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Abstract

Retiming is an efficient technique for redistributing reg-
isters in synchronous circuits in order to improve the circuit
performance. However, the traditional retiming approaches
cannot handle circuits whose registers are controlled by dif-
ferent clock, reset, and load enable signals. We present ba-
sic theory and a comprehensive retiming approach for cir-
cuits with multiple clock, reset, and load enable signals. We
retime these circuits having multiple register classes with-
out explicitly modeling the reset or the load enable by addi-
tional logic. The presented concepts can be combined with
a wide range of existing retiming approaches. Experimen-
tal results from retiming real designs for clock period mini-
mization show the efficiency of the new approach.

1. Introduction

In modern VLSI design the optimization of synchronous
sequential circuits is a key issue. In order to optimize syn-
chronous circuits, combinational optimization techniques
are usually applied in synthesis systems while sequential
optimization techniques are only rarely used.

A very promising sequential optimization technique is
calledretiming. Retiming moves registers across combina-
tional logic blocks without changing the logic function in-
side the blocks. Leiserson and Saxe [9, 10] showed that
retiming can be used for minimizing the clock period as
well as for minimizing the number of registers under a clock
period constraint. It can be applied to circuits with level-
sensitive latches [11] or edge-triggered flip-flops [10, 16].
Several extensions to retiming [15, 2, 3] as well as effi-
cient implementations [16, 13] have been proposed which
show that retiming is even applicable to large circuits. In
this paper, we focus on sequential circuits having edge-
triggered flip-flops as registers. However, the concepts and
approaches of this paper can also be transferred to circuits
with level-sensitive latches.

Most retiming approaches assume that edge-triggered se-
quential circuits have only a single clock. Industrial de-
signs, however, are usuallymultiple-clocksystems, i.e., dif-
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ferent registers may be connected to different clocks. This
fact complicates the retiming problem because additional
constraints are imposed on register movements in order to
preserve temporality [17]. Lockyear and Ebeling [11], and
Ishii et al. [7] already tackled the problem of retiming multi-
phase level-clocked circuits. However, their approaches
are restricted to the special class ofwell-formedcircuits
in which the sequence of clock phases has the same order
along any path through the circuit. Thus, these approaches
need not impose additional constraints on register move-
ments. In general multiple-clock circuits, however, these
constraints must be taken into account explicitly.

Most of the existing retiming approaches assume that
the circuit has a single reset signal for all registers which
is activated only once at the beginning of circuit opera-
tion [19, 5, 14]. Thus, they only tackle the problem of com-
puting aninitial state for the retimed circuit that is equal
to the initial state of the original circuit. Singhal et al. [18]
generalized theretimed initial stateproblem to theretimed
reset stateproblem by allowing, e.g., different reset lines to
be activated during different clock cycles. They showed that
register moves may be constrained due to the assumption
about reset activation and due to different reset signals con-
nected to different registers. However, they only looked at
a single retiming move and did not present an overall retim-
ing algorithm that finds an optimal retiming in accordance
with the retimed reset state problem.

Registers may have a load enable (also called clock en-
able) capability. It is desirable that retiming preserves the
load enables because modeling a load enable by a simple
register with extra logic increases area and delay costs. E.g.,
many FPGAs offer the load enable capability for free, mak-
ing its use imperative for good FPGA design. Thus, a re-
timing approach should be able to move registers together
with their load enables across logic blocks. This problem
was addressed in [1] and [6]. Camposano and Pl¨oger [1]
stated several conditions for a valid retiming step involv-
ing load enable registers. However, they did not present an
overall approach for computing a retiming solution that sat-
isfies these constraints. A first idea for solving the retiming
problem in circuits with multiple load enable and clock sig-
nals was introduced in [8], but no practical implementation
and no experimental results were shown.

