Kernel Scheduling in Reconfigurable Computing

R. Masestre, F. J. Kurdahi', N. Bagherzadeh', H. Singh', R. Hermida, M. Fernandez

Departamento de Arquitedura de Computadoresy Automatica
Universidad Complutense - 28040Madrid, SPAIN
e-mail: maestre@dacya.ucm.es

TDepartment of Eledricd and Computer Engineeaing
University of California, Irvine, California92697,USA

Abstract

Rewmnfigurable wmputing is a flexible way of facing
with a single device a wide range of apdications with
a goodleve of performance This area o computing
involves different isauies and concepts when compared
with conventiond computing systems. One of these
concepts is context loadng. The mntext refers to the
coded configuration information to implement a
particular circuit behavior. An important problem for
reconfigurable mmputing is the scheduling o a group
of kernels (sub-tasks) that constitute a complex
appication for minimum exeation time. In this paper,
we show how the different exeation aders for these
sub-tasks may result in varying levds of performance
We formulate an andytical approach and pesent a
solution for this new problem throughthis work.

1. Introduction

Reoorfigurable computing is an emerging aternative
to ASICs and general-purpose procesor systems. The
main dfferences between these systems are the range
of applicability and the performance for a particular
application. ASICs are spedficdly designed for a
particular application, and therefore, they can be highly
efficient. On the other hand, general-purpose
processors may be used to exeaute any functionality by
programming with software instructions, bu their
performanceis usualy lower.

Many DSP and multimedia gplications, such asimage
processng and video compresson, demand high
performance that sometimes can orly be atieved with
speda-purpose hardware. Remnfigurable cmputing
isagoodintermediate solution for these gplicaions. It
has a broad range of functionality, enables higher
performance than general-purpose processors, and
comparable dficiency to ASICs.

New approaches generall y introduce new concepts, and
therefore, the emergence of recmnfigurable cmputing
has presented new problems. One of these isto find an
exeaution ader of a set of tasks of an applicdion that
minimizes the total exeautiontime. We asume that the
timing information d ead kernel (subtask within the

This work has been granted by Spanish Government Grant CICYT TIC 96/1071
and by Defense and Advanced Reseach Projed Agency (DARPA) of the
Department of Defense under contrad F-3361597-3-c-1043

application) and an exeaution flow graph o the
application are known. Based onthese asaumptions, we
have formulated an algorithm to schedule the kernels ©
asto optimize performancewithin hardware mnstraints.
Previous approaches for scheduling tasks in
reconfigurable wmputing systems are an extension d
high-level synthesis techniques, in order to consider
spedfic feaures of reconfigurable systems [1,2,3,4. A
heuristic based on static-list scheduling, enhanced to
consider dynamic area onstraints, is propcsed in [3],
whil e [4] presents a level based scheduling algorithm. A
nonlinea programming model approach that also
considers g/nthesis is addressed in [5]. However, these
works fail to take into consideration several aspeds
unique to reoorfigurable @mputing systems, e.g.
multiple cntexts and data memories, as well as non
constant reconfigurable time.

Although ow approadc to solve this problem targets one
particular reconfigurable system, MorphoSys [6], this
approach is quite general in nature and may be eaily
applied to ather reconfigurable systems, e.g. [7,8,9,10.
Several computatiorrintensive gplicaions auch as
video compresson and target regrition have been
succesgully implemented with MorphdSys [6], which is
a warse-grain dynamicdly reconfigurable system.

The paper is organized into five sedions. An overview
of the MorphdSys architedure is presented in sedion 2.
Next, we define the scheduling problem in the third
sedion. We detail our proposed solution dscussd in
sedion 4, which is divided into two subsedions:
partitioning and scheduling. Finally, we provide some
experimental results and conclusions.

2. MorphoSys Ar chitecture

MorphoSys architedure is an integrated coarse-grain
recnfigurable system. As shown in Figure 1, it consists
of an array of reconfigurable cdls (RC), a ontrol
(RISC) procesoor, frame buffer (FB), and a DMA
controller.

