficient bound on the time difference between
two signal transitions.

3 Synthesis Procedure

Figure 2 illustrates the target circuit model of the synthesis al-
gorithm for each output signal. The circuit is implemented as
a network of basic gates such as AND gates possibly having
inverted input terminals, OR gates, and C-elements. A set and
a reset network is synthesized as a sum of interval networks as
shown in the figure. Each transition of the output signal is acti-
vated by exactly one interval network. Two OR gates collect all
the outputs of the interval networks to set or reset the memory
element.

Let an interval, , denote the period between the
time when is enabled and the time when , the next reverse

Interval Network

Interval Network

... ...

Reset Network

Interval Network

Interval Network

... ...

Set Network

C

Figure 2: Target circuit model for an output signal.

transition of , is enabled. The interval network for the inter-
val must satisfy the following requirements: (i) it is
turned on when is enabled, (ii) it is turned off before is
enabled, and (iii) once it is turned off, it remains off until
is enabled again. These requirements are the same as those in
[3, 11].

The synthesis algorithm consists of four steps. First, it de-
tects and removes redundant arcs from the specification. Sec-
ond, it finds the timing relations between any two signal tran-
sitions. Third, it constructs a precedence graph for each output
transition, finds all the paths in the graph, and derives a single
cube circuit implementation. Fourth, it removes memory ele-
ments when possible by finding a multi-cube interval network.

3.1 Removing Redundant Triggers

If there are multiple enabling transitions for a signal transition,
then it is possible that some of them are redundant. Each en-
abling transition (or trigger signal) results in a literal in the im-
plementation of the signal. If a trigger signal is redundant, the
corresponding literal can be removed from the implementation
resulting in a smaller circuit. For the SCSI protocol controller
example in Figure 1, the arc from to is found to be
redundant. The worst-case time difference between the two sig-
nal transitions rdy- and q- is [15, 55]. The lower bound of this
time difference, 15, is greater than the upper bound of the tim-
ing constraint on the arc, 5. Therefore, the arc (i.e., the trigger
signal) is found to be redundant.

3.2 Finding the Relations

To directly synthesize a timed circuit, it is necessary to find the
timed concurrency and timed causality relations between any
two signal transitions. In order to find timed concurrent tran-
sitions, the algorithm first finds untimed concurrent transitions
by reachability analysis on the STG (not the state space). Then,
the algorithm checks the worst-case time difference between
untimed concurrent transitions. If the lower bound is less than
or equal to zero and the upper bound is greater than or equal to
zero, then the two transitions are timed concurrent. For exam-
ple, in the specification of the SCSI protocol controller, the two
transitions and are timed concurrent because they
are untimed concurrent and the worst-case time difference is
the bound [-35, 30]. This bound indicates that they can fire in
either order. The two transitions and are untimed con-
current, too. However, they are not timed concurrent because

t

s

t

s
s

s

*

*
*

*

*

*

(a) (b)

Figure 3: Causality relation: (a) occurs after and be-
fore . (b) occurs after and concurrently with .

the time difference between and is the bound [15, 50].
This bound means that is always fired after is fired.

After finding timed concurrent transitions, the algorithm
finds the timed causality relations. Let and be transi-
tions on two signals. If and have the relation shown in
Figure 3 (a) or (b), then we say causes . Here is the
next reverse transition of . In an untimed STG specification,
the causality relations are found by reachability analysis. That
is, a transition causes a transition if is reachable from

without visiting . In a timed STG, the algorithm finds the
timed causality relations by analyzing reachability and worst-
case time differences. In the specification of the SCSI protocol
controller, is reachable from without visiting . So,

is an untimed causal transition for . However, it is not a
timed causal transition because the time difference between
and is [-50, -15]. That is, always occurs before .
So, timed causes .

