
Kernel Scheduling in Reconfigurable Computing

R. Maestre, F. J. Kurdahi†, N. Bagherzadeh†, H. Singh†, R. Hermida, M. Fernandez

Departamento de Arquitectura de Computadores y Automática
Universidad Complutense - 28040 Madrid, SPAIN

e-mail: maestre@dacya.ucm.es

†Department of Electrical and Computer Engineering
University of Cali fornia, Irvine, Cali fornia 92697, USA

Abstract
Reconfigurable computing is a flexible way of facing
with a single device a wide range of applications with
a good level of performance. This area of computing
involves different issues and concepts when compared
with conventional computing systems. One of these
concepts is context loading. The context refers to the
coded configuration information to implement a
particular circuit behavior. An important problem for
reconfigurable computing is the scheduling of a group
of kernels (sub-tasks) that constitute a complex
application for minimum execution time. In this paper,
we show how the different execution orders for these
sub-tasks may result in varying levels of performance.
We formulate an analytical approach and present a
solution for this new problem through this work.

1. Introduction
Reconfigurable computing is an emerging alternative
to ASICs and general-purpose processor systems. The
main differences between these systems are the range
of applicabilit y and the performance for a particular
application. ASICs are specifically designed for a
particular application, and therefore, they can be highly
eff icient. On the other hand, general-purpose
processors may be used to execute any functionality by
programming with software instructions, but their
performance is usually lower.
Many DSP and multimedia applications, such as image
processing and video compression, demand high
performance that sometimes can only be achieved with
special-purpose hardware. Reconfigurable computing
is a good intermediate solution for these applications. It
has a broad range of functionality, enables higher
performance than general-purpose processors, and
comparable eff iciency to ASICs.
New approaches generally introduce new concepts, and
therefore, the emergence of reconfigurable computing
has presented new problems. One of these is to find an
execution order of a set of tasks of an application that
minimizes the total execution time. We assume that the
timing information of each kernel (subtask within the

application) and an execution flow graph of the
application are known. Based on these assumptions, we
have formulated an algorithm to schedule the kernels so
as to optimize performance within hardware constraints.
Previous approaches for scheduling tasks in
reconfigurable computing systems are an extension of
high-level synthesis techniques, in order to consider
specific features of reconfigurable systems [1,2,3,4]. A
heuristic based on static-list scheduling, enhanced to
consider dynamic area constraints, is proposed in [3],
while [4] presents a level based scheduling algorithm. A
non-linear programming model approach that also
considers synthesis is addressed in [5]. However, these
works fail to take into consideration several aspects
unique to reconfigurable computing systems, e.g.
multiple contexts and data memories, as well as non-
constant reconfigurable time.
Although our approach to solve this problem targets one
particular reconfigurable system, MorphoSys [6], this
approach is quite general in nature and may be easily
applied to other reconfigurable systems, e.g. [7,8,9,10].
Several computation-intensive applications such as
video compression and target recognition have been
successfully implemented with MorphoSys [6], which is
a coarse-grain dynamically reconfigurable system.
The paper is organized into five sections. An overview
of the MorphoSys architecture is presented in section 2.
Next, we define the scheduling problem in the third
section. We detail our proposed solution discussed in
section 4, which is divided into two subsections:
partitioning and scheduling. Finally, we provide some
experimental results and conclusions.

2. MorphoSys Architecture
MorphoSys architecture is an integrated coarse-grain
reconfigurable system. As shown in Figure 1, it consists
of an array of reconfigurable cells (RC), a control
(RISC) processor, frame buffer (FB), and a DMA
controller.
The core of this reconfigurable chip is the RC array,
which is composed of 64 reconfigurable cells (RC)
arranged as a grid. The architecture of each RC is
similar to the data path of a processor. However, there is
no control unit, and the control information is instead

This work has been granted by Spanish Government Grant CICYT TIC 96/1071
and by Defense and Advanced Research Project Agency (DARPA) of the
Department of Defense under contract F-33615-97-3-c-1043

Instruction/Data
Cache

Tiny_RISC
Core Processor

RC

Array

(8x8)Frame Buffer
(2x2x256x8)

DMA
Controller

Context
Memory

(2x16x8x32)

Main

 Memory

(External

RAM)

