Sequential Circuit Test Generation Using Decision Diagram Models

Jaan Raik, Ramund Ubar
Department of Computer Engineaing
TalinnTechnicd University, Estonia

Abstract

A novd approach to testing sequential circuits that uses
multi-levéd dedsion dagram representations is intro-
duced. The proposed agorithm consists of a combination
of scanning and conformity test generation procedures.
Sructural faults in bah, datapath ard control part are
targeted. High-levd simplified ard fast symbodlic path
activation strategy is combined with random local test
pattern generation for functional units. Current approach
has achieved high fault coverages for known sequential
circuit benchmarksin avery short time.

1. Introduction

Different techniques for solving the problem of gener-
ating tests for structural faults in sequential circuits have
been proposed over the yeas. On the gate-level, determi-
nistic [1] and simulation based [2,3] algorithms have been
proposed. However, the exeaution times are extremely
long and for medium and large drcuits mostly rather low
fault coverages have been achieved.

Recently, promising results based on software testing
technigques combined with low level test have been pub-
lished in [4]. The goproac offers high fault coverages for
medium sized benchmark circuits but the test generation
il takes relatively much time. Furthermore, the authors
have not developed any formalized method for generating
the high-level test frames and the time needed to generate
the frames has not been taken into acwmunt in the
experiments. Trivial finite state machines containing only
asingle mntrol state have been implemented for some of
the larger example drcuits.

At present, hierarchicd test generation is the fastest
and most effedive means for sequential circuits testing
[5]. Here, designs described on different abstradion levels,
usually on architectural- and gate-level, are used. The
method cannot be gplied to designs that do not have
appropriate modularity, or where gate-level implementa-
tion for the modules is not known. However, as a number
of commercia high-level synthesis todls have emerged,
the input description should not be amajor isue.

Previous works in the aeaof hierarchicd testing have
the following main shortcomings:

1. Only the faults in the datapath Functional Units (FU)
are targeted.

This usualy results in low fault coverages for the control

part as well as for multi plexers, registers and fanout buses

of the datapath.

2. A complex set of symbadls and constraints is used
during high-level path adivation.

This feaure makes the symbdlic path adivation process

very compute-intensive. For more mmplex circuits it can

also cause high-level tests for many FUs to fail due to the

strict conditions.

The aim of the gpproach proposed in current paper isto
overcome the &ove mentioned shortcomings. Differently
from known methods, both, control unit and datapath are
handled in a uniform manner. A restricted set of symbadls
is used during the path adivation. This allows to simplify
the test generation algorithm while still maintaining a good
correspondence between high-level assessments and gate-
level fault coverage. The paper is organized as follows.
Sedion 2 gives a short overview of representing circuit
architedure by Decision Diagram (DD) models. Sedion 3
introduces the test generation agorithm. Finaly, experi-
mental results and conclusions are presented.

2. Decision Diagram representations

Consider a cmponent (subnetwork) f of a digital
sytem S as a function y=f(x) where y=(yi,...y,) and
x=(Xy,.. Xy) are vedor variables. The function f is defined
on X=X x...xX,, with valuesy 7Y = Y;x...xY,, and bah,
the domain X and the range Y are finite sets of values. x;, i
= 1,2,...m, are input or state variables of the component f,
whereesy; , j = 1,2,...n, are output or next state variables,
The values of variables may be Booean, Boolean vedors,
integers.

Definition 1. A Dedsion Diagram (DD) G isadireded
noncyclic graph G=(M,I,X). M is a set of nodes. I is a
relation on M where "(m) [J M denotes the set of succesor
nodes of mJOM. The nodes mCM are marked by labels
x(m). The labels can be: variables x;, algebraic expressions

of X, or constants. For nonterminal nodes m, where (m) #
[J, an onto function exists between the values of x(m) and
the successors m°Jr(m) of m. By m® we denote the succes-
sor of mfor the value x(m)=e.

Definition 2. The edge (m, m®) which conneds nodes m
and n is cdled adivated iff there exists an assgnment
x(m)=e. Activated edges which connect m and my make up
an adivated path I(m,m). An adivated path I(m’m") from
the initial node m” to aterminal node m' is caled full adi-
vated peth.

Definition 3. Dedsion Diagram G, = (M,[X) repre-
sents a function y = f(x) iff for ead value of x, a full path
in G, to aterminal node m' is adivated, where x(m') = y is
valid.