3.3 Finding a Single Cube Network

In this step, the synthesis procedure synthesizes each interval
network as a single cube. In [3], conditions are developed in
which each interval can be implemented as a single cube in a
hazard-free manner. In [11], they showed that specifications
can be transformed to satisfy these conditions by inserting new
signals. The algorithm described in this paper currently only
handles specifications which have a single cube implementa-
tion. If there is no single cube implementation, new signals are
added and the modified specification is resynthesized. For sim-
plicity, the algorithm is presented for specifications which have
only one occurrence of each signal transition per cycle. The al-
gorithm, however, can be extended in a straightforward manner
to cover the case where there are multiple occurrences of some
signal transitions. The current implementation of the algorithm
includes this extension.

Let’s consider the synthesis procedure for the interval
. The interval network is synthesized to satisfy the require-

ments of the target circuit model. The synthesis process starts
with a minimal interval network which is an AND gate having
only the non-redundant trigger signals as inputs. Figure 4 (a)
shows the minimal interval networks for the SCSI controller.

All the trigger signals go high when is enabled, so re-
quirement (i) is satisfied. However, it might be the case that
the trigger signals do not go low before is enabled or that
they do not remain low once they have gone low until is en-
abled again. Therefore, requirements (ii) and (iii) are not yet

q

q

req

C

C

go
req

rdy

rdy
ack

ack

rdyC
req

go

C q

C

C rdy

req

q

go

rdy
ack

ack
q

req

req
go

rdy

q

q

req
go

rdy

q
req

go

ack
rdy

ack

req

rdy

qC

C

C

q

(a) (b) (c)

Figure 4: (a) Minimal interval networks. (b) Timed imple-
mentation. (c) Speed-independent implementation.

guaranteed to be satisfied. For example, the solid thick line in
Figure 5 denotes the period in which the minimal interval net-
work for the set interval of the signal rdy is turned on. However,
the period should be equal to or shorter than the dotted line to
satisfy the requirements. Thus, requirements (ii) and (iii) are
not satisfied. The synthesis procedure guarantees them to be
satisfied by adding some extra context signals to the AND gate.
That is, it the period in which the cube yields 1.

Figure 5: A violation of the circuit model requirements.

Figure 6 shows a sketch of the procedure. In the
algorithm, denotes that and are timed concur-
rent and denotes that causes under the given
timing constraints. To satisfy requirements (ii) and (iii), it is
necessary to add signals which turn off the cube before is
enabled and remain off until is enabled again. To find such
signals, the algorithm constructs a precedence graph. At first,
the transitions which occur between the transition and the
transition are added as source nodes. Also, the transition
is added as a source node. The destination nodes for the prece-
dence graph are found next. Here, the destination nodes are the
reverse transitions of the non-redundant enabling transitions of

. After finding source and destination nodes, the graph is ex-
panded using the conditions in the algorithm. Figure 7 shows
the precedence graph for the set interval of signal . A node
with a circle denotes a source node and a node with a rectangle
denotes a destination node.

One meaning of the precedence graph is as follows: if there
is an arc from to , then the signal cannot return to the
original state (change twice) without the reaction of the signal
. Extended to a set of signals, a path in the precedence graph

guarantees that no nonempty subset can return to the original

shrink(STG ,transition)

/* Construct a precedence graph */
Precedence graph
/* Find source and destination nodes */

Foreach in
If (and and)

= Find destination nodes()

/* Expand the precedence graph */
Foreach unprocessed node in

Foreach in
If ((or) and and)

Foreach
Foreach

= Find all possible context signals (,)

Find minimal context signal set(E);

Figure 6: A sketch of the procedure.

Figure 7: Precedence graph for the interval .

state while the remaining subset has no action. This property
is used to guarantee the interval network turns off at the correct
time and remains off for a proper period.

A set of transitions of a set of signals is called a Com-
plementary Transition Set (CTS) [1] with respect to a state
if it contains an equal number of falling and rising transitions
for each signal of the set and each transition can be fired ex-
actly once from the state without firing any other transition of

not in . A CTS has a corresponding vertex set in the prece-
dence graph. For example, a CTS
can be fired from the state when the transition is en-
abled, and its corresponding vertex set in the precedence graph
is .