The are of this reconfigurable dip is the RC array,
which is composed o 64 rewnfigurable cdls (RC)
arranged as a grid. The achitedure of eadh RC is
similar to the data path of a processor. However, there is
no control unit, and the cntrol information is instead

IntructionDatal«—> Tiny RISC |__| (a)
Cache » Core Procesor RC # of conexts 8 4 21 6 6 21 4
1 A e | ME[—>[Mc|—[pcT [+ 0[] 10 || ipeT|] mc |
Y ey Granuarity 6blocks block block block block block block
Man FrameBuffer | (8x8) of comp.. 7 A
" (2x2x25x8) frame
) [y (o) 6 6 6 ﬁ 6 6
(Bxternd v Context m m
v |& owa Verony e e} -¥ocT |- /i |- M iber H4ime |
«— Controller (2x16x8¢32) 396 (frame)
Figure 1. M1 chip
@396 6x396 39
included in the aontext. This context is the binary code ME

that spedfies the functionality implemented by the RC
array, as well as the adive interconredions among the
cdls. The mntext word controls the ALU function, the
internal multiplexors, the usage of registers, etc.
Context information is dored in the @ntext memory
(CM). The CM isatwo pat (1 read, 1 write) memory
that cen store 32 dfferent 256 bt context words; 16
correspondng to the rows and 16correspondng to the
columns. The particular context to be implemented is
loaded from the respedive CM location to the ntext
register in the RC. The CM alows dynamic
configuration. At the same time that a context is being
exeated, future wnfigurations can be loaded into the
context memory.

The frame buffer is composed of two sets, ead having
two banks. The RC array may simultaneously access
two independent data words gored in dfferent banks
of the same set. While the RC array works on chta
from one set of the frame buffer, the DMA cortroller
enables concurrent data transfer between the other set
and the external memory. This way, computation, and
data movements (RAM<->FB) can overlap in time if
they are caried ou over different sets of the frame
buffer. The DMA controller also enables data transfer
between the external RAM and the context memory.
The MorphoSys g/stem operation is controlled by
TinyRISC, a RISC procesor based on [11] whose
instruction set has been extended with some
instructions for spedfic control of this chip (change of
configuration, cita movements...).

3. Problem Overview and Definition

A typicd complex applicdion is composed of a
sequence of tasks that are exeauted repeaedly as a
loop. A kernel is a well-defined task of the gplication
that can be independently exeauted after the previous
tasks in the exeaution flowgraph. Its configuration size
must not exceal the size of the cntext memory. Also,
two kernels can na be exeauted simultaneously. An
application example is MPEG, a video
compresson/deampresson standard, whose sequence
of kernels for compresson is presented in Figure 2a.
The kernels involved are motion estimation (ME),
motion compensation (MC), discrete @sine
transform(DCT), quantization (Q), inverse quantizaion

Figure 2.) MPEG sequence and granularity, b) a possible
schedule of an image frame, ¢) an alter native schedule

(IQ), inverse discrete wsine transform (IDCT), and
inverse motion compensation (IMC).

Ancther important concept is the granularity of
computation. This refers to the anournt of data that is
processed by akernel in asingle exeaution.

Let us consider the MPEG example (Figure 2). All the
kernels except ME operate over a block of 8x8 hytes.
The granularity of computation for ME is 6 times
greder than that of any other kernel. Therefore, it will
be necessary to exeaute dl the other kernels s$x times
per eat exeaution d ME in order to process the same
size of data On the other hand, the unit of
computational data for the whole sequence is a frame
(396 iterations of the whade sequence). This implies that
a arrent frame must be completely processed before
starting with the following ore.

Although ead applicdion imposes ©me nstraints
to the exeaution ader (DFG), it is possble to have
different exeaution sequences that result in dfferent
total exeaution times. In order to understand the
related aspeds, we mnsider the two cases in Figure
3. If ead kerndl is exeauted only once before the
exeaution d the next kernel (case (a)), the context for
ead kernel has to be loaded as many times as the
total number of iterations (time wasted). If some data
isre-used by different kernels, it need nd be rel oaded
(time saved). For the other situation (case (b)), eat
kernel is exeauted as many times as the total number
of iterations before exeauting the next kernel. For this
case, the context for ead kernel is loaded orly once
(time saved). However, as the size of the data
produced and wsed by all the kernels may often exceel
the frame buffer cgpadty, no ditareuse is posshle (time
wasted).

