
Sequential Circuit Test Generation Using Decision Diagram Models

Jaan Raik, Raimund Ubar
Department of Computer Engineering
Talli nn Technical University, Estonia

Abstract
A novel approach to testing sequential circuits that uses
multi -level decision diagram representations is intro-
duced. The proposed algorithm consists of a combination
of scanning and conformity test generation procedures.
Structural faults in both, datapath and control part are
targeted. High-level simplifi ed and fast symbolic path
activation strategy is combined with random local test
pattern generation for functional units. Current approach
has achieved high fault coverages for known sequential
circuit benchmarks in a very short time.

1. Introduction

Different techniques for solving the problem of gener-
ating tests for structural faults in sequential circuits have
been proposed over the years. On the gate-level, determi-
nistic [1] and simulation based [2,3] algorithms have been
proposed. However, the execution times are extremely
long and for medium and large circuits mostly rather low
fault coverages have been achieved.

Recently, promising results based on software testing
techniques combined with low level test have been pub-
lished in [4]. The approach offers high fault coverages for
medium sized benchmark circuits but the test generation
still t akes relatively much time. Furthermore, the authors
have not developed any formalized method for generating
the high-level test frames and the time needed to generate
the frames has not been taken into account in the
experiments. Trivial finite state machines containing only
a single control state have been implemented for some of
the larger example circuits.

At present, hierarchical test generation is the fastest
and most effective means for sequential circuits testing
[5]. Here, designs described on different abstraction levels,
usually on architectural- and gate-level, are used. The
method cannot be applied to designs that do not have
appropriate modularity, or where gate-level implementa-
tion for the modules is not known. However, as a number
of commercial high-level synthesis tools have emerged,
the input description should not be a major issue.

Previous works in the area of hierarchical testing have
the following main shortcomings:
1. Only the faults in the datapath Functional Units (FU)

are targeted.
This usually results in low fault coverages for the control
part as well as for multiplexers, registers and fanout buses
of the datapath.
2. A complex set of symbols and constraints is used

during high-level path activation.
This feature makes the symbolic path activation process
very compute-intensive. For more complex circuits it can
also cause high-level tests for many FUs to fail due to the
strict conditions.

The aim of the approach proposed in current paper is to
overcome the above mentioned shortcomings. Differently
from known methods, both, control unit and datapath are
handled in a uniform manner. A restricted set of symbols
is used during the path activation. This allows to simplify
the test generation algorithm while still maintaining a good
correspondence between high-level assessments and gate-
level fault coverage. The paper is organized as follows.
Section 2 gives a short overview of representing circuit
architecture by Decision Diagram (DD) models. Section 3
introduces the test generation algorithm. Finally, experi-
mental results and conclusions are presented.

2. Decision Diagram representations

Consider a component (subnetwork) f of a digital
sytem S as a function y=f(x) where y=(y1,…yn) and
x=(x1,…xm) are vector variables. The function f is defined
on X=X1×…×Xm with values y ∈ Y = Y1×…×Yn, and both,
the domain X and the range Y are finite sets of values. xi, i
= 1,2,…m, are input or state variables of the component f,
whereas yj , j = 1,2,…n, are output or next state variables.
The values of variables may be Boolean, Boolean vectors,
integers.

Definition 1. A Decision Diagram (DD) G is a directed
noncyclic graph G=(M,Γ,x). M is a set of nodes. Γ is a
relation on M where Γ(m) ⊂ M denotes the set of successor
nodes of m∈M. The nodes m∈M are marked by labels
x(m). The labels can be: variables xi, algebraic expressions

of xi, or constants. For nonterminal nodes m, where Γ(m) ≠
∅, an onto function exists between the values of x(m) and
the successors me∈Γ(m) of m. By me we denote the succes-
sor of m for the value x(m)=e.

Definition 2. The edge (m, me) which connects nodes m
and me is called activated iff there exists an assignment
x(m)=e. Activated edges which connect mi and mj make up
an activated path l(mi,mj). An activated path l(m0,mT) from
the initial node m0 to a terminal node mT is called full acti-
vated path.

Definition 3. Decision Diagram Gy = (M,Γ,x) repre-
sents a function y = f(x) iff for each value of x, a full path
in Gy to a terminal node mT is activated, where x(mT) = y is
valid.