A CTS is said to be complete if no nonempty proper
subset of it is also a CTS. Clearly, for a CTS

, if a cube
(where is either or) is on in the state , it is also on
after each member of the CTS is fired exactly once. If a CTS

is complete and a
cube (where is either or) is on in the
state , then once the cube is set off it remains off until each
member of the CTS is fired.

A CTS is complete if its corresponding vertex set in the
precedence graph is connected by a directed path. This is be-
cause if a set of vertices is connected then any proper subset of
it is connected to the remaining subset by at least one arc. This

means that the transitions of the proper subset cannot be fired
without firing other transitions in the CTS. This fact is used to
find context signals which remain off for a proper time.

After constructing the precedence graph, the algorithm finds
all possible sets of extra context signals for each destination
node by finding all the paths from each source node to the des-
tination node in the graph. By including a source node, re-
quirement (ii) is satisfied. And by including all the signals in
the path from a source node to a destination node, requirement
(iii) is satisfied because the corresponding transitions become a
complete CTS and is enabled again when each member of
the CTS fired once.

After finding all the possible sets of extra context signals for
each destination node, the algorithm finds a minimal set of extra
context signals for the interval by set multiplication operations.
If there are many solutions with the same number of context
signals, the algorithm selects the one which turns off the cube
as late as possible. This optimizes the circuit area by allowing
the elimination of memory elements. That is, if an interval net-
work is turned on when is enabled and turned off when
is enabled, then the memory element can be removed.

In the precedence graph for the interval ,
shown in Figure 7, there is one destination node and the short-
est path from a source node to the destination is ,
so the minimal context signal is . The interval networks gener-
ated by the procedure for the SCSI controller are shown
in Figure 4 (b). Figure 4 (c) shows a speed-independent im-
plementation. In the speed-independent implementation, the
reset network of the signal has one more literal because
the trigger signal is not redundant in the speed-independent
circuit. Moreover, the set network of the signal has one
more literal because the paths in the precedence graph for a
speed-independent circuit are longer than those in the prece-
dence graph for a timed circuit as shown in the Figure 8.

Figure 8: Precedence graph for the interval ,
(a) for a timed circuit and (b) a speed-independent circuit.

3.4 Removing Memory Elements

The algorithm improves the performance of the circuits by re-
moving memory elements by finding a multi-cube interval net-
work. It first checks to see if each interval network is turned
on during the entire interval. If each set interval network of
an output signal is turned on during its entire interval then the
C-element and the reset network can be removed. By a similar
analysis, the set network and C-element can be eliminated. If an
interval network is not turned on during the entire interval, it is
off before the end transition of the interval is enabled. So, the
algorithm the period by combining the interval net-
work and some other signals with an OR gate. Figure 9 shows
a sketch of the procedure. It finds the extra inputs by

constructing a precedence graph and finding paths. It is similar
to the procedure. For the SCSI controller, no memory
elements can be eliminated.

expand(STG ,transition , cube C)

/* Construct a precedence graph */
Precedence graph
/* Find source and destination nodes */
Foreach in

If (and and (and not ()
for all , where triggers the rising
transition of the single cube))

If (Is a non redundant enabling transition())

/* Expand the precedence graph */
Foreach unprocessed node in

Foreach in
If ((or) and and

and)

Foreach
Foreach

= Find all possible context signals (,)

Find a minimal context signal set(E);

Figure 9: A sketch of the procedure.

3.5 Complexity and Performance

The algorithms for removing redundant arcs and finding the re-
lations between any two signal transitions have a polynomial-
time complexity. The algorithms for finding a single cube in-
terval network and a multi-cube interval network are composed
of two steps. The first step is to construct a precedence graph.
This step has a polynomial-time complexity. The second step
is to find all paths from each source node to each destination
node in the graph. The complexity of this step depends on the
number of cycles in the graph. In a directed graph which does
not have any constraints, the number of cycles can be exponen-
tial with respect to the number of nodes. But in the precedence
graph, a cycle is made if the transitions of two nodes are con-
current and each transition causes the next reverse transition of
the other transition. So, the complexity of the algorithm for
finding paths is exponential with respect to the number of con-
current transitions in the specification. However, the number of
concurrent transitions seems to increase slowly with respect to
the size of the STG specification.