Figure 1. M1 chip

included in the context. This context is the binary code
that specifies the functionality implemented by the RC
array, as well as the active interconnections among the
cells. The context word controls the ALU function, the
internal multiplexors, the usage of registers, etc.
Context information is stored in the context memory
(CM). The CM is a two port (1 read, 1 write) memory
that can store 32 different 256 bit context words; 16
corresponding to the rows and 16 corresponding to the
columns. The particular context to be implemented is
loaded from the respective CM location to the context
register in the RC. The CM allows dynamic
configuration. At the same time that a context is being
executed, future configurations can be loaded into the
context memory.
The frame buffer is composed of two sets, each having
two banks. The RC array may simultaneously access
two independent data words stored in different banks
of the same set. While the RC array works on data
from one set of the frame buffer, the DMA controller
enables concurrent data transfer between the other set
and the external memory. This way, computation, and
data movements (RAM<->FB) can overlap in time if
they are carried out over different sets of the frame
buffer. The DMA controller also enables data transfer
between the external RAM and the context memory.
The MorphoSys system operation is controlled by
TinyRISC, a RISC processor based on [11] whose
instruction set has been extended with some
instructions for specific control of this chip (change of
configuration, data movements...).

3. Problem Overview and Definition
A typical complex application is composed of a
sequence of tasks that are executed repeatedly as a
loop. A kernel is a well -defined task of the application
that can be independently executed after the previous
tasks in the execution flowgraph. Its configuration size
must not exceed the size of the context memory. Also,
two kernels can not be executed simultaneously. An
application example is MPEG, a video
compression/decompression standard, whose sequence
of kernels for compression is presented in Figure 2a.
The kernels involved are motion estimation (ME),
motion compensation (MC), discrete cosine
transform(DCT), quantization (Q), inverse quantization

MPEG
sequence:

ME MC DCT Q IQ IDCT IMC

6 blocks block block block block block block

frame

8 4 21 6 6 21 4# of contexts:

Granularity
of comp.:

a.

ME MC

6

396 (frame)

DCT

6

Q

6

IDCT

6
b.

6

IQ

6

IMC

c.
6x396

MC DCT QME

396

IDCT

396

6

IMC

6

IQ

6

Figure 2. a) MPEG sequence and granularity, b) a possible
schedule of an image frame, c) an alternative schedule

(IQ), inverse discrete cosine transform (IDCT), and
inverse motion compensation (IMC).
Another important concept is the granularity of
computation. This refers to the amount of data that is
processed by a kernel in a single execution.
Let us consider the MPEG example (Figure 2). All the
kernels except ME operate over a block of 8x8 bytes.
The granularity of computation for ME is 6 times
greater than that of any other kernel. Therefore, it will
be necessary to execute all the other kernels six times
per each execution of ME in order to process the same
size of data. On the other hand, the unit of
computational data for the whole sequence is a frame
(396 iterations of the whole sequence). This implies that
a current frame must be completely processed before
starting with the following one.
Although each application imposes some constraints
to the execution order (DFG), it is possible to have
different execution sequences that result in different
total execution times. In order to understand the
related aspects, we consider the two cases in Figure
3. If each kernel is executed only once before the
execution of the next kernel (case (a)), the context for
each kernel has to be loaded as many times as the
total number of iterations (time wasted). If some data
is re-used by different kernels, it need not be reloaded
(time saved). For the other situation (case (b)), each
kernel is executed as many times as the total number
of iterations before executing the next kernel. For this
case, the context for each kernel is loaded only once
(time saved). However, as the size of the data
produced and used by all the kernels may often exceed
the frame buffer capacity, no data reuse is possible (time
wasted).
Between these two extreme cases, there may be several
other valid solutions. It is possible to execute a kernel a
number of times before the data produced exceeds the
frame buffer size. This way the data can be reused to
some extent and the context is loaded an intermediate

C1
Execution
Kernel 1

C2

Case (a)

Case (b)

Execution
Kernel 2

Cn
Execution
Kernel n

C1
Execution
Kernel 1

C2Execution
Kernel 2

Cn
Execution
Kernel n

Nt

Nt Nt Nt

Figure 3. Two extreme cases of execution sequence for a
generic application

number of times. Moreover, a partition of the execution
graph may also improve the final result. Another factor
that has to be considered is the overlapping of
computation with data transfer.
From the above discussion, it is clear that the major
criteria are:
- Context reloading (minimize).
- Data reuse (maximize).
- Computation and data movements overlapping

(maximize).
Generally, it is not possible to know in advance which
of the feasible solutions is the best. It is necessary to
explore the design space, because the above three
criteria are mutually conflicting.