In this paper, we present basic theory and an efficient



approach for retiming synchronous circuits where different
registers can be connected to different clocks, asynchronous
and synchronous reset signals, and load enable signals. Af-
ter some background information on traditional retiming in
Section 2, we show in Section 3 how to partition the regis-
ters intoclasses. On the basis of these classes we define a
circuit transformation calledmultiple-class retimingwhich
guarantees that the retimed circuit is asufficiently old re-
placement[9] of the original circuit. In Section 4 some the-
oretical aspects of multiple-class retiming are shown which
lead to an efficient implementation.

Section 5 presents an efficientmultiple-class retiming
approach. It transforms the problem of retiming a multiple-
class sequential circuit into a traditional single-class retim-
ing problem. Then, any state-of-the-art retiming approach
can be used which has been presented, e.g., forclock period
minimizationor register minimization under a clock period
constraint. Finally, the multiple-class sequential circuit is
updated according to the solution for the single-class retim-
ing problem. This also includes the computation of equiv-
alent asynchronous and synchronous reset states for the re-
timed circuit.

In order to show the applicability, we implemented our
new approach and applied it to the clock period minimiza-
tion problem. Experimental results in Section 6 show the
efficiency of our multiple-class retiming approach.

2. Background
In this section, we briefly review the terminology and the

graph model for single-class sequential circuits.
Leiserson and Saxe [9, 10] model a single-class sequen-

tial circuit as a vertex-weighted, edge-weighted, directed
multigraphG = hV;E;d;wi, called retiming graph. Each
combinational logic block and each input and output of the
sequential circuit is represented by a unique vertexv 2 V.
Additionally, a host vertexvhost is introduced to model the
environment of the circuit. There exists an edgeeuv 2 E if
an output of the logic block represented by vertexu is con-
nected to an input of the logic block represented by vertex
v. Moreover, there are edges fromvhost to all input vertices
and from all output vertices tovhost.

The vertex weightd(v) is the propagation delay of the
logic block of vertexv. The edge weightw(euv) indicates
the number of registers along the interconnection from ver-
texu to vertexv. A pathp : u; v in the graph is a sequence
of edges from vertexu to vertexv. The path weightw(p) is
the sum of the edge weights along the path.

A retimingis an integer-valued vertex labelingr : V! Z.
A retiming (or lag) valuer(v) denotes the number of regis-
ters that are moved from the outputs to the inputs ofv. The
retimed graphGr = hV;E;d;wri can be derived from the
original graphG by computing the retimed edge weights,

wr(euv) = w(euv)+ r(v)� r(u): (1)

Similarly, the retimed path weightwr(p) of a pathp : u; v
is computed bywr(p) = w(p) + r(v)� r(u). A retiming
r : V! Z is legal [10] if for each edgeeuv the retimed edge
weightwr(euv) is nonnegative, i.e.,wr(euv)� 0.

A retiming r 0 : V ! Z with r 0(vhost) 6= 0 moves registers
across inputs and outputs. However, an equivalent retiming
r for which r(vhost) = 0 holds can always be obtained from
r 0 by thenormalization[5]

r(v) = r 0(v)� r 0(vhost): (2)

In the sequel we will always assume thatr(vhost) = 0 holds.

3. Multiple-class retiming

Before looking at the problem of multiple class retiming,
we present the types of registers we are going to support and
how to model these different types in a retiming graph.

The left hand side of Fig. 1 shows a generic registerl
between some gatesu andv. Each registerl is at least con-
nected to a data input and output signal and a clock signal
clk. A register may be connected to further control signals
which are

� an asynchronous reset signalars causing an asyn-
chronous set or clear behavior,

� a synchronous reset signalsrscausing a synchronous set
or clear behavior,

� a load enable (or clock enable) signalle.

Contrary to the circuits handled by most of the existing
retiming approaches we now also consider circuits contain-
ing multiple types orclassesof registers.

Definition 1 (Register class)A class C of registers is char-
acterized by a tuple(clk, le, ars, srs) of signals. A register l
is contained in class C iff each of its control signals is iden-
tical to the corresponding signal in the tuple of class C.