Because the precedence graph represents all the possible can-
didates for the extra context signals in an interval, the algorithm
finds a minimal single cube for each interval. However, the al-
gorithm does not globally consider all the intervals of an output
signal. If interval networks of the same output signal are not
disjoint, they can be shared, resulting in less area. State graph
based algorithms can handle this problem globally, but our al-
gorithm produces only disjoint interval networks for output sig-
nals. On the other hand, our algorithm may find a multi-cube
interval network to remove memory elements resulting in less
area. Finally, since our algorithm uses a heuristic timing anal-
ysis, it may not determine the redundant arcs and other timing

relations exactly. As a result, the synthesized circuits may not
be optimal.

4 Experimental Results

Table 1 shows the experimental results. We compared timed
circuit implementations found with our new direct method with
those produced by ATACS state based method [6]. We com-
pared area (using literal count) and CPU time. Note that the
performance of the circuits is quite similar given that the two
methods usually produced the same circuit. In the column

, is the number of signals, is the number of nodes,
and is the number of arcs. In the column , is the num-
ber of precedence graphs, is the average number of nodes
per precedence graph, and is the average number of arcs
per precedence graph. To generate examples with large state
spaces, we connected the SCSI controller specification in paral-
lel. Also, we synthesized a multi-stage, series connected FIFO
[12]. The experimental results show that our synthesis method
does not have the state explosion problem and achieves sig-
nificant reductions in synthesis time as compared to previous
methods in examples with large state spaces. For the specifica-
tions with small state spaces, the direct synthesis method may
be slower than the previous method. In addition, because the
direct method searches the precedence graph exhaustively to
find a minimal single cube network, it may be slow for spec-
ifications whose precedence graphs are very large. However,
the size of the precedence graph does not seem to grow as fast
as the state space. For multi-stage FIFO circuits, the size of
the precedence graphs remain almost constant because they are
connected serially. For SCSI controllers, the size of the prece-
dence graphs increase linearly with the size of STG.

Table 1: Experimental results.

ATACS Direct Method
Example STG States PG Total CPU Total CPU

(S/N/A) (G/N/A) Literals time Literals time
(sec) (sec)