Between these two extreme cases, there may be several
other valid solutions. It is posshble to exeaute akernel a
number of times before the data produced exceels the
frame buffer size This way the data can be reused to
some extent and the mntext is loaded an intermediate

Casz(a)

Execution Execution

Kernd 1 Kemnd 2|
Nt

. Execution

Kernd n

L

Ca=(b)

Execution Execution Execution
Kernd 1 Kernd 2 1@T Kemnd n w
Nit Nit Nt

Figure 3. Two extreme cases of execution sequence for a
generic application

number of times. Moreover, a partition d the exeaution

graph may aso improve the final result. Ancther fador

that has to be onsidered is the overlapping o

computation with data transfer.

From the &ove discusson, it is clea that the mgjor

criteria ae:

- Context reloading (minimize).

- Datareuse (maximize).

- Computation and data movements overlapping
(maximize).

Generdlly, it is not possble to know in advance which

of the feasible solutions is the best. It is necessary to

explore the design space because the @ove three

criteria ae mutually conflicting.

Problem definition: inpus-outputs

In order to oltain the best schedule, it is necessary to

have the foll owing input information:

- A kernd library which charaderizes ead kernel
for: computation time, inpu data size, ouput data
Size size of context, granularity of computation,
and amourt of computation time that may overlap
with context loading.

- Reoorfigurable system (MorphaSys for the present
study) parameters. frame buffer size (4x256x32
bits), context memory size (2x16x256 lis),
memory access times, context loading time, data
bus width, etc.

- Dataflow graph (Figure 4) for application unde
consideration, which has information abou data
dependencies (that constrain kernel exeaution
order).

The solution to the problem is a scheduled linea

sequence of kernels with the minimal exeaution time

andits value.

The scheduling algorithm has to take into consideration

the foll owing constraints:

- Loading d inpu data: before exeaution.

- Loading d context: before exeaution.

- Write-badk /re-use of results: after exeaution.

- Framebuffer size

- Sizeof the mntext memory.

- Overlapping d computation and dbita movements
is posshle only if they use different sets of the
frame buffer.

- When computation is aaoss rows (columns)
context, then a new column (row) context may be

Figure 4. General data flow graph

loaded simultaneously.

4. Proposed Solution

In order to oltain the total exeaution time for a given
application, it is necessry to schedue the kernels.
Further, in any application it is posdble to find some
subsets of kernels that may be scheduled independently
of other kernels. We use the term partition to refer to
one of these subsets. For example, in Figure 4, the
subset {K;,K;:1,Ki+1} may be exeauted independently of
the rest of the kernels, and therefore, it is a partition,
while {K1,Kp} is not, because K, neals the results
prodwed by Kj:1, Kiem...

It isimportant to be &leto findagood m@rtition. Thisis
because partitioning hes a significant influence on the
achievable performance, since aucial aspeds such as
amount of data reuse, the number of context wordsto be
loaded, and overlapping d computation with data
transfer are heavily dependent on partitioning. Once a
partition hes been creaed, it is posgble to schedule it in
detail. Consequently, we propose to solve this problem
by dividing it into two tasks:

1. Partitioning d the gplication DFG

2. Scheduling within agiven partition

We use abadtradking technique in order to suppat the
seach processin bah tasks. This processis guided by
some heurigtic technique that tries to "explore best
candidate solutions first". We employ boundng
heuristics for an ealy pruning d the seach space
These techniques are explained in sedions4.1and 4.2.

Exeation model

We @aaume an exeadtion model that satisfies the

foll owing constraints (because of architecural issues):

1. Computation can overlap with:

- Context loading if reload of context isin a different
part (row/column hblock) of context memory than
what the computationis using.

- Data transfer (RAM-FB) if it concerns data in a
different set of the FB.

2. Context loading and dta transfer (RAM-FB) can

never overlap.