The case that some register does not use, e.g., a load enable
is modeled by connecting a constant 0 signal to the inputle.
Two clock signals are identical if they have the same period
and phase offset. Two load enable or reset signals are identi-
cal if the signals are logical equivalent. The (a)synchronous
reset state is determined by the reset signal being connected
to either a set or clear input of the register. However, the
class of a register does not depend on the reset state itself.
Registers that belong to the same class are denotedcompat-
ible registers.

In the sequel, a circuit containing different classes of reg-
isters is called amultiple-class circuitin contrast to asingle-
class circuitwhich contains only one class of registers. For
a multiple-class circuit it is no longer sufficient to store the
number of registersw(euv) on an edgeeuv of the retiming
graph, as each register may belong to a different class. This
information needs to be modeled in the retiming graph.

Therefore, we introduce a modified retiming graph
Gmc= hV;E;d; li which we callmc-retiming graphor short
mc-graph(an example is depicted right hand side of Fig. 1).
Instead of the edge valuesw(euv) we place an ordered list
l(euv) = [l1; : : : ; lw(euv)] on each edge. This list indicates a
sequence ofw(euv) registers on this edge.l1 corresponds to
the register closest to the source of the edge, whilelw(euv)
is the register closest to the sink of the edge. An optional
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Figure 1. Modeling registers in a mc-retiming graph.

superscriptj at some registerl j
i denotes the index of the

corresponding register classCj . Additionally, for each load
enable and reset signal we introduce an output vertex in the
mc-retiming graph.

For an mc-graph we keep the notion of edge weights
which are now given by the length of the lists:w(euv) =

jl(euv)j. Similarly to the single-class retiming graph (sc-
graph) we apply the concept of register lists also to paths:
The sequence of registers on pathp : u; v is given by the
list l(p) andli(p) denotes thei-th register on that path.

A basicmc-retiming stepfor a vertexv can now be per-
formed as depicted in Fig. 2. E.g., for one forward mc-
retiming step at vertexv, there must be a completelayer of
registers at the incoming edges ofv which comprises the
last registers in each list. During the forward retiming step,
the registers of the layer are removed from their list, and a
new layer is inserted at the fanout edges ofv by prepending
a register to the list of each outgoing edge.

Of course, for multiple-class circuits certain restrictions
apply to thevalidity of such a mc-retiming step. A mc-
retiming step is valid if it yields a circuit which is asuf-
ficiently old replacement[9] of the original circuit. It has
been shown in [1] for load enable signals that such a retim-
ing step is valid if all registers of the layer to be moved are
connected to the same load enable signal. The same condi-
tion applies to the clock signal in order to preserve the tem-
poral equivalence of the circuit [17]. Registers with reset
signals can be moved if the corresponding signals are iden-
tical [18]. Since our definition of register classes is based
on the same conditions, we can relate the validity of a mc-
retiming step to the classes of the registers to be moved:

Theorem 1 (Validity of a mc-retiming step)
A mc-retiming step as shown in Fig. 2 is valid if all registers
to be moved belong to the same class.

The proof of this theorem directly follows from [17, 1,
18]. Note that by examining the state space or the logic
functions we may find few cases where registers of differ-
ent classes can be moved across a vertex while still preserv-
ing circuit equivalence. However, such extensive analysis
would deteriorate the efficiency of retiming. Therefore, we
do not consider such cases.

As in traditional single-class retiming, we can also define
a retiming for a multiple-class circuit as an integer valued
vertex labelingr :V!Z. The validity of such a retiming for
a multiple-class circuit is given by the following theorem.
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Figure 2. Performing a basic mc-retiming step

Theorem 2 (Legal mc-retiming) A retiming r : V ! Z
generating a circuit which is a sufficiently old replacement
of the original circuit is a legal retiming for a multiple-class
circuit, short alegal mc-retiming, if it can be implemented
by a sequence of valid mc-retiming steps.

