
ABSTRACT
This paper presents a technique for highly con-
strained event sequence scheduling. System
resource protocols as well as an external inter-
face protocol are described by non-determinis-
tic finite automata (NFA). All valid schedules
which adhere to interfacing constraints and
resource bounds for flow graph described
behavior are determined exactly. A model and
scheduling results are presented for an exten-
sive design example.

Keywords
Interface protocols, protocol-constrained scheduling, automata.

1. INTRODUCTION
Scheduling is an important problem occurring in diverse areas from
manufacturing to networking to high-level synthesis of digital sys-
tems (HLS). Although there has been extensive work done in HLS
scheduling, much of this work has disregarded how the final sched-
uled system must communicate to other systems. In particular,
scheduling systems containing components with complex interface
protocols is neglected. This situation is the norm in modern digital
systems, and use of sequential protocols is likely to increase in
future designs. This paper presents a technique which addresses
data-flow scheduling subject to arbitrary sequential protocols. Sys-
tem resource usage protocols as well as an external interface proto-
col are described by non-deterministic finite automata (NFA). Next,
constraints derived from a behavioral flow graph are applied to an
implicit product NFA. Finally, reduced ordered binary decision dia-
gram (ROBDD) symbolic reachability techniques are used to find
all valid schedules exactly. A model and scheduling results are pre-
sented for an extensive design example.

We classify previous high level scheduling work into three catego-
ries: i) heuristic, ii) integer linear programming (ILP) and iii) sym-
bolic methods. Heuristic schedulers (i.e [1][10]) find good
solutions for large problems quickly but suffer with tightly con-

A Model for Scheduling Protocol-Constrained Components
and Environments

Steve Haynal Forrest Brewer
Department of Electrical and Computer Engineering

University of California, Santa Barbara, U.S.A.
haynal@umbra.ece.ucsb.edu, forrest@ece.ucsb.edu

strained problems where early pruning decisions exclude candi-
dates leading to superior solutions. ILP schedulers (i.e. [3][6])
exactly solve scheduling but have difficulties with time complexity
and complex control constraint formulation. Symbolic methods
(i.e. [2][4][7][8][11]) are often effective in finding exact solutions
in highly constrained problem formulations but may suffer from
representation explosion. The technique described in this paper
falls in the symbolic methods category. The most closely related
previous work is found in [2][11] where system timing and syn-
chronization requirements are encapsulated in finite-state machine
(FSM) descriptions. Our work differs in two ways. First, we intro-
duce non-determinism as a preferred representation for protocols.
The work described in [9] supports this decision. Second, and more
importantly, our formulation is hierarchical and amenable to
abstraction. We believe hierarchy and abstraction are key compo-
nents in making symbolic techniques manageable.

2. PROBLEM DESCRIPTION
Input to this problem consists of three types of information. First,
protocol interface NFAs are provided for all internal resource units
and the external interface. For internal resource units, these autom-
ata models describe when local communication events may occur.
Local communication is operand passing between local resource
modules. External communication events are modeled by the exter-
nal interface NFA. Second, a data flow graph (DFG) is provided.
The behavior or algorithm to be implemented is given in terms of
this graph. DFG nodes represent operations and arcs represent
operands. In this case, nodes are executed by resources with poten-
tially complex interface protocols. Finally, instance resource and
operand register bounds are given.

The problem is to find a valid event sequence or schedule imple-
menting the DFG described behavior, meeting all protocol con-
straints, and using only available resources. The technique
presented here finds all valid schedules exactly.

3. PROBLEM FORMULATION
This section describes how the problem input information is used to
construct a scheduling NFA which represents all valid execution
sequences or schedules. The process involves building a product
NFA from small local NFAs and applying constraints to this prod-
uct NFA. ROBDDs provide efficient representation for these NFAs.

3.1 Operand NFAs
Each arc in the DFG is represented by an operand NFA (Fig. 1) in
our formulation. The meanings of each state and transition may be
inferred from the figure. The start state is in bold.

 Figure 1. Operand NFA.

unknown known

create
remember

_

Permission to make digital/hardcopy of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, the copyright notice, the title of the publication
and its date appear, and notice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.
DAC 99, New Orleans, Louisiana
(c) 1999 ACM 1-58113-109-7/99/06..$5.00

3.2 Resource NFAs
In our formulation, each node in the DFG is modeled by a
resource NFA. Several instances of a given resource may be spec-
ified. The example resource NFA of Fig. 2 represents the protocol
for a unit with a restricted bus. Two input operands are required
but must be presented sequentially. Furthermore, input operands
may not be accepted while an output operand is present.