A typicd application can be represented as aloop d “n”

iterations of a sequence of kernels. The first and the last

iterations take different time to be exeated when
compared with the iterations inside the loop bog. As

“n” is always a big number (396 for MPEG), a very

small (sometimes zeo) error is induwced if we only

consider the exeaution d iteration “i” in relation with

Partition={k, k,, k3}. A posshle schedue:

FB et 1
FBsat2 k,

R3i'1, D1i+lv D2i+1, D3i+

Time
o= event o in iterationi. C= Context |oading time.
k= Computation time. D,= Dataloading time.
ke=Possble overlgp o comp. .= Result readingtime.
and context loading Idletime

Figure 5. Execution model representation

LEE={13 & LEE={134

LEE={14}

thefollowing“i+1”, and the previous “i-1".

Based on the &ove mnsiderations, the eceaution
model can be represented as in Figure 5. "i" refers to
the arrent iteration that uses data from set 2 of the FB.
At the same time, data (results from previous iteration
"i-1" and inpu data for next iteration "i+1") are
transferred between external RAM and set 1 of the FB.
Of course, in the following iteration, computation will
be caried ou on the other set of the frame buffer. The
figure dso ill ustrates the fad that context loading cen
not overlap with any data transfer operation, bu may
overlap with computation (kc) if possble. Otherwise,
extratimeis nealed to load contexts.

Exploration dgorithm

We have formulated an algorithm that explores al the
covers of the sets of kernels in a well-defined and
orderly manner. To improve the dgorithm performance
we use the boundng heuristic, which prunes the search
gpace This agorithm is used for both partitioning and
scheduling. The exploration ader is governed by the
amourt of data reuse anongthe kernels. The lower the
data reuse, the higher is the exploration griority. This
pdlicy isjustified in the foll owing subsedions.
Theinitial step of the dgorithm consists of numbering
eadt edge of the DFG in ascending ader acording to
the anourt of data reuse between the kernels
conreded by that edge (Figure 6.2.). If datareuse is the
same for several edges, any order isvalid, bu numbers
are not repeded.

In the next step, the edge with the lowest number is
erased and added to a list of erased edges (LEE). This
results in formation d groups of kernels that have no
joining edges (Figure 6.c.-f.). This processis repeaed
for groups that med the boundng chedk (which, in
turn, depends on the task).

Eadch separated goup d kernels forms a poatentia
partition whose feasihility has to be dedked (a group
of kernels is a partition orly if it can be scheduled
independently of the other kernels). For example, in
Figure 6.c. the generated subset {K;,Kp, Ky} is nat a
partition, since K, needs the results from K. Every
time anew partition appeas, a different cover of the
DFG is built, and therefore adifferent solution is built,
so adifferent solutionis explored.

Figure 6. Some steps of an exploration sequence

The &ove mecdhanism ensures that al possble
partitions will be visited, while the boundng ched
avoids the exploration d solutions that do nd surely
improve the results.

4.1. Partitioning

Partitioning days an important role in finding the best
solution d the seach space The results of scheduling
depend onthe partition seleded. Also, at the time of
exploring dfferent partitions, the vaue for final
exeadtiontime can orly be an estimate.

If we have ameans to quickly compute an estimate for
exeaution time, the search space ca be explored within
a reassonable time. The estimation method hes to be
independent of the detailled schedule (since it is
computed orly in the next step). This estimation hes to
take into acourt the three citeria introduced in sedion
3, since the overal problem of finding an exeaution
sequence depends on them.

We @ume that computation and data movements
(RAM-FB or RAM-CM) can aways overlap (this dill
satisfies the cnstraints). This way, a lower boundis
obtained:

Let P={K,,..,K, } beapartition.

LB(P) =

it Sk >t(C;)=
i=1

N MAXLZ: K é(Dl,..-i +R)+ t(CxT)}

it Sk <t(C;)=
i=1

= MAX[E(i ‘kf}Z(Dl,__,- +R)} ey

Ct is the minimum number of context memory words
that neal to be loaded per loop iteration; t(Cy) is the