As a hierarchical input to the test generator are
descriptions where the architecture of the circuit is
described at the Register-Transfer Level (RTL) and the
low-level structure is given at the gate level. Both these
levels can be described by DD models. Datapath can be
represented by a system of DDs, where for each primary
output and register, a DD corresponds. In addition, multi -
plexers that are connected to an input of an FU are repre-
sented by a separate DD. In the DD models, the non-ter-
minal nodes correspond to control signals and terminal
nodes represent operations. Register transfers and constant
assignments are treated as special cases of operations.
Activated branches between the nodes determine, which
operation is assigned to the variable represented by DD
with each value combination of the control signals. Figure
1 shows an example of a DD representation for a datapath
register.

Figure 1. DD model of a datapath fragment

The control part of an RTL description is described as
a Finite State Machine (FSM) state table. Similar to data-
path, the state table can be represented by a DD model. In
that case, the non-terminal nodes correspond to current
state and conditions (FSM inputs) and terminal nodes hold
vectors with the values of next state and control signals

(FSM outputs). Figure 2 shows an example of a fragment
of an FSM state table and the corresponding DD repre-
sentation. In the DD, q denotes the next state and q’
denotes the current state value. Variables out1, out2, out3
and out4 are output signals of the FSM. The DD in Figure
2 describes the behavior of the FSM at the current state
being equal to s5.

Figure 2. Converting a state table to a DD

In current hierarchical test generation approach, gate-
level descriptions of the datapath modules are transformed
into Structurally Synthesized BDD (SSBDD) models. Dif-
ferently from BDDs, which represent function only,
SSBDDs support test generation for gate-level structural
faults without representing these faults explicitly.
Furthermore, the worst case complexity for generating
SSBDDs is linear in respect to the number of logic gates,
while it is exponential for BDDs. More detailed informa-
tion about SSBDDs can be found in [6].

3. Test generation algorithm

The high-level symbolic path activation, proposed in
current paper is a complete algorithm, i.e. if transparent
paths for fault effect propagation and value justification
exist, they will be activated. The algorithm has been
implemented as a systematic search and therefore an
inconsistency in any stage causes a backtrack and a return
to the last decision. However, due to the NP-complete
nature of the problem, in some cases, the search must be
terminated after a certain maximal number of solutions
have been tried. For the sake of simplicity and speed, only
three types of symbolic values are used during the path
activation:

D - line with the fault effect,
X - line with unassigned value,

assigned - line with a specified (integer) value.
The hierarchical test generation algorithm consists of

five stages. These are fault manifestation, fault propaga-
tion, constraint justification, constraint satisfaction and
low-level test, respectively. In the following, the different
stages are explained more in detail .

3.1. Fault manifestation

There exist two types of nodes in DD models: terminal
nodes and non-terminal nodes. Appropriate tests for the
corresponding types have to be set up during the manifes-
tation stage. The two types of tests are referred to as scan-
ning test and conformity test. Scanning tests are applied to
terminal nodes and their aim is to test the functional units
(FU), registers and constants of the datapath. Conformity
tests are set up for non-terminal nodes and they target the
multiplexers of datapath as well as control signal decoders
in the control part.

During the scanning test, the path to the node under
test is activated in respective DD. The symbolic fault-
effect value D is assigned to the variable corresponding to
the DD, and new constraints are created from the argu-
ments of the function labeling the node under test. These
constraints are later treated as justification objectives.
Figure 3 presents a simple example where scanning test is
performed for the node FU1 in the DD MUX. The blocks
where gate-level faults are targeted by the scanning test
are marked with striped areas in the figure.

Figure 3. Example of scanning test

Conformity test is similar to scanning test in the way
that a path is activated to the node under test, and the fault
effect value is assigned to the DD variable. In addition,
distinguishing of values of the variables labeling the ter-
minal nodes is made. In current implementation pairwise
distinguishing is used. Conformity test for a node must be
carried out for each edge of the node under test activated
and for each pair to be distinguished. Hence, there exist
n(n-1) conformity tests for a non-terminal node with n
successor nodes.

The distinguishing takes place as follows. In case the
successor nodes are not terminals, paths are activated from
the successors to terminal nodes. Constraints to be back-
traced during the justification are created of the variables
labeling corresponding terminal nodes of the DD. A
simple example in Figure 4 ill ustrates the conformity test
for the control signal address. The blocks where faults are
targeted by the test are marked with striped areas.