Problem definition: inputs-outputs
In order to obtain the best schedule, it is necessary to
have the following input information:
- A kernel li brary which characterizes each kernel

for: computation time, input data size, output data
size, size of context, granularity of computation,
and amount of computation time that may overlap
with context loading.

- Reconfigurable system (MorphoSys for the present
study) parameters: frame buffer size (4x256x32
bits), context memory size (2x16x256 bits),
memory access times, context loading time, data
bus width, etc.

- Data-flow graph (Figure 4) for application under
consideration, which has information about data
dependencies (that constrain kernel execution
order).

The solution to the problem is a scheduled linear
sequence of kernels with the minimal execution time
and its value.
The scheduling algorithm has to take into consideration
the following constraints:
- Loading of input data: before execution.
- Loading of context: before execution.
- Write-back /re-use of results: after execution.
- Frame buffer size
- Size of the context memory.
- Overlapping of computation and data movements

is possible only if they use different sets of the
frame buffer.

- When computation is across rows (columns)
context, then a new column (row) context may be

... Ki

Kj+1

Kt+1

Kj+n

Kt+m

...

...

……………..

Kp ...

Figure 4. General data flow graph

loaded simultaneously.

4. Proposed Solution
In order to obtain the total execution time for a given
application, it is necessary to schedule the kernels.
Further, in any application it is possible to find some
subsets of kernels that may be scheduled independently
of other kernels. We use the term partition to refer to
one of these subsets. For example, in Figure 4, the
subset {Ki,Kj+1,Kt+1} may be executed independently of
the rest of the kernels, and therefore, it is a partition,
while {Kt+1,Kp} is not, because Kp needs the results
produced by Kj+1, Kt+m...
It is important to be able to find a good partition. This is
because partitioning has a significant influence on the
achievable performance, since crucial aspects such as
amount of data reuse, the number of context words to be
loaded, and overlapping of computation with data
transfer are heavily dependent on partitioning. Once a
partition has been created, it is possible to schedule it in
detail . Consequently, we propose to solve this problem
by dividing it into two tasks:
1. Partitioning of the application DFG
2. Scheduling within a given partition
We use a backtracking technique in order to support the
search process in both tasks. This process is guided by
some heuristic technique that tries to "explore best
candidate solutions first". We employ bounding
heuristics for an early pruning of the search space.
These techniques are explained in sections 4.1 and 4.2.

Execution model
We assume an execution model that satisfies the
following constraints (because of architectural issues):
1. Computation can overlap with:
- Context loading if reload of context is in a different

part (row/column block) of context memory than
what the computation is using.

- Data transfer (RAM-FB) if it concerns data in a
different set of the FB.

2. Context loading and data transfer (RAM-FB) can
never overlap.
A typical application can be represented as a loop of “n”
iterations of a sequence of kernels. The first and the last
iterations take different time to be executed when
compared with the iterations inside the loop body. As
“n” is always a big number (396 for MPEG), a very
small (sometimes zero) error is induced if we only
consider the execution of iteration “ i” in relation with

Partition= {k1, k2, k3} . A possible schedule:

� i= event � in iteration i. Ci= Context loading time.
ki= Computation time. Di= Data loading time.
kci= Possible overlap of comp. Ri= Result reading time.
 and context loading Idle time

FB set 1

k1
i

R1
i-1,R2

i-1

k2
i k3

i

C1
i+1,C2

i+1

Time

R3
i-1,D1

i+1,D2
i+1,D3

i+1

kc1=0

 C3
i

FB set 2

CM

kc2 kc3

Figure 5. Execution model representation

the following “ i+1” , and the previous “ i-1” .
Based on the above considerations, the execution
model can be represented as in Figure 5. "i" refers to
the current iteration that uses data from set 2 of the FB.
At the same time, data (results from previous iteration
"i-1" and input data for next iteration "i+1") are
transferred between external RAM and set 1 of the FB.
Of course, in the following iteration, computation will
be carried out on the other set of the frame buffer. The
figure also ill ustrates the fact that context loading can
not overlap with any data transfer operation, but may
overlap with computation (kci) if possible. Otherwise,
extra time is needed to load contexts.