(1)

time spent to load Cr; x is the number of kernel
exeadtions between changes of context (in Figure 3,
x=1 in case (@ and x=N; in case (b)) ; ki is the
exeaution time of kerndl K;; kg (Figure 5) is the portion
of computation time that can overlap with context
loading (“t(CT) qu” is the nonroverlapping context
from the RAM to the FB if kernel K; can reuse the data
of the previous kernelsKy,...,Ki_1; R isthetime to store
the results from the FB into the RAM.
When the ontext size of all the kernels within a
partition are known, Cr can be cmomputed easily.
As there ae two context memory parts (for rows or
columns), LB has to include the information regarding
bath of them: kg -> (kG g, kG ¢), and t(Cy) -> (t(CrR),
t(Cr). The expresdon for LB is conceptualy equal,
but there ae four passhiliti esinstead of two.
If only one aiteriais considered the following partition
sizeswill producethe best results:
- Context loading: small partitions.
- Datareuse: large partitions.
- Overlap o computation and ceta transfers. large
partitions have better chances of overlap.
Our partitioning process sarts with the largest partition
as the initial solution, which optimizes the data reuse
and computation overlap. Then the exploration
mechanism is guided by data reuse, so as to minimize
the data loading. This procedure dlows goodsolutions
to be foundeven if the seach processis time limited. If
the context loading for a partition daes not completely
overlap with computation, a sub-partition could reduce
the total exeaution time, since Cy is deaeased (unless
Ct=0). However, the data movement time might be
incressed and the mputation overlap could be
reduced. Therefore, the sub-partiion must be
evaluated. If Cr=0 no sub-partition will reduce the
lower bound, ecaise C;r can nd be reduced, and the
other two criteriawill never improve the result.
Imagine a partition whose data transfer and context
loading completely overlap with computation time
(LB(P) = 2’ k). Any sub-partition can na reduce the
lower bound for the total exeaution time (see
expresson for LB(P)).
Consequently, if “LB(P) = 2’k " or “Cy = 0" no sub-
partitioning improves the lower bound. These deds
arejointly expressd in (1):

LetP = {K,,...,.K, } beapartitionand{P.,...,P, .}
asetof sub- partitionssuchP =P, U...UPR,,,,
PP =2,Viz]j

]

If LB(P) = MAX[Zn: k.>.(D, ;+R)} =

i=1 i=1

— Y.LB(R)z LB(P)

Now, suppce that the size of the data used by a given
partition is snaller than the size of one set of the FB.
Then, the best schedule is obtained as in Figure 5. All
the cmputations are caried ou over one set of the FB
and al data movements over the other. In this case,
computation and cata overlap is maximum and the total
exeadtion time for this partition equals LB. On the
contrary, if the total data exceeds the size of one set of
the FB, this kind d schedule is not possble and the
scheduling hesto be dore.

Therefore, if a partition, P, meds condtion (1) and its
data fitsinto ore set of the FB, no partitioning o P will
improve the total exeaution time. These two condtions
form the boundng ched for partitioning:

LetP = {K,,...,K, } beapartition:

If LB(P) = MAX[Zn: ki ’Zn:(Dl,...j +R)}

andSD(P) < (Sizeof onesetof theFB) =
= Boundingcheck= false
OtherwiseBoundingcheck= true

where SD(P) stands for the size of the data used by
partition P.

The size of the data can be obtained by addition o all
the inpu data and the results generated by al the
kernels. However, if akernel has arealy been exeauted,
the data that is not used hy the following kernels can be
replaced by the generated results. Therefore, if “x=1" (x
isdefined in sedion 4.1) SD(P) can be expressd as.

LetP={K,,
So(P)=
d;_j = Sze of inpu data for kernel K; except those

shared with kernels{Ki, ...Kj.1 }.
r; = Sze of the results of kernel K;.

K, } beapartition.

MAX{Zdl J+zr}

iell,..., n

If “x>1" a genera expresson can be derived from the
previous one;

SO(P)=

MlAX[> x-d;. J+Zx r+

j=i+1

+ MAX}[(X—I +1)-d, +1-r,]}

In this expresson, the data used is multiplied by x for all
the kernels except one of them, say Ki. In order to
explain this, suppcse that K; is going to be exeauted x
times. The first exeaution d K; requires “x-d + r;". The
second ore requires “(x-1)-d +2+;", and so on. The

maximum value thus ohtained is the red size of the
data used by K:

MAX[(x=1+1)-d; +1-r;]

lefl,... x

An important consideration is that within a partition, P,
reordering d kernels (when passhle) can change
D(P). In order to minimize SD(P), the kernel with the
largest amourt of data used is exeauted first. This way,
the data that have been already used can be replaceal by
the generated results.