3.2. Fault effect propagation

The aim of the propagation procedure is to determine
the state sequence necessary to propagate the fault effect

Figure 4. Example of conformity test

symbol to a primary output and to extract the logic condi-
tions that must be satisfied at different time steps. Basing
on the values assigned to control signals during the mani-
festation phase, a terminal node of the FSM DD is chosen,
which provides the initial state and the control vector.
Subsequently, a node is chosen from the set of nodes
containing the variable to which the fault effect symbol
has been assigned. A path is activated to the node in corre-
sponding DD. According to that path, values are assigned
to respective control signals. Again, basing on these values
a consistent FSM DD terminal node providing current
state and control vector is chosen. The procedure will end
when the fault effect value reaches a primary output.

In current test generation approach, all the symbolic
path activation procedures (manifestation, propagation,
justification) are implemented as alternate choices at data-
path and control part DDs. Activated paths in DDs make it
possible to determine relevant variable assignments at
each time step.

3.3. Constraint justification

During this phase we justify the variable values in the
extracted constraints. Each time a backward step is made
during the justification, the contents of the constraints will
be updated. It is done according to the control vectors that
are active at corresponding FSM states. In addition, new
constraints will be extracted if conditions are traversed in
the FSM DD. Justification will end when all the variables
in the constraints are primary inputs or constants.

The constraints can be divided into two categories:
path activation constraints and transformation constraints.
Path activation constraints correspond to the conditions
that have to be satisfied in FSM in order to provide trans-
parent paths through the circuit. Transformation con-
straints, in turn, reflect the value changes along the acti-
vated paths; They are extracted during the manifestation
phase and are necessary in order to calculate the local test
patterns for the module under test. Both types of con-
straints can be represented by common data structures and
manipulated by common procedures for update, modeling
and simulation.

Justification starts with traversing the propagation state
sequence in the reverse order until the fault manifestation
step is reached. During each time frame that is earlier than
the manifestation step, the justification procedure selects a

justification objective. In current implementation the
objective is to backtrace the first unjustified variable in the
transformation constraints. In the case when transforma-
tion constraints are justified, the objective will be to back-
trace the first unjustified variable in the path activation
constraints, respectively.

At every justification step, the constraints containing
only constant variables will be simulated. This improve-
ment to the test generation algorithm makes it possible to
detect obvious inconsistencies at early stages of path acti-
vation and hence reduces the search space. At this point of
the algorithm we have created the high-level symbolic test
frames. In the following phases, actual values have to be
calculated for the symbolic values of the frames.

3.4. Constraint satisfaction

Subsequent to constraint justification, the constraints
have to be solved. In order to achieve that, any known
Constraint Satisfaction Problem (CSP) solving algorithm
can be applied. In current implementation we use random
generate-and-test technique. In the future, more advanced
CSP methods have to be implemented to avoid possible
loss of solutions while testing large and complex circuits.

3.5. Low-level test

Only the path activation constraints are managed dur-
ing constraint satisfaction while transformation constraints
are considered in the low-level test. This step targets the
gate-level structural faults in the modules under test
(MUT). During the low-level test, random values are gen-
erated to the unassigned variables of transformation con-
straints. The constraints are simulated to obtain the trans-
formed vectors at the inputs of MUT, which in turn are
applied to the fault simulation for the module. If a fault is
detected at the output of the module, it is assumed to be
detected at the primary outputs of the whole device. This
is true because the propagation of the fault effect symbol
to primary outputs has been guaranteed by previous stages
of the algorithm.

The vectors that detect previously undetected faults are
compiled into final test vectors for the whole hierarchical
circuit. This takes place by substituting the symbolic
values in the high-level symbolic test frames by the actual
values found during constraint satisfaction and low-level
test.

4. Experimental results

The proposed test generation algorithm has been
implemented as a part of the DECIDER (DECision
Diagram based test genERation) system [8]. At present,
the system contains gate-level EDIF interface which is

capable of reading designs of CAD systems like
SYNOPSYS, CADENCE, MENTOR GRAPHICS,
VIEWLOGIC, etc. In addition, an RT-level VHDL inter-
face to a commercial high-level synthesis tool is under
consideration.

Table 1 presents the main characteristics of the bench-
mark circuits used in the experiments. The two designs are
well-known benchmarks from the HLSynth family. In
Table 2 the results which were obtained on a SUN
ULTRASPARC 2 workstation under Solaris 2.5 operating
system are given. Fault coverages were determined by ap-
plying gate-level fault simulation to the generated patterns,
i.e. actual stuck-at fault coverages are reported in the table.

For comparison, experimental data of [4] has been
included. Table 3 describes the circuits used for the
experiments in [4]. These experiments were run on an HP
9000 J200 256MB computer and the results are given in
Table 4.