Exploration algorithm
We have formulated an algorithm that explores all the
covers of the sets of kernels in a well -defined and
orderly manner. To improve the algorithm performance
we use the bounding heuristic, which prunes the search
space. This algorithm is used for both partitioning and
scheduling. The exploration order is governed by the
amount of data reuse among the kernels. The lower the
data reuse, the higher is the exploration priority. This
policy is justified in the following subsections.
The initial step of the algorithm consists of numbering
each edge of the DFG in ascending order according to
the amount of data reuse between the kernels
connected by that edge (Figure 6.a.). If data reuse is the
same for several edges, any order is valid, but numbers
are not repeated.
In the next step, the edge with the lowest number is
erased and added to a list of erased edges (LEE). This
results in formation of groups of kernels that have no
joining edges (Figure 6.c.-f.). This process is repeated
for groups that meet the bounding check (which, in
turn, depends on the task).
Each separated group of kernels forms a potential
partition whose feasibilit y has to be checked (a group
of kernels is a partition only if it can be scheduled
independently of the other kernels). For example, in
Figure 6.c. the generated subset {Ki,Kp,Km} is not a
partition, since Km needs the results from Kj. Every
time a new partition appears, a different cover of the
DFG is built , and therefore a different solution is built ,
so a different solution is explored.

LEE= Øa. LEE= {1}b. LEE= {1,2}c.

LEE= {1,3}
d.

LEE= {1,3,4} LEE= {1,4}
f.e.

Kp

Kj

Ki Km

1 2

3 4 Kp

Kj

Ki Km

2

3 4 Kp

Ki Km

3 4

Kj

Kj

Ki

Kp
3

Km

Kj

Kp

Ki KmKi

Kj

4
Kp

Km

2
2 2

BC= TRUE
BC= FALSE

BC= TRUE

BC=

TRUE

BC= TRUE BC= TRUE

BC= TRUE

Figure 6. Some steps of an exploration sequence

The above mechanism ensures that all possible
partitions will be visited, while the bounding check
avoids the exploration of solutions that do not surely
improve the results.

4.1. Partitioning
Partitioning plays an important role in finding the best
solution of the search space. The results of scheduling
depend on the partition selected. Also, at the time of
exploring different partitions, the value for final
execution time can only be an estimate.
If we have a means to quickly compute an estimate for
execution time, the search space can be explored within
a reasonable time. The estimation method has to be
independent of the detailed schedule (since it is
computed only in the next step). This estimation has to
take into account the three criteria introduced in section
3, since the overall problem of finding an execution
sequence depends on them.
We assume that computation and data movements
(RAM-FB or RAM-CM) can always overlap (this still
satisfies the constraints). This way, a lower bound is
obtained:� �

� �
� � � �

� �
� � � ����

��
	

�

�

������ ������� ��
��

�� !"# $$%
%&'

'

((
(

((
(

))
)

))
)

x

Ct
RD

x

kc
kMAX

Ctkc

x

Ct
RDkMAX

Ctkc

PLB

KKP

T
n

i
ii

n

i

i
i

T

n

i
i

T
n

i
ii

n

i
i

T

n

i
i

n

1
,...,1

1

1

1
,...,1

1

1

1

,

 if

,

 if

)(

partition. a be ,...,Let

CT is the minimum number of context memory words
that need to be loaded per loop iteration; t(CT) is the