Every time anew partition, P, is obtained, LB(P) is
computed and the lower bounds for all partitions in a
complete mver of the DFG are alded to oltain alower
bound for the etire DFG with this gedfic
partitioning.

In order to chedk if this cover for the DFG has the best
partitioning solution, its overal lower boundcan be
compared with a lower bound for the whde seach
space(S9, LB(SS. The LB(SS considers that the three
optimizaion criteria ae met:

LB(SS=MA>{ >k, Y. i+R)}

Vv kernel ¥ kernel

If 2LB(P;) for a mmplete wmver and LB(SS are equdl,
the best cendidate has been found, dherwise this
comparison provides a means to evaluate the quality of
the solution.

4.2. Scheduling within a partition

The process of scheduling within a partition can be
viewed as an assgnment of computations to sets of the
FB. For example in Figure 7, computation d kernels 1
and 2are asdgned to set 2 and computation d kernel 3
isasdggned to set 1.

We use the term cluster to designate agroup d kernels
that are assgned to the same set of the FB. In Figure 7
there ae 2 clusters: {Ky, Ko} and{K3}.

CM
FB1

%r.0:0: [

FB2 | ki k,

Time " I Idletime

Figure 7. Scheduling of a partition {K 1, K5, K3}

The size of the data used by every cluster has to be
smaller than ore set of the FB and orly these dusters
will be mnsidered for detail ed scheduling.

However in genera, there is an important difference
between the method to compute the data size
“ SD(CI)”, for the duster Cl, and the method to oktain
the total exeaution time. Thisis ill ustrated in Figure 7.
Here, R; and D; are loaded while K;, K, are being

exeauted. So, every cluster exeaution overlaps with the
movement of the results of the previous cluster and the
inpu data of the next cluster. This overlap hes to be
considered when computing the total exeaution time.
The minimum number of clusters for a partition P is
“D(P)/(size of FB set)”, and the maximum is the total
number of kernels.

The schedule is determined in a similar way to the
partitioning. The largest cluster is considered first and
the exploration agorithm is applied to it. The largest
cluster maximizes the computation and data overlap, bu
if its gze is too Hg, it has to be partitioned, with
consideration for data reuse.

Notice that context loading hes arealy being taken into
acount during partitioning and any variation o
clustering, a even a different exeaution ader, will not
modify the context loading time.

The exeautiontime, ET, for agiven partition, P, is:

P ={Cl,,Cl,,...Cl }i Cli = {Ki 1, Ki 20 Ki) |

t(Cr)

NC n(i) n(i-1) n(i+1)
ZMAX{élkni,j , .&:LRil,j + ZlDi+1,(1 j):|
i= i=

i=1 j=

ET(P) = +

where kn;; is the portion d computation time that does
not overlap with context loading; «;; is the variable, «,
correspondng to the kernel K;;; the other symbols have
the usual meaning.

For scheduling within a partition, the boundng ched is
the same & the stopping criteria. If the exeaution time
for a given partition P, ET(P), eguals its lower bound,
LB(P), there is no aher clustering that can improve the
result.

Moreover, if a partition, P;, is <heduled and "ET(P))<
LB(Py)", Vj, then the best scheduling hes been found.

5. Experimental results

In this sdion, MPEG (a pradicd applicaion) is
used to demonstrate the quality of the proposed
methoddogy. Some of the best results generated
during the seach are presented in Table 1. One
solution that was not explored (becaise of seach
space pruning through boundng chedk) is aso
included in the table to ill ustrate the validity of the
boundng check.

Although the best solution is obtained quite fast (in
the seond iteration), the partitioning processcan na
be terminated ealy, becaise LB(SS is never readed.

2

Figure 8. Ordering of edgesfor MPEG.

Exploration 2'LB(P) Exeaution
agorithm Cover LEE (clock cydes) | time (after
iteration scheduling)
1 {MEMC,...IMC} %] 5110cc NNS
2 {ME}{MC,...IMC} {1} 4941cc 4941
15 {ME} { MC,DCT,Q} { IQ,IDCT,IMC} {1,2,5} 5080cc NNS
30 {ME,...Q}{1Q,...]MC} {2,5} 5036¢cc NNS
Not explored | {ME} { MC} { DCT} { Q} { IQ} { IDCT} { IMC} | {1,2,3,4,5,6,7} 5806¢cc

LB(S9= 4894cc.; NNS= nat necessary to schedule.
Table 1. Experimental datafor MPEG

Moreover, we foundthat the boundng ched reduced
the seach spacefrom 64 dfferent covers to ony 31.
For example, the solution with LEE={1,2,3,4,5,6,¥
(case (b) in Figure 3) is not explored.