The proof of this theorem follows from the validity of
each single basic mc-retiming step. In the following sec-
tions we will show how a legal mc-retiming can be effi-
ciently computed.

4. Theory of multiple-class retiming
We will now derive some properties of mc-retiming and

we show its relation to sc-retiming. This relation will lead
to an efficient implementation of mc-retiming. The proofs
of the theorems can be found in [4].

Let a legal retimingr : V ! Z be given for a sc-
retiming problem where no register is moved across the in-
puts/outputs of the circuit, i.e.,r(vhost) = 0. It was shown
in [12] that the retiming values are bounded from above and
from below as given by the following theorem.

Theorem 3 For each vertex v of G, let pI (v) and pO(v) be
minimum weighted paths from the host vertex vhost to v and
from v to vhost, respectively. Then, any legal sc-retiming
r : V! Z, with r(vhost) = 0, satisfies

rmin(v)� r(v)� rmax(v); (3)

where rmin(v) =�w(pI (v)), and rmax(v) = w(pO(v)).

Intuitively, we can not move more registers forward or
backward acrossv than the minimum number of registers
available on any path fromvhost to v or from v to vhost, re-
spectively. Theorem 3 guarantees for sc-retiming that, e.g.,
up to rmax(v) registers can be moved backward acrossv.
However, for mc-retiming this may not be possible since
different register classes can prohibit some retiming steps.
This is illustrated by the following example.

Figure 3 shows a part of a mc-retiming graph. For
vertex v1 a minimum weighted path to the host vertex is
given by pO(v1) = (v1;v3;vhost). It carries the register list
l(pO) = [l0a; l

0
b] and has weightw(pO) = 2. Thus, for sc-

retiming, rmax(v1) = w(pO) = 2 registers could be moved
backward acrossv1. For mc-retiming, the first backward
mc-retiming step would be valid because the corresponding
layer is comprised by compatible registersl0a andl0c . For the
second backward move atv1 we first move registerl1d across
vertexv2 which is a valid step. However, now the registers
l0b andl1d at the fanout edges ofv1 belong to different classes
C0 andC1 which prohibits any further backward move.
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Figure 3. Part of a mc-retiming graph Gmc.

We will now investigate the condition under which a re-
timing value is a valid mc-retiming value.

Definition 2 (Valid mc-retiming value) A retiming value
r(v) is avalid mc-retiming value iff r(v) can be implemented
by a sequence of valid mc-retiming steps.

The validity ofr(v) is directly related to the compatibil-
ity of the registers in the layers that can be reached on the
incoming and outgoing paths of vertexv.

Theorem 4 (Conditions for a valid mc-retiming value)
A retiming value r(v)> 0 is a valid mc-retiming value iff
a) r(v)� rmax(v),
b) r(v)�1 is a valid mc-retiming value, and
c) all registers lr(v)(p) on all paths starting at vertex v are

compatible.
A retiming value r(v)< 0 is a valid mc-retiming value iff
a) r(v)� rmin(v),
b) r(v)+1 is a valid mc-retiming value, and
c) all registers lw(p)+1+r(v)(p) on all paths ending at ver-

tex v are compatible.
Trivially, r(v) = 0 is always a valid mc-retiming value.

From Theorem 4 it follows that there exist a unique lower
and upper bound for the valid mc-retiming values of each
vertex which we will denoteforward mc-retiming bound
rmc
min(v) and backward mc-retiming bound rmc

max(v), respec-
tively. Because of Theorem 4 these bounds never exceed
the sc-retiming bounds, i.e.,

rmin(v)� rmc
min(v)� r(v)� rmc

max(v)� rmax(v): (4)

By Theorem 3, a legal sc-retiming only guarantees that
rmin(v) � r(v) � rmax(v). If we also want to guarantee a le-
gal mc-retiming solution, we must additionally incorporate
the mc-retiming bounds (4) into the mc-retiming problem
formulation. This leads to the following pivotal theorem
which states the conditions for a legal mc-retiming solution.