time spent to load CT; x is the number of kernel
executions between changes of context (in Figure 3,
x=1 in case (a) and x=Nt in case (b)) ; ki is the
execution time of kernel Ki; kci (Figure 5) is the portion
of computation time that can overlap with context
loading (“ t(CT)- * kci” is the non-overlapping context
loading time); D1,...,i is the time to load the input data
from the RAM to the FB if kernel Ki can reuse the data
of the previous kernels K1,..., Ki-1; Ri is the time to store
the results from the FB into the RAM.
When the context size of all the kernels within a
partition are known, CT can be computed easily.
As there are two context memory parts (for rows or
columns), LB has to include the information regarding
both of them: kci -> (kci,R, kci,C), and t(CT) -> (t(CT,R),
t(CT,C)). The expression for LB is conceptually equal,
but there are four possibiliti es instead of two.
If only one criteria is considered the following partition
sizes will produce the best results:
- Context loading: small partitions.
- Data reuse: large partitions.
- Overlap of computation and data transfers: large

partitions have better chances of overlap.
Our partitioning process starts with the largest partition
as the initial solution, which optimizes the data reuse
and computation overlap. Then the exploration
mechanism is guided by data reuse, so as to minimize
the data loading. This procedure allows good solutions
to be found even if the search process is time limited. If
the context loading for a partition does not completely
overlap with computation, a sub-partition could reduce
the total execution time, since CT is decreased (unless
CT=0). However, the data movement time might be
increased and the computation overlap could be
reduced. Therefore, the sub-partition must be
evaluated. If CT=0 no sub-partition will reduce the
lower bound, because CT can not be reduced, and the
other two criteria will never improve the result.
Imagine a partition whose data transfer and context
loading completely overlap with computation time
(LB(P) = + ki). Any sub-partition can not reduce the
lower bound for the total execution time (see
expression for LB(P)).
Consequently, if “LB(P) = + ki ” or “CT = 0” no sub-
partitioning improves the lower bound. These checks
are jointly expressed in (1):, -

. /
)()LB(

,)(If

j.i ,

,,...such partitions-sub ofset a

},...,{ andpartition a be ,...,Let

m

1i

1
,...,1

1

1

1

PLBP

RDkMAXPLB

PP

PPP

PPKKP

i

n

i
ii

n

i
i

ji

m

min

01
1234567 89

:;<=> ??@@

A
AA

B
BB

Now, suppose that the size of the data used by a given
partition is smaller than the size of one set of the FB.
Then, the best schedule is obtained as in Figure 5. All
the computations are carried out over one set of the FB
and all data movements over the other. In this case,
computation and data overlap is maximum and the total
execution time for this partition equals LB. On the
contrary, if the total data exceeds the size of one set of
the FB, this kind of schedule is not possible and the
scheduling has to be done.
Therefore, if a partition, P, meets condition (1) and its
data fits into one set of the FB, no partitioning of P will
improve the total execution time. These two conditions
form the bounding check for partitioning:C D

E F

truecheck Bounding Otherwise

falsecheck Bounding

 FB) theofset one of (Size)(and

 ,)(If

:partition a be ,...,Let

1
,...,1

1

1

GGH HI
JKLMNO PQ

Q RR SS
PSD

RDkMAXPLB

KKP
n

i
ii

n

i
i

n

where SD(P) stands for the size of the data used by
partition P.
The size of the data can be obtained by addition of all
the input data and the results generated by all the
kernels. However, if a kernel has already been executed,
the data that is not used by the following kernels can be
replaced by the generated results. Therefore, if “x=1” (x
is defined in section 4.1.) SD(P) can be expressed as:T U

V W X Y Z[\]^_ `a
a bb ccd i

j
j

n

ij
ji

ni

n

rdMAXPSD

KKP

1
...

,...,1

1 partition. a be ,...,Let

di...j = Size of input data for kernel Kj except those
shared with kernels {Ki, ...,Kj-1 }.
r j = Size of the results of kernel Kj.

If “x>1” a general expression can be derived from the
previous one:

e f g h
i h j kl m nopqrsrtu

vwx yzyz{
|

} ~��� ��
ii

xl

i

j
j

n

ij
ji

ni

rldlxMAX

rxdxMAXPSD

1
,...,1

1

11
...