3.3 Binding NFAs
Several DFG nodes may be bound to the same resource instance.
Consequently, it is necessary to distinguishwhich DFG node is
bound to a resource instance at any given time. To make this dis-
tinction, a binding NFA is paired with each resource instance
NFA. Fig. 3 shows a binding NFA capable of binding to two pos-
sible DFG nodes plus a null node. When this binding NFA is in a
DFG node state, then the local operands of the mated resource
instance NFA map directly to operands accepted or produced by
that DFG node. Which local operand maps to which DFG operand
is specified by the designer. Finally, constraints are added later to
restrict a binding NFA’s rebind transitions (a change in state) to
occur only in sync with its mated resource NFA’s rebind transi-
tions.

3.4 Interface Protocol NFA
The interface protocol NFA describes when DFG operand input or
output transactions may occur given external timing constraints. It
is similar in construction to a resource NFA (Fig. 2) with states
associated with input and output events. Unlike a resource NFA,
there is no need for a mated binding NFA.

3.5 Implication Constraints
To create a scheduling NFA, implication constraints are applied
between operand, resource, binding and interface protocol NFAs.
For example, letQ be the proposition, “The interface protocol
NFA is transiting to a state where input of operand 1 is allowed”
and letP be the proposition, “The operand NFA for operand 1 has
a create transition.” The desired implication would then beP→Q
or if P is true, thenQ must also be true. In the ROBDD structure,
an implication is constructed as,

whereP andQ are ROBDDs. (1)

3.5.1 Operand Create Implications
DFG operands are only allowed to be created (their NFA transits
from unknown to known) when they are available from the inter-
face protocol or a bound resource instance NFA. For each operand
i expected from the protocol interface, the implication is,

 (2)

 Figure 2. Example of Bus Restricted Resource NFA.

in 1 in 2 out

rebindrebind

bound

 Figure 3. Binding NFA.

rebind transitionsnode 1 node 2

null

P Q→ PQ=

i create interfaceins
→

where icreate is the create transition of the expected operand NFA
andinterfacei is any transition to a next state,ns, where operandi
is available in the interface protocol.

A DFG operandi is available from a resource instance,r, when
two conditions are true. First,r ’s paired binding NFA,b, must be
transiting to a next state bound to the DFG node,nd, producingi.
Second, supposel is a local operand ofr which maps to DFG
operandi when the first condition is true. Thenr must also be tran-
siting to a next state where local operandl is available. Further-
more, since any resource instance capable of producing DFG
operandi may actually producei, all capable resource instances
must be examined. Formally, for each expected DFG operandi,
this is described as,

 (3)

where the summation is over all capable resource instance and
mated binding NFAs.

3.5.2 Operand Accept Implications
Resource and interface protocol NFAs are only allowed to transit
to states requiring operands if the required operands will exist. For
the interface protocol, this is enforced for each required DFG
operandi with,

 (4)

whereinterfacei is any transition to a next state requiring operand
i andiknown is any transition to the known state of operandi.

The implication describing this for a local resource and mated
binding NFA for each required DFG operandi is,

 (5)

whererl, bnd and iknown are as described earlier. By writing this
implication in terms of the present state,ps, of the binding NFA, it
is possible to create a resource NFA which produces an output
operand and rebinds to a new DFG node during the same cycle.

3.6 Rebind Synchronization Constraints
A binding NFA may only rebind to a new DFG node when its
mated resource NFA transits through a rebind transition. This syn-
chronization is enforced for each resourcer and bindingb NFA
pair with the constraint,

 (6)

whererrebind andbrebind are the rebind transitions of the resource
and mated binding NFAs respectively. Furthermore, it is wasteful
for the resource NFA to transit through a bound transition with a
null binding. Consequently, for each resourcer and bindingb
NFA pair, the constraint,

 (7)

whererbound is the bound transition of the resource NFA (Fig. 2)
andbnull is any transition to a next state of null in the mated bind-
ing NFA, is applied to the scheduling NFA.

3.7 Memory Constraints
Only a finite number,n, of storage elements may be available to
store DFG operands. LetA be the set of all combinations of at
mostn operands from the set of all DFG operands. Then

i create r lns
bndns

()∑→

interfaceins
iknownns

→

r lns
bndps

iknownns
→

r rebindbrebind

rbound bnullns
→

is allowed. (8)

This constraint essentially limits the number of operand remember
transitions which may coexist in any transition of the scheduling
NFA.

4. SCHEDULING SOLUTIONS
The product of all local NFAs and constraints described in
Section 3 form a scheduling NFA. Every possible valid schedule
is a path in this scheduling NFA from a starting state set Si(V),
where no operands are known and all resources are null bound, to
a termination state set Sf(V′), where all desired operands have
existed. Each shortest path from Si(V) to Sf(V′) represents a mini-
mum latency schedule.