half 4/8/11 14 4/4/6 8 0.03 8 0.03
full 4/8/12 16 4/4/6 8 0.03 8 0.01
converta 5/14/16 19 8/5/7 20 0.04 20 0.04
sender-done 4/8/9 9 5/3/3 5 0.03 5 0.03
mp-fwd-pkt 8/16/26 22 14/5/7 16 0.05 14 0.05
MMU 8/16/23 92 8/7/17 22 0.06 22 0.05
master-read 18/28/40 2108 16/7/17 34 2.01 34 0.15
AtoD 7/14/19 24 12/5/8 12 0.04 12 0.04
counter3 6/22/58 32 14/8/10 23 0.14 40 0.14
elatchB 8/16/35 55 20/8/27 14 0.12 14 0.07
VME 5/10/26 19 6/5/8 6 0.05 6 0.05
cstat 3/6/11 8 2/3/4 4 0.04 4 0.03
inv 2/4/5 4 2/2/1 1 0.01 1 0.01
lapbN 8/16/28 97 13/5/8 20 0.14 1 0.01
pab c4 4/8/24 16 4/4/7 8 0.05 8 0.05
SCSI Ctrl 5/10/17 16 7/4/5 10 0.02 10 0.02
4 SCSI 14/28/62 806 28/9/42 40 1.17 40 0.22
8 SCSI 26/52/122 404006 56/15/166 80 4937.36 80 1.29
9 SCSI 29/58/137 N/A 63/17/210 N/A N/A 90 1.96
10 SCSI 32/64/152 N/A 70/19/260 N/A N/A 100 2.91
20 SCSI 62/124/302 N/A 140/34/1058 N/A N/A 200 24.68
40 SCSI 122/244/602 N/A 280/65/4284 N/A N/A 400 246.51
60 SCSI 182/364/902 N/A 420/97/9681 N/A N/A 600 1019.0
80 SCSI 242/484/1202 N/A 560/129/17250 N/A N/A 800 3505.15
100 SCSI 302/604/1502 N/A 700/160/26990 N/A N/A 1000 8231.93
120 SCSI 362/724/1802 N/A 840/191/38901 N/A N/A 1200 16395.79
150 SCSI 452/904/2252 N/A 1050/239/60840 N/A N/A 1500 38976.31
180 SCSI 542/1084/2702 N/A 1260/286/87664 N/A N/A 1800 82151.49
FIFO 1-stage 7/14/31 29 6/12 9 0.06 9 0.02
FIFO 4-stgs 22/44/97 10176 48/10/40 36 39.57 36 0.69
FIFO 5-stgs 27/54/119 67392 60/10/40 45 456.6 45 1.23
FIFO 6-stgs 32/64/141 N/A 72/10/40 N/A N/A 54 2.2
FIFO 7-stgs 37/74/163 N/A 84/10/41 N/A N/A 63 3.53
FIFO 10-stgs 52/104/229 N/A 120/10/41 N/A N/A 90 16.98
FIFO 20-stgs 102/204/449 N/A 240/10/42 N/A N/A 180 139.17
FIFO 40-stgs 202/404/889 N/A 480/10/43 N/A N/A 360 1240.98
FIFO 60-stgs 302/604/1329 N/A 720/10/43 N/A N/A 540 4558.70
FIFO 80-stgs 402/804/1769 N/A 960/10/43 N/A N/A 720 11351.76
FIFO 100-stgs 502/1004/2209 N/A 1200/10/43 N/A N/A 900 19079.43

We ran the two programs on a 400MHz PentiumII with
384MB main memory and 700MB swap memory. For exam-

ples with state spaces exceeding one million states, the previ-
ous method did not finish due to the lack of memory. The area
of the synthesized circuits are the same in most cases. In some
specifications, such as mp-forward-pkt, the direct method pro-
duces smaller circuits because it removes memory elements by
finding multi-cube interval networks. In some examples, such
as , the direct method produces a bigger circuit be-
cause it does not consider sharing among the interval networks
of the same output signal.

If all the timing constraints in the timed STG specifica-
tion are given as , the synthesized circuit is speed-
independent. The top 7 examples in Table 1 are speed-
independent and the remaining ones are timed. We also com-
pared our results to the synthesis tool for speed-independent
circuits, named Petrify [13]. The CPU time with Petrify was
255.73 seconds for 8 untimed SCSI controllers and 1616.81
seconds for 10 untimed SCSI controllers. It did not finish for
13 controllers after running for one day. It is notable that our
synthesis method can synthesize 60 SCSI controllers within 20
minutes. Whereas, the method in [6] can only synthesize 8
SCSI controllers. Also, it is notable that our synthesis method
is about 100 times faster than the method in [13] and about 1000
times that of the method in [6] for specifications with large state
spaces. In comparing the synthesis results among the various
methods, it is important to note that the synthesized circuits are
very similar.

We also compared our results to the direct synthesis method
for speed-independent circuits in [7]. Both programs were run
on the same SUN Sparc20 with 128MB of main memory. The
CPU time for the tool from [7] is 19.23 seconds for 10 un-
timed SCSI controllers and 3868.85 seconds for 60 untimed
SCSI controllers. The CPU time of the method described in
this paper was 11.78 seconds for 10 untimed SCSI controllers
and 6419.85 seconds for 60 untimed SCSI controllers. Even
though the suggested method uses an exhaustive approach and
the method in [7] uses a heuristic approach, the CPU times are
quite similar. Whereas the method in [7] cannot synthesize
70 untimed SCSI controllers because it runs out of memory,
the method in this paper can synthesize 90 untimed SCSI con-
trollers on SUN Sparc20.