Theorem 5 (Legal mc-retiming) A retiming r: V! Z is a
legal mc-retiming iff the following conditions hold:

8euv2 E : r(u)� r(v)�w(euv) (5)
r(vhost) = 0 (6)

8v2V : rmc
min(v)� r(v)� rmc

max(v): (7)

Conditions (5) and (6) are the same as for sc-retiming
and simply reflect the demand for positive retimed edge
weights and prohibition of input/output moves, respectively.
Additionally, condition (7) allows only valid mc-retiming
values. These values can be implemented by valid mc-
retiming steps. Thus,r represents a legal mc-retiming ac-
cording to Theorem 2.

Corollary 1 A mc-retiming r: V ! Z is legal iff r is a le-
gal sc-retiming and all retiming values fulfill the constraints
given by the mc-retiming bounds.

Corollary 1 directly leads to an efficient approach for
mc-retiming. We can use any sc-retiming approach dur-
ing the search for an optimal mc-retiming solution as long
as we satisfy the additional mc-retiming bounds for the re-
timing values. The following section will show that these
mc-retiming bounds can be incorporated into the traditional
sc-retiming problem formulation in a natural way.

5. Efficient algorithm for mc-retiming

In the last section we showed that a mc-retiming solution
can be obtained by performing sc-retiming with additional
constraints on the retiming values. In order to do so we now
propose an efficient mc-retiming approach which performs
the following three steps:

1. Compute backward and forward mc-retiming bounds.

2. Compute sc-retiming which fulfills the mc-retiming con-
straints using any generic retiming approach.

3. Move the registers in the graphGmc to their final posi-
tions according to retiming values obtained in step 2.

The following subsections will explain these steps in
more detail.

5.1. Computing the mc-retiming constraints

We will only show how to compute the backward mc-
retiming boundsrmc

max(v). All results derived for this case
can be easily transfered to the computation of the forward
mc-retiming boundsrmc

min(v).
From Section 4 we know that a unique valuermc

max ex-
ists for each vertex of the graphGmc. We call a retiming
r� wherer�(v) = rmc

max(v) for each vertexv a maximal back-
ward retimingbecause it moves the registers as far as pos-
sible backward toward the primary inputs. We can compute
a maximal backward retiming, and thus the valuesrmc

max, by
applying valid backward mc-retiming steps as long as pos-
sible while counting the number of registers which move
across each vertex. The next theorem shows that no matter
in which order we apply the basic retiming steps, we always
end up with the unique maximal backward retimingr�.

Theorem 6 (Maximal backward retiming) Let r be a le-
gal mc-retiming which has already been implemented by
valid mc-retiming steps. Then, as long as there exists a ver-
tex u with r(u) < rmc

max(u), there exists at least one vertex v
for which a valid mc-retiming step can be applied.

Proof : Let u be a vertex withr(u) < rmc
max(u). Then, each

outgoing pathp : u; vhost has a registerl1(p) on it, and all
these registers are compatible. By an iterative procedure [4],
we can show that eitheru or some vertexv in the transitive
fanout ofu is retimeable by a valid mc-retiming step. 2



Algorithm 1 ComputeBackwardBounds(Gmc(V;E))
1: Q /0
2: for all v2V do
3: r(v) 0
4: if v is backward mc-retimeablethen
5: Q Q[fvg
6: end if
7: end for
8: while Q 6= /0 do
9: remove a vertexv from Q

10: while v is backward mc-retimeabledo
11: backwardmcretimestep(v)
12: r(v) r(v)+1
13: end while
14: for all u2 FANIN(v) do
15: if u is backward mc-retimeablethen
16: Q Q[fug
17: end if
18: end for
19: end while
20: return rmc

max(v) r(v)