Additionally, for the secnd partitioning solution,
the exeaution time (obtained after detail ed scheduling)
is lower than the lower boundfor all other partitioning
solutions. Therefore, we do nd neal to perform
detailed scheduling for any other cover, since it is
guaranteed that no aher solution can have lessr
exeautiontime.

6. Conclusions

In this paper, we have presented a solution to the
problem of scheduling d applicaion kernels, for the
MorphadSys reconfigurable system. The various aspeds
related to this problem have been dscussd, and a
methoddogy to solve it has been proposed. The
optimal solution is aways found through the
exploration d the pruned seach space On the other
hand, if the processtimes out, it is likely that a good
solution hes drealy been found (since better
candidates are evaluated ealier). The exploration
algorithm is quite straightforward and the eguations
can be quickly computed, fadlitating its
implementation in software.

References

[1] I.Quaiss S. Govindargjan, V. Srinivasan, M. Kaul and
R. Vemuri, "An Integrated Partitioning and Synthesis
system for Dynamicdly Reonfigurable Multi-FPGA
Architedures’, 5th Reconfigurable Architedures
Workshop, 1998 (RAW'98)

[2] M. Vaslko and D. Ait-Boudeoud "Architedura
Synthesis Tecdhniques for Dynamicdly Reonfigurable
Logic', 6th International Workshop on Fied-
Programmable Logic and Applicaions, FPL '96
Procealings, p.290-296

[3] M. Vasilko and D. Ait-Boudsoud "Scheduing for
Dynamicdly Remrfigurable FPGAS', in Procealing of
International Workshop on Logic and Architedure
Synthesis, IFIP TC10 WG10.5, Grenolde, France, Dec 18
19,1995 pp. 328336

[4] K. M. GagjjaaPurna, D. Bhatia, "Tempora partitioning
and scheduling for reconfigurable computing”, Proceadings
of IEEE Symposium on FPGAs for Custom Computing
Madhines, 1998 pp. .329-330.

[5] M. Kaul andR. Vemuri, “Optima Tempora Partitioning
and Synthesis for Recwnfigurable Architedures’,
Procealings of the DATE, p. 389-396, 1998

[6] H. Singh, M. Lee G. Lu, F. J. Kurdahi, N. Bagherzadeh,
T. Lang, R. Hedon and E. M. C. Filho, “MorphdSys. An
Integrated Re-configurable Architedure”, Procealings of
the NATO Sympasium on System Concepts and Integration,
Monterey, CA, April 1998

[7] E. Waingold et a, “Baring it all to Software: The Raw
Machine”, IEEE Computer, p. 86-93, Sep 1997

[8] E. Tau, D. Chen, I. Edlick, J. Brown and A. Dehon, “A
First Generation DPGA Implementation’, Third Canadian
Workshop d Field-Programmable Devices, May 29 —Jun 1,
1995

[9] E. Mirsky and A. Dehon “MATRIX: A Reonfigurable
Computing Architedure with Corfigurable Instruction
Distribution and Deployable Resources’, Proc, of IEEE
Symposium on FPGAs for Custom Computing Madhines,
IEEECS Ress p. 157-166, 1996

[10] J R. Hauser and J. Wawrzynek, “Garp: A MIPS
Procesor with a Re-configurable Co-processor”, Proc. of
the IEEE Symposium on FPGAs for Custom Computing
Machines, April 1997

[11] A. Abnows, C. Christensen, J. Gray, J. Lendl, A.
Naylor and N. Bagherzadeh, “Design and Implementation d
the Tiny RISC Microprocessor”, Microprocesor and
Microsystems, Vol. 16, No, 4, p. 187-194, 1992

	Main Page
	DATE99
	Front Matter
	Table of Contents
	Session Index
	Author Index