5 Conclusions

This paper presents a direct synthesis method for timed circuits.
It shows that a timed circuit — not containing circuit hazards
under given timing constraints — can be found by using the
timing relations between signal transitions of the specification.
Moreover, these relationships can be efficiently found using a
heuristic timing analysis algorithm. The results indicate that
by using the direct synthesis approach, we can overcome the
state explosion problem. Currently, the synthesis algorithm can
handle only deterministic specifications. Future work includes
the extension of the algorithm to specifications with free-choice
behavior. Also, we plan to extend the target circuit model and
synthesis algorithm to apply gate sharing between interval net-
works.

Acknowledgements

We would like to thank Eric Mercer and Kip Killpack of the
University of Utah for their comments on this paper.

References

[1] Tam-Anh Chu, “Synthesis of Self-Timed VLSI Circuits
from Graph-Theoretic Specifications”, PhD thesis, MIT
Laboratory for Computer Science, Jun. 1987.

[2] T.H.-Y. Meng, R.W. Brodersen, and D.G. Messerschmitt,
“Automatic synthesis of asynchronous circuits from high-
level specifications”, IEEE Transactions on Computer-
Aided Design, Vol. 8, No. 11, pp. 1185-1205, Nov. 1989.

[3] P. Beerel and T.H.-Y. Meng, “Automatic Gate-Level Syn-
thesis of Speed-independent Circuits”, In Proceedings of
International Conference on Computer Aided Design, pp.
581-586 Nov. 1992.

[4] C. Ykman-Couvreur, B. Lin, and H. de Man, “ Assassin:
A synthesis system for asynchronous control circuits”,
Technical report - User and Tutorial manual, IMEC, Sep.
1994.

[5] L. Lavagno, K. Keutzer, and A. Sangiovanni-Vincentelli,
“Algorithms for Synthesis of Hazard-Free Asynchronous
Circuits”, Proceedings of the 28th Design Automation
Conference, , 1991.

[6] C.J. Myers, T. H.-Y. Meng, “Synthesis of Timed Asyn-
chronous Circuits”, IEEE Transitions on VLSI Systems,
pp. 106-119 June 1993.

[7] E. Pastor, J. Cortadella, A. Kondratyev, and O.
Roig, “Structural Methods for the Synthesis of Speed-
Independent Circuits”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, Vol. 17,
No. 11, pp. 1108-1129, Nov. 1998.

[8] A. Semenov, A. Yakovlev, E. Pastor, M.A. Pe a and
J. Cortadella, “Synthesis of Speed-independent circuits
from STG-unfolding segment”, Proc. 34th ACM/IEEE
Design Automation Conference, pp. 16-21, June, 1997.

[9] K.J. Lin, C.W. Kuo and C.S. Lin, “Synthesis of Hazard-
Free Asynchronous Circuits Based on Characteristic
Graph”, IEEE Transactions on Computers, Vol. 46, No.
11, pp. 1246-1263, Nov. 1997

[10] S.T. Jung and C.S. Jhon, “Direct Synthesis of Efficient
Speed-independent Circuits from Deterministic Signal
Transition Graphs”, Proceedings of International Sympo-
sium on Circuits and Systems, pp. 307-310, June, 1994

[11] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanvekber-
gen, and Yakovlev, “Basic Gate Implementation of Speed-
independent Circuits”, In Proceedings of Design Automa-
tion Conference, pp. 56-62 June, 1994.

[12] Charles E. Molnar, Ian W. Jones, Bill Coates, and Jon
Lexau. “A FIFO ring oscillator performance experiment”,
In Proc. International Symposium on Advanced Research
in Asynchronous Circuits and Systems. IEEE Computer
Society Press, April 1997.

[13] J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno
and A. Yakovlev, “Petrify: a tool for manipulating con-
current specifications and synthesis of asynchronous con-
trollers”, IEICE Transactions on Information ans Systems,
Vol. E80-D, No. 3, Mar. 1997, pp. 315-325.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