As a hierarchical input to the test generator are
descriptions where the achitedure of the drcuit is
described at the Register-Transfer Level (RTL) and the
low-level structure is given at the gate level. Both these
levels can be described by DD models. Datapath can be
represented by a system of DDs, where for ead primary
output and register, a DD corresponds. In addition, multi-
plexers that are conneded to an input of an FU are repre-
sented by a separate DD. In the DD models, the non-ter-
minal nodes correspond to control signals and terminal
nodes represent operations. Register transfers and constant
asdgnments are treded as fedal cases of operations.
Activated branches between the nodes determine, which
operation is asdgned to the variable represented by DD
with each value combination of the cntrol signals. Figure
1 shows an example of a DD representation for a datapath
register.

MUX_1_ADDRESS
REG_2_ENABLE

REG_1
S + ADDER_1

REG_2 1 0
=~ »('REG_2 ENABLE MUX_1_ADDRESS
0

Figure 1. DD model of a datapath fragment

The mntrol part of an RTL description is described as
a Finite State Machine (FSM) state table. Similar to data-
path, the state table can be represented by a DD model. In
that case, the non-terminal nodes correspond to current
state and conditions (FSM inputs) and terminal nodes hold
vedors with the values of next state and control signals

(FSM outputs). Figure 2 shows an example of a fragment
of an FSM state table and the crresponding DD repre-
sentation. In the DD, g denotes the next state and ¢
denotes the current state value. Variables outl, out2, out3
and out4 are output signals of the FSM. The DD in Figure
2 describes the behavior of the FSM at the airrent state
being equal to s5.

inl in2 outl ... outd gm?@—'
i)

outd
o[x]o]o]
BEED
| |

N e N e’

I ‘ ‘
‘, present state control outputs
control inputs next state

Figure 2. Converting a state table to a DD

In current hierarchicd test generation approad, gate-
level descriptions of the datapath modules are transformed
into Structurally Synthesized BDD (SBDD) models. Dif-
ferently from BDDs, which represent function only,
SBDDs suppat test generation for gate-level structura
faults without representing these faults explicitly.
Furthermore, the worst case @mplexity for generating
SBDDs s linea in resped to the number of logic gates,
while it is exponential for BDDs. More detailed informa-
tion about SBDDs can be found in [6].

3. Test generation algorithm

The high-level symbdlic path adivation, proposed in
current paper is a complete dgorithm, i.e. if transparent
paths for fault effed propagation and value justification
exist, they will be adivated. The dgorithm has been
implemented as a systematic seach and therefore an
inconsistency in any stage caises a badtradk and a return
to the last dedsion. However, due to the NP-complete
nature of the problem, in some caes, the seach must be
terminated after a cetain maximal number of solutions
have been tried. For the sake of simplicity and speed, only
three types of symbalic values are used during the path
adivation:

D - line with the fault effed,
X - line with unassigned val ue,
asdgned - line with a spedfied (integer) value.

The hierarchicd test generation algorithm consists of
five stages. These ae fault manifestation, fault propaga
tion, congtraint justification, constraint satisfadion and
low-level test, respedively. In the following, the different
stages are explained more in detail .

3.1. Fault manifestation

There exist two types of nodes in DD models: terminal
nodes and nonterminal nodes. Appropriate tests for the
corresponding types have to be set up during the manifes-
tation stage. The two types of tests are referred to as <an-
ning test and conformity test. Scanning tests are gplied to
terminal nodes and their aim is to test the functional units
(FU), registers and constants of the datapath. Conformity
tests are set up for nonterminal nodes and they target the
multi plexers of datapath as well as control signal deaoders
in the control part.

During the scanning test, the path to the node under
test is adivated in respedive DD. The symbalic fault-
effect value D is assgned to the variable corresponding to
the DD, and new congtraints are aeaed from the agu-
ments of the function labeling the node under test. These
congtraints are later treded as justificaion objedives.
Figure 3 presents a smple example where scanning test is
performed for the node FU1 in the DD MUX. The blocks
where gate-level faults are targeted by the scanning test
are marked with striped areas in the figure.

FSM MUX
|address
FU2—=1

Figure 3. Example of scanning test

Conformity test is smilar to scanning test in the way
that a path is adivated to the node under test, and the fault
effect value is assgned to the DD variable. In addition,
distinguishing of values of the variables labeling the ter-
minal nodes is made. In current implementation pairwise
distinguishing is used. Conformity test for a node must be
caried out for ead edge of the node under test adivated
and for eath pair to be distinguished. Hence, there exist
n(n-1) conformity tests for a nonterminal node with n
SUCCESOr NOdeS.

The distinguishing takes place & follows. In case the
successor nodes are not terminals, paths are adivated from
the successors to terminal nodes. Constraints to be bad-
tracal during the justificaion are aeded of the variables
labeling corresponding terminal nodes of the DD. A
simple example in Figure 4 ill ustrates the cnformity test
for the @ntrol signal address The blocks where faults are
targeted by the test are marked with striped aress.