Algorithm 1 shows an efficient procedure which com-
putes the backward mc-retiming boundsrmc

max. First, all ver-
tices that are amenable for a backward mc-retiming step are
added to the setQ. In the main loop one vertexv is removed
from Q at a time and retimed backward as often as possible
while increasing its retiming value accordingly. Then, each
fanin vertexu of v which became backward retimeable due
to the retiming ofv is inserted into the setQ. The loop ter-
minates when the setQ is empty. Then, each retiming value
is equal to the backward mc-retiming boundrmc

max.
The runtime of this algorithm isO(k(V +E)) wherek=

maxfrmc
max(u) j u 2 Vg. This runtime complexity is strictly

less than the complexity of existing sc-retiming approaches.
E.g., theFEASalgorithm used for minimum clock period re-
timing takes a runtime ofO(VE � lgV) [10]. Algorithms for
register minimization under a clock period constraint have
even higher runtime complexities. Thus, the computation
of the mc-retiming bounds has only a small impact on the
runtime of the overall mc-retiming approach. This will also
be shown by the results in Section 6.

5.2. SC-Retiming under mc-retiming constraints

The sc-retiming problem is an integer linear program
(ILP) with difference constraints only. Thus, it can be
solved efficiently, e.g., by shortest-path algorithms for mini-
mum period retiming and by minimum-cost flow algorithms
for register minimization [10].

Corollary 1 shows that we can generate a legal mc-
retiming by searching for a legal sc-retiming with additional
retiming constraints imposed. Usingr(vhost) = 0, we can
rewrite the mc-retiming constraint (7) using two difference
constraints,

r(vhost)� r(v) � �rmc
min(v) (8)

r(v)� r(vhost) � rmc
max(v): (9)

u v
[l0a; l1b]

u v

2

2

Gmc: G:
1

�2� r(v)� 1

1

�1� r(u)� 3

3

vhost vhost

Figure 4. Transforming mc-graph to sc-graph.

If we add these constraints to the sc-retiming problem, we
again have an ILP with difference constraints only. Thus,
we can still use the same efficient sc-retiming approaches
but now we guarantee that the mc-retiming bounds are ful-
filled. Note that only the number of constraints increases but
not the number of variables. In fact, in theMinaretapproach
[13] it was shown that additional constraints may be used to
reduce the size of the ILP such that less time is needed to
solve the problem.

Other approaches, like theFEASalgorithm [10] orRe-
verse Retiming[5], use the retiming graph as the basis for
their computation. By the following steps, we can trans-
form the mc-graphGmc = hV;E;d; li into a sc-graphG =

hV;E[EC;d;wi such that the mc-retiming constraints for
Gmc are inherently modeled in the sc-graphG.

1. Each edgeeuv in Gmc is translated into an edgeeuv in
G with the register listl(euv) substituted by the weight
w(euv) = jl(euv)j.

2. We model the constraints (8) and (9) by an additional set
EC of constraint edges. For each vertexv we introduce
an edge from the host vertex to vertexv with w(evhost;v) =

�rmc
min(v) and an edge from the vertexv to the host vertex

with w(ev;vhost) = rmc
max(v).

The constraint edges enforce that any sc-retiming solu-
tion will not move more registers across a vertexv than
given by the corresponding constraint edge weight. For ex-
ample, for the sc-graphG in Fig. 4 it is guaranteed for ver-
texu that not more than 1 register is moved forward and not
more than 3 registers are moved backward. Thus, the given
mc-retiming constraints for vertexu will be fulfilled.

The number of constraint edges is onlyO(V). As the
runtime of retiming algorithms is usually quadratic or cu-
bic in the number of vertices, the overall runtime is nearly
not affected by the constraint edges. In fact, as proposed
in [16, 13] a closer look often reveals that many constraint
edges are redundant and can be removed because they are
dominated by neighboring constraints.