Though the circuits in Table 1 and Table 3 represent
the same functionali ty, instead of trivial control units
containing only a single control state, in current paper,
control units with multiple states are implemented. This
leads to a more complex class of devices with high
sequential depth and global feedback loops over control
and datapath parts. However, in our experiments a 4-bit
version of the gcd circuit was used while in [4] the bit-
width was 16.

Compared to the results obtained in [1,3,4] test
generation times achieved by current method were signifi-
cantly shorter. The fault coverage for diffeq was slightly
lower which can be explained by the higher sequential
depth of the implementation. The number of generated test
sequences in our approach can be further minimized if
high-level fault collapsing would be included.

5. Conclusions

Current paper describes a novel hierarchical test gen-
eration approach based on using decision diagram models.
Differently from known methods, both, higher and lower
design abstraction levels, and both, control and data parts
are handled in a uniform manner. Joint formal basis for
gate- and higher level descriptions allowed to adopt and
generalize gate-level methods to high-level ones. The
methods were improved by exploiting higher bitwidth of
data variables. The new path activation technique avoids
complex symbolic algebra while maintaining still a good
correspondence between high-level fault coverage assess-
ments and actual gate-level fault coverage. As a result,
high fault coverages are very quickly achieved for known
sequential circuit benchmarks.

Authors consider several additional improvements that
could be made to the proposed algorithm. The present
implementation does not include fault effect propagation

Table 1. Benchmark circuits

Circuit Gates Faults PIs POs Flip-flops Control states

diffeq 4195 15,836 81 48 115 6
gcd 227 844 9 4 15 8

Table 2. Test generation results

Circuit Fault coverage, % Test sequences Time, s
diffeq 95.4 353 20.4
gcd 91.0 67 5.6

Table 3. Benchmarks used in [4]

Circuit Gates Faults PIs POs Flip-flops Control states
diffeq 9340 18,216 81 48 129 1
gcd 1191 2199 33 16 49 1

Table 4. Test generation results in [4]

Tool Circuit Coverage, % Sequences Time, s
diffeq 98.2 100 6480High+gate [4]
Gcd 90.4 90 1068

Diffeq 97.3 N. A. 84960HITEC [1]
Gcd 74.3 N. A. 49320

Diffeq 98.9 N. A. 27756GATEST [3]
Gcd 62.6 N. A. 636

simultaneously along multiple paths. In addition, the
constraint satisfaction procedure could be enhanced by
implementing more sophisticated methods. This remains
the subject of our future research.

Acknowledgement

This work was supported by Estonian Science
Foundation Grant G-1850 and by German-Estonian
bilateral project EST-008-96 funded by BMFT Germany.

References

[1] T. M. Niermann, J. H. Patel, "HITEC: A test generation
package for sequential circuits", Proc. of the EDAC, pp.214-
218, 1991.

[2] F. Corno, P. Prinetto, M. Rebaudengo, and M. Sonza
Reorda, "GATTO: A genetic algorithm for automatic test
pattern generation for large synchronous sequential
circuits", IEEE Tran. CAD, vol.15, no.8, pp.991-1000, Aug.
1996.

[3] E. M. Rudnick, J. H. Patel, G. S. Greenstein, T. M.
Niermann, "Sequential circuit test generation in a genetic
algorithm framework", Proc. of the DAC., pp. 698-704,
1994.

[4] E. M. Rudnick, R. Vietti, A. Elli s, F. Corno, P.Prinetto, M.
Sonza Reorda, "Fast sequential circuit test generation using
high-level and gate-level techniques", Proc. of DATE, 1998.

[5] J. Lee and J.H. Patel, "Architectural level test generation for
microprocessors", IEEE Trans. CAD, vol.13, no.10,
pp.1288-1300, Oct. 1994.

[6] R. Ubar, "Test Synthesis with Alternative Graphs", IEEE
Design & Test of Computers, pp. 48-57, Spring 1996.

[7] R.Ubar, J.Raik, "Hierarchical test generation for digital
systems based on combining bottom-up and top-down
approaches", Proc. of SCI/ISAS’98, pp.374-381, Orlando,
July 1998.

[8] G.Jervan, A.Markus, J.Raik, R.Ubar, "DECIDER: A
Decision Diagram based Hierarchical Test Generation Sys-
tem", Proc. of the DDECS'98 Conference, pp. 269-273,
Szczyrk, Poland, September 2-4, 1998.

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