3.2. Fault effect propagation

The dm of the propagation procedure is to determine
the state sequencenecessary to propagate the fault effea

FSM MUX
|address
FUl ‘zOW;MUX
FU2 =1

Figure 4. Example of conformity test

symbal to a primary output and to extrad the logic condi-
tions that must be satisfied at different time steps. Basing
on the values assigned to control signals during the mani-
festation phase, aterminal node of the FSM DD is chosen,
which provides the initial state axd the @ntrol vedor.
Subsequently, a node is chosen from the set of nodes
containing the variable to which the fault effed symbad
has been asdgned. A path is adivated to the node in corre-
sponding DD. According to that path, values are assgned
to respedive mntrol signals. Again, basing on these values
a onsistent FSM DD terminal node providing current
state and control vedor is chosen. The procedure will end
when the fault effea value reates a primary output.

In current test generation approach, all the symbalic
path adivation procedures (manifestation, propagation,
justification) are implemented as alternate choices at data-
path and control part DDs. Activated paths in DDs make it
possble to determine relevant variable assgnments at
ead time step.

3.3. Constraint justification

During this phase we justify the variable values in the
extraded constraints. Each time abadkward step is made
during the justification, the cntents of the cnstraints will
be updated. It is done acording to the ntrol vedors that
are adive & corresponding FSM states. In addition, new
congtraints will be extraded if conditions are traversed in
the FSM DD. Justification will end when all the variables
in the mnstraints are primary inputs or constants.

The mnstraints can be divided into two caegories:
path adivation constraints and transformation constraints.
Path adivation constraints correspond to the nditions
that have to be satisfied in FSM in order to provide trans-
parent paths through the drcuit. Transformation con-
straints, in turn, refled the value dhanges along the adi-
vated paths; They are extraded during the manifestation
phase and are necessary in order to cdculate the locd test
patterns for the module under test. Both types of con-
straints can be represented by common data structures and
manipulated by common procedures for update, modeling
and simulation.

Justificdion starts with traversing the propagation state
sequence in the reverse order until the fault manifestation
step is readed. During each time frame that is ealier than
the manifestation step, the justificaion procedure seleds a

justification objedive. In current implementation the
objedive isto badktracethe first unjustified variable in the
transformation constraints. In the case when transforma-
tion constraints are justified, the objedive will be to badk-
trace the first unjustified variable in the path adivation
constraints, respedively.

At every justification step, the cnstraints containing
only constant variables will be simulated. This improve-
ment to the test generation algorithm makes it possble to
deted obvious inconsistencies at ealy stages of path adi-
vation and hence reduces the search space At this point of
the dgorithm we have aeaed the high-level symbalic test
frames. In the following phases, adual values have to be
cdculated for the symbalic values of the frames.

3.4. Constraint satisfaction

Subsequent to constraint justification, the cnstraints
have to be solved. In order to achieve that, any known
Constraint Satisfadion Problem (CSP) solving algorithm
can be gplied. In current implementation we use random
generate-and-test technique. In the future, more alvanced
CSP methods have to be implemented to avoid pcssble
lossof solutions whil e testing large and complex circuits.

3.5. Low-level test

Only the path adivation constraints are managed dur-
ing constraint satisfadion whil e transformation constraints
are onsidered in the low-level test. This gep targets the
gate-level structural faults in the modules under test
(MUT). During the low-level test, random values are gen-
erated to the unassigned variables of transformation con-
straints. The mnstraints are simulated to oltain the trans-
formed vedors at the inputs of MUT, which in turn are
applied to the fault simulation for the module. If afault is
deteded at the output of the module, it is assumed to be
deteded at the primary outputs of the whole device This
is true because the propagation of the fault effea symbad
to primary outputs has been guaranteed by previous stages
of the dgorithm.

The vedors that deted previously undeteded faults are
compiled into final test vedors for the whole hierarchicd
circuit. This takes place by subgtituting the symbdlic
values in the high-level symbadlic test frames by the adual
values found during constraint satisfadion and low-level
test.

4. Experimental results

The proposed test generation algorithm has been
implemented as a part of the DECIDER (DECision
Diagram based test genERation) system [8]. At present,
the system contains gate-level EDIF interface which is

cgpable of realing designs of CAD systems like
SYNOPSYS, CADENCE, MENTOR GRAPHICS,
VIEWLOGIC, etc. In addition, an RT-level VHDL inter-
faceto a ommercial high-level synthesis tod is under
consideration.

Table 1 presents the main charaderistics of the bench-
mark circuits used in the experiments. The two designs are
well-known benchmarks from the HLSynth family. In
Table 2 the results which were obtained on a SUN
ULTRASPARC 2 workstation under Solaris 2.5 operating
system are given. Fault coverages were determined by ap-
plying gate-level fault simulation to the generated petterns,
i.e. adual stuck-at fault coverages are reported in the table.