5.3. Updating the mc-retiming graph
The last step of our mc-retiming approach is to move

the registers of the mc-graphGmc to their final position
according to the retiming values. Two problems must be
solved. First, a proper sequence of mc-retiming steps must
be found. Second, the asynchronous as well as the syn-
chronous reset state must be computed for each moved reg-
ister. In order to solve both problems, we use a modi-



fied version of theUpdateRegistersalgorithm proposed by
Even et al. [5]. When moving a register backward or for-
ward, the new reset states are computed by backward justi-
fication or forward implication, respectively.

It may happen that a backward move across a vertexv is
not possible because backward justification fails. Similar to
[5] we handle this conflict by decreasing the backward mc-
retiming boundrmc

max(v) such that the conflicting backward
move is no longer allowed. Then, a new retiming solution is
computed that prohibits the non-justifiable backward move.

Alternatively, like in [14] we could derive additional re-
timing constraints already when computing the mc-retiming
bounds such that the existence of a backward justification
is guaranteed. As noted in [14], this generally results in
multiple sets of constraints for which multiple ILPs must
be solved. Furthermore, we would have to justify a lot of
backward moves which are eventually not implemented in
the final retiming solution. Because of this large computa-
tional overhead, we dropped this alternative.

6. Results

In order to show the effectiveness and efficiency of our
approach, we chose clock period minimization as the retim-
ing optimization goal. For ease of implementation, we used
the unit delay model to estimate gate delays. Of course, us-
ing a more realistic delay model is only a matter of having
access to an appropriate timing analyzer. For the generic sc-
retiming approach, we selectedReverseRetiming[5]. It has
the same complexity asFEAS[10] but on average it gener-
ates retiming solutions for which the reset state computation
is easier [5]. Additionally, we used acceleration techniques
for minimum period retiming as proposed in [16].

In order to solve the problems of backward justification
and forward implication during reset state computation we
use a straight-forward approach based on BDDs. The over-
all approach for updating the mc-retiming graph is imple-
mented as described in Section 5.3.

We applied our mc-retiming approach to a set of mid-
sized and large benchmark circuits from the LGSynth931

benchmark suite as well as to a set of industrial designs. Al-
though the LGSynth93 benchmark circuits are single-class
circuits, they were selected to show the efficiency of the
computation of the mc-retiming bounds. The industrial cir-
cuits, denotedind1 to ind9 , are multiple-class circuits.

Table 1 shows characteristic data for the computation of
the mc-retiming bounds. The circuit name, the number of
gates, and the number of registers are shown in columns
1 to 3. The number of register classes is given in column
#C. Column #back and #forw show the overall number
of backward and forward moves that are performed by the
maximal backward and forward retiming algorithm, respec-
tively. The last column shows the CPU time (DEC Alpha
4100 5/300) for computing the mc-retiming bounds.

For the industrial examples, the number of classes ranges
from 2 to 18. CPU times for the computation of the mc-

1As in [5], the initial state of each register is assumed to be zero.

Table 1. Computation of mc-retiming bounds
circuit #gate #reg #C #back #forw CPU(s)
gcd 869 59 1 5618 621 0.63
mm9b 574 26 1 108 29 0.10
mult16a 212 16 1 1747 16 0.23
s344 217 15 1 219 164 0.07
s382 232 21 1 414 145 0.08
s400 246 21 1 448 157 0.10
s444 274 21 1 532 191 0.10
s526 277 21 1 529 221 0.12
s838.1 530 32 1 222 98 0.12
s953 621 29 1 770 108 0.18
s1238 690 18 1 121 9 0.12
s1423 796 74 1 657 175 0.18
s5378 2742 163 1 987 2412 0.70
s9234.1 2796 135 1 3793 2448 0.92
s38417 22520 1465 1 94499 40164 15.83
ind1 1426 318 18 510 122 0.43
ind2 1943 103 7 825 62 0.50
ind3 208 46 4 170 111 0.07
ind4 78 7 2 135 20 0.03
ind5 651 38 2 622 120 0.20
ind6 509 33 2 397 10422 1.45
ind7 635 18 2 595 151 0.20
ind8 311 58 3 129 36497 4.02
ind9 648 26 2 609 16067 1.62

retiming bounds indicate that maximal backward and for-
ward retiming can be performed very fast. E.g., it takes
only 15.83 seconds for circuits38417 with 22520 gates
and 1465 registers.