,...,1

In this expression, the data used is multiplied by x for all
the kernels except one of them, say Ki. In order to
explain this, suppose that Ki is going to be executed x
times. The first execution of Ki requires “x·di + r i” . The
second one requires “ (x-1)·di +2·r i” , and so on. The

(1)

maximum value thus obtained is the real size of the
data used by Ki:

� � � �� �
ii

xl
rldlxMAX ������ 1

,...,1

An important consideration is that within a partition, P,
reordering of kernels (when possible) can change
SD(P). In order to minimize SD(P), the kernel with the
largest amount of data used is executed first. This way,
the data that have been already used can be replaced by
the generated results.
Every time a new partition, P, is obtained, LB(P) is
computed and the lower bounds for all partitions in a
complete cover of the DFG are added to obtain a lower
bound for the entire DFG with this specific
partitioning.
In order to check if this cover for the DFG has the best
partitioning solution, its overall l ower bound can be
compared with a lower bound for the whole search
space (SS), LB(SS). The LB(SS) considers that the three
optimization criteria are met: � � ������ �� �� ��

kernel
,...,1

kernel

,)(iii RDkMAXSSLB

If � LB(Pi) for a complete cover and LB(SS) are equal,
the best candidate has been found, otherwise this
comparison provides a means to evaluate the quality of
the solution.

4.2. Scheduling within a partition
The process of scheduling within a partition can be
viewed as an assignment of computations to sets of the
FB. For example in Figure 7, computation of kernels 1
and 2 are assigned to set 2 and computation of kernel 3
is assigned to set 1.
We use the term cluster to designate a group of kernels
that are assigned to the same set of the FB. In Figure 7
there are 2 clusters: { K1, K2} and { K3} .

FB1

FB2 k1

R3,D3

k2

 C3

k3

R1,R2, D1,D2

C1 ,C2

Time Idle time

CM

Figure 7. Scheduling of a partition {K1, K2, K3}

The size of the data used by every cluster has to be
smaller than one set of the FB and only these clusters
will be considered for detailed scheduling.
However in general, there is an important difference
between the method to compute the data size
“ SD(Cl)” , for the cluster Cl, and the method to obtain
the total execution time. This is ill ustrated in Figure 7.
Here, R3 and D3 are loaded while K1, K2 are being

executed. So, every cluster execution overlaps with the
movement of the results of the previous cluster and the
input data of the next cluster. This overlap has to be
considered when computing the total execution time.
The minimum number of clusters for a partition P is
“SD(P)/(size of FB set)” , and the maximum is the total
number of kernels.
The schedule is determined in a similar way to the
partitioning. The largest cluster is considered first and
the exploration algorithm is applied to it. The largest
cluster maximizes the computation and data overlap, but
if its size is too big, it has to be partitioned, with
consideration for data reuse.
Notice that context loading has already being taken into
account during partitioning and any variation of
clustering, or even a different execution order, will not
modify the context loading time.
The execution time, ET, for a given partition, P, is:� � � �� �

 ¡
¢ � ¢ � ¢ �¢ �£ £££¤ ¥¦ ¥§¨ §¨ ©ª«¬® ¯

¯°
°°

NC

i

in

j
ji

in

j
ji

in

j
ji

T

iniiiiNC

DRknMAX

x

Ct
PET

KKKClClClClP

1

1

1
,...,1,1

1

1
,1

1
,

,2,1,21

 ,

)(

,...,,;,...,,

where kni,j is the portion of computation time that does
not overlap with context loading; ± i,j is the variable, ± ,
corresponding to the kernel Ki,j; the other symbols have
the usual meaning.
For scheduling within a partition, the bounding check is
the same as the stopping criteria. If the execution time
for a given partition P, ET(P), equals its lower bound,
LB(P), there is no other clustering that can improve the
result.
Moreover, if a partition, Pi, is scheduled and "ET(Pi) ²
LB(Pj)", ³ j, then the best scheduling has been found.

5. Experimental results
In this section, MPEG (a practical application) is
used to demonstrate the quality of the proposed
methodology. Some of the best results generated
during the search are presented in Table 1. One
solution that was not explored (because of search
space pruning through bounding check) is also
included in the table to ill ustrate the validity of the
bounding check.
Although the best solution is obtained quite fast (in
the second iteration), the partitioning process can not
be terminated early, because LB(SS) is never reached.