For comparison, experimental data of [4] has been
included. Table 3 describes the drcuits used for the
experiments in [4]. These experiments were run on an HP
9000J200 256MB computer and the results are given in
Table 4.

Though the drcuits in Table 1 and Table 3 represent
the same functionality, instead of trivia control units
containing only a single antrol state, in current paper,
control units with multiple states are implemented. This
leads to a more cmplex class of devices with high
sequential depth and global feedbadk loops over control
and datapath parts. However, in our experiments a 4-bit
version of the ged circuit was used while in [4] the bit-
width was 16.

Compared to the results obtained in [1,3,4] test
generation times achieved by current method were signifi-
cantly shorter. The fault coverage for diffeq was dightly
lower which can be explained by the higher sequential
depth of the implementation. The number of generated test
sequences in our approach can be further minimized if
high-level fault collapsing would be included.

5. Conclusions

Current paper describes a novel hierarchicd test gen-
eration approach based on using dedsion diagram models.
Differently from known methods, bath, higher and lower
design abstradion levels, and bah, control and data parts
are handled in a uniform manner. Joint formal basis for
gate- and higher level descriptions allowed to adopt and
generalize gate-level methods to high-level ones. The
methods were improved by exploiting higher bitwidth of
data variables. The new path adivation technique avoids
complex symbalic dgebra while maintaining still a good
correspondence between high-level fault coverage assess-
ments and adual gate-level fault coverage. As a result,
high fault coverages are very quickly achieved for known
sequential circuit benchmarks.

Authors consider several additional improvements that
could be made to the proposed algorithm. The present
implementation does not include fault effed propagation

Table 1. Benchmark circuits

Circuit Gates Faults Pls POs Flip-flops Control states
diffeq 4195 15,836 81 48 115 6
gcd 227 844 9 4 15 8
Table 2. Test generation results
Circuit Fault coverage, % Test sequences Time, s
diffeq 954 353 204
gcd 91.0 67 5.6
Table 3. Benchmarks used in [4]
Circuit Gates Faults Pls POs Flip-flops Control states
diffeq 9340 18,216 81 48 129 1
gcd 1191 2199 33 16 49 1
Table 4. Test generation results in [4]
Tool Circuit Coverage, % Sequences Time, s
High+gate [4] diffeq 98.2 100 6480
Gced 904 90 1068
HITEC[1] Diffeq 97.3 N. A. 849%0
Gced 74.3 N. A. 49320
GATEST [3] Diffeq 989 N. A. 27756
Gced 62.6 N. A. 636

simultaneously along multiple paths. In addition, the
congtraint satisfaction procedure could be enhanced by
implementing more sophisticated methods. This remains
the subjea of our future reseach.

Acknowledgement

This work was suppated by Estonian Science

Foundation Grant G-1850 and by German-Estonian
bil ateral projed EST-008-96 funded by BMFT Germany.

References

(1

(2]

(3]

T. M. Niermann, J. H. Patel, "HITEC: A test generation
padkage for sequential circuits', Proc. of the EDAC, pp.214-
218, 1991.

F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza
Reorda, "GATTO: A genetic dgorithm for automatic test
pattern generation for large synchronous sequentia
circuits', |[EEETran. CAD, vol.15, no.8, pp.991-1000, Aug.
1996.

E. M. Rudnick, J. H. Patel, G. S. Greestein, T. M.
Niermann, "Sequential circuit test generation in a genetic
agorithm framework”, Proc. of the DAC., pp. 698704,
1994.

(4]

(5]

(6]

(8]

E. M. Rudnick, R. Vietti, A. Ellis, F. Corno, P.Prinetto, M.
Sonza Reorda, "Fast sequential circuit test generation using
high-level and gate-level techniques’, Proc. of DATE, 1998.
J. Lee and JH. Patel, "Architedural level test generation for
microprocesors’, |EEE Trans. CAD, vol.13, no.10,
pp-1288-1300, Oct. 1994.

R. Ubar, "Test Synthesis with Alternative Graphs', IEEE
Design & Test of Compuiters, pp. 48-57, Spring 1996.
R.Ubar, JRaik, "Hierarchicd test generation for digital
systems based on combining bottom-up and top-down
approaches’, Proc. of SCI/ISAS 98, pp.374-381, Orlando,
July 1998

G.Jervan, A.Markus, JRak, R.Ubar, "DECIDER: A
Dedsion Diagram based Hierarchicd Test Generation Sys-
tem", Proc. of the DDECS98 Conference, pp. 269-273,
Szczyrk, Poland, September 2-4, 1998.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