The minimum period retiming results for the circuits of
Table 1 are shown in Table 2. The initial clock period, the
initial number of registers, the clock period after retiming,
and the number of registers after retiming are shown in the
columns denotedinitial CP, initial #reg, final CP, andfinal
#reg, respectively. Column#stepsshows the actual number
of performed mc-retiming steps. Columns titledMINP and
UREGgive the CPU times forReverseRetimingand updat-
ing the mc-retiming graph, respectively.

Table 2 shows a substantial reduction in the clock pe-
riod for the benchmark circuits as well as for the indus-
trial designs. This indicates that retiming is a very pow-
erful optimization technique also for multiple-class circuits.
All backward moves could be justified by our BDD-based
approach such that no backtrack was necessary. Compar-
ing CPU times it is important to notice that the impact of
computing the mc-retiming bounds on the efficiency of the
overall retiming approach is low. This holds even if very
efficient acceleration techniques [16] are used for the sc-
retiming algorithm. This stresses the theoretical results of
Section 5.1. Please note that the large CPU time in col-
umn UREG is due to the BDD-based reset state computa-
tion, which we have implemented in a straight-forward way
only.

7. Conclusion
In this paper we have presented basic theory and an ap-

proach to retiming synchronous circuits where different reg-
isters can be connected to different clock, asynchronous and
synchronous reset, and load enable signals. In order to man-
age this variety of registers, we introduced the concept of



Table 2. Results for clock period minimization
initial final CPU(s)

circuit CP #reg CP #reg #steps MINP UREG
gcd 32 59 28 77 40 0.2 0.6
mm9b 70 26 58 27 19 0.1 0.0
mult16a 38 16 8 84 491 0.1 44.8
s344 28 15 19 25 25 0.0 0.0
s382 17 21 10 44 111 0.4 2.8
s400 17 21 10 48 116 0.9 2.6
s444 20 21 11 45 153 0.6 3.6
s526 14 21 9 84 146 0.7 8.2
s838.1 21 32 20 34 2 0.1 0.1
s953 27 29 22 34 7 0.1 0.1
s1238 31 18 30 82 121 0.1 1.9
s1423 66 74 59 160 513 0.2 170.7
s5378 32 163 27 185 63 0.6 0.3
s9234.1 55 135 51 135 32 0.6 0.3
s38417 65 1465 45 1629 952 6.6 289.5
ind1 11 318 10 322 4 0.4 6.9
ind2 19 103 14 277 687 0.7 3289.5
ind3 7 46 6 45 98 0.0 0.1
ind4 6 7 3 38 36 0.0 0.1
ind5 11 38 8 181 387 0.1 0.3
ind6 8 33 7 83 160 0.1 0.1
ind7 13 18 8 188 380 0.1 42.5
ind8 8 58 7 94 64 0.1 13.8
ind9 10 26 9 105 331 0.1 178.0

register classes. We defined a circuit transformation called
mc-retiming which guarantees that the retimed circuit is a
valid replacement of the original circuit. Moreover, no ad-
ditional logic has to be added to the circuit in order to im-
plement the transformation.

Our retiming approach is based on transforming the mc-
retiming problem into the traditional retiming problem as
introduced by Leiserson et al.. Thus, efficient state-of-the-
art retiming algorithms can be applied for the mc-retiming
problem. Experimental results show the efficiency of the
presented mc-retiming approach. Being able to retime se-
quential circuits with multiple register classes will signifi-
cantly increase the applicability of retiming to real designs.

Based on the proposed mc-retiming approach we are now
working on extending our approach in order to handle tim-
ing constraints due to multiple-clock systems. A first con-
cept has been presented in [8].
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