ME MC DCT Q IDCTIQ IMC
1 3 4 5 6 7

2
Figure 8. Ordering of edges for MPEG.

Exploration
algorithm
iteration

Cover LEE ´ LB(Pi)
(clock cycles)

Execution
time (after
scheduling)

1 { ME,MC,...,IMC} Ø 5110 cc NNS
2 { ME} { MC,...,IMC} { 1} 4941 cc 4941
15 { ME} { MC,DCT,Q} { IQ,IDCT,IMC} { 1,2,5} 5080 cc NNS
30 { ME,...,Q} { IQ,...,IMC} { 2,5} 5036 cc NNS

Not explored { ME} { MC} { DCT} { Q} { IQ} { IDCT} { IMC} { 1,2,3,4,5,6,7} 5806 cc
LB(SS)= 4894 cc.; NNS= not necessary to schedule.

Table 1. Experimental data for MPEG

Moreover, we found that the bounding check reduced
the search space from 64 different covers to only 31.
For example, the solution with LEE={1,2,3,4,5,6,7}
(case (b) in Figure 3) is not explored.
Additionally, for the second partitioning solution,
the execution time (obtained after detailed scheduling)
is lower than the lower bound for all other partitioning
solutions. Therefore, we do not need to perform
detailed scheduling for any other cover, since it is
guaranteed that no other solution can have lesser
execution time.

6. Conclusions
In this paper, we have presented a solution to the
problem of scheduling of application kernels, for the
MorphoSys reconfigurable system. The various aspects
related to this problem have been discussed, and a
methodology to solve it has been proposed. The
optimal solution is always found through the
exploration of the pruned search space. On the other
hand, if the process times out, it is likely that a good
solution has already been found (since better
candidates are evaluated earlier). The exploration
algorithm is quite straightforward and the equations
can be quickly computed, facilit ating its
implementation in software.

References
[1] I.Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul and
R. Vemuri, "An Integrated Partitioning and Synthesis
system for Dynamically Reconfigurable Multi -FPGA
Architectures", 5th Reconfigurable Architectures
Workshop, 1998 (RAW'98)
[2] M. Vasilko and D. Ait-Boudaoud, "Architectural
Synthesis Techniques for Dynamically Reconfigurable
Logic", 6th International Workshop on Field-
Programmable Logic and Applications, FPL '96
Proceedings, p.290-296

[3] M. Vasilko and D. Ait-Boudaoud, "Scheduling for
Dynamically Reconfigurable FPGAs", in Proceeding of
International Workshop on Logic and Architecture
Synthesis, IFIP TC10 WG10.5, Grenoble, France, Dec. 18-
19, 1995, pp. 328-336
[4] K. M. GajjalaPurna, D. Bhatia, "Temporal partitioning
and scheduling for reconfigurable computing", Proceedings
of IEEE Symposium on FPGAs for Custom Computing
Machines, 1998, pp. .329-330.
[5] M. Kaul and R. Vemuri, “Optimal Temporal Partitioning
and Synthesis for Reconfigurable Architectures”,
Proceedings of the DATE, p. 389-396, 1998.
[6] H. Singh, M. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh,
T. Lang, R. Heaton and E. M. C. Filho, “MorphoSys: An
Integrated Re-configurable Architecture”, Proceedings of
the NATO Symposium on System Concepts and Integration,
Monterey, CA, April 1998
[7] E. Waingold et al, “Baring it all to Software: The Raw
Machine”, IEEE Computer, p. 86-93, Sep 1997
[8] E. Tau, D. Chen, I. Eslick, J. Brown and A. Dehon, “A
First Generation DPGA Implementation”, Third Canadian
Workshop of Field-Programmable Devices, May 29 – Jun 1,
1995
[9] E. Mirsky and A. Dehon, “MATRIX: A Reconfigurable
Computing Architecture with Configurable Instruction
Distribution and Deployable Resources”, Proc, of IEEE
Symposium on FPGAs for Custom Computing Machines,
IEEE CS Press, p. 157-166, 1996
[10] J. R. Hauser and J. Wawrzynek, “Garp: A MIPS
Processor with a Re-configurable Co-processor” , Proc. of
the IEEE Symposium on FPGAs for Custom Computing
Machines, April 1997
[11] A. Abnous, C. Christensen, J. Gray, J. Lenell , A.
Naylor and N. Bagherzadeh, “Design and Implementation of
the Tiny RISC Microprocessor” , Microprocessor and
Microsystems, Vol. 16, No, 4, p. 187-194, 1992

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