We leverage symbolic reachable state analysis techniques to deter-
mine the existence of valid schedules. Let the scheduling NFA be
defined by the four-tuple (V,δ, Si(V), Sf(V′)) where V is the
finite, non-empty set of states,δ: V→V′ is the next-state function
and Si(V) and Sf(V′) are sets of initial and final states respectively.
Starting with Si(V), reachable state analysis is performed. Once
completed, if Sf(V′) is not present in the reachable state set, then
no schedules are possible with the current constraints and schedul-
ing terminates. On the other hand, if Sf(V′) is present, then valid
schedules do exist and we can use the technique described in [4] to
find a shortest path and hence a minimum latency schedule.
Finally, we are not bound to perform complete reachable state
analysis but may use refinements, optimizations and other tech-
niques to find any desired subset of paths or schedules in the
scheduling NFA.

5. 2-POINT DFT EXAMPLE
We develop a 2-point DFT example in detail to demonstrate the
versatility of our protocol-based scheduler. Fig. 4 shows the DFG
used in this example. Although this DFG appears simple enough
to be handled by traditional scheduling techniques, the advantage
of our method is the ability to tightly define data transfer protocols
and resource constraints.

Fig. 5 shows the interface protocol constraint NFA for this exam-
ple. In reality, this constraint describes an external controller
which computes correct indices and memory addresses. Due to
controller and communication bandwidth limitations, the index,
A’s memory address and B’s memory address must be passed in
three consecutive cycles. After this, the controller non-determinis-

j remember
j α∈
∏()

α A∈
∑

 Figure 4. 2-Point DFT Example DFG.

Memory
Read

Memory
Read

Function
Subtract

Function
Add

Function
Multiply

Memory
Write

Memory
Write

Table
Lookup

CoefficientIndex

A Address

B Address

A

B

New A

New B

A Written

B Written

i

 Figure 5. DFT Interface Protocol.

A Address B AddressIndex

A Written

B Written

Idle

B Written

A Written Idle

Idle

tically does not proceed to the next iteration until it knows that
both computed terms have been successfully written to memory.

The table lookup protocol is shown in Fig. 6. Two cycles after an
index is presented, a stored coefficient is produced. A unique
behavior is that the coefficient remains available for two cycles.
Furthermore, a new index may be provided during the second
cycle of coefficient availability.

The memory resource uses the protocol detailed in Fig. 7. The
data and address busses are time multiplexed with addresses
accepted on odd cycles and data passed on even cycles or vice
versa. The read protocol requires an address and provides the
requested data after three cycles. The write protocol requires an
address and the write data in two consecutive cycles. Three cycles
later a write acknowledge is produced. A new address may be
accepted during the same cycle that a write acknowledge is pro-
duced.

Fig. 8 shows the arithmetic processor protocol. This unit performs
three floating-point operations: addition, subtraction and multipli-
cation. Due to limited communication bandwidth, input operands
1 and 2 and the result operand must be passed during separate
cycles. An add or subtract result is produced two cycles after the
last input. Given the higher complexity of multiplication, its result
is produced three cycles after the last input. For addition and mul-
tiplication, ordering of the input operands is irrelevant but for sub-
traction operand ordering is important. In this example, operand 1
must be accepted first.

The protocol in Fig. 8 is an example of alternative behaviors.
There are two valid start states and three variations of correct
behavior. A flexibility of our formulation is this ability to handle
numerous alternatives. As long as one valid path exists containing
all required input and output operands for a DFG node, symbolic
exploration will not fail. Additional resource operands not
required by the DFG are ignored.

6. RESULTS
A tool was developed to demonstrate the feasibility of our sched-
uling technique. It was written in python and utilized a standard
BDD library. The reported results were produced on a 400 MHz
Pentium PII system running Linux with 512MB of memory. These
results were duplicated with runtimes 3 to 4 times longer on a 166
MHz Pentium laptop Linux system with 32MB of memory.
Table 1 presents results for various resource configurations of the
example presented in Section 5. The first three columns list
instances of these available resources. Since by observation, A

 Figure 6. DFT Table Lookup Resource.

Index CoefficientIndex
Coefficientrebind

rebind
rebind

bound

bound

 Figure 7. DFT Memory Resource.

Address Write Data Address
Write OK

rebind

rebind

bound
Read Data

 Figure 8. Arithmetic Processor Resource.

Operand 1

rebind

rebind
bound

AddOperand 2

Operand 2

Operand 1

Subtract

Multiply
bound

Address and B Address from the DFG in Fig. 4, are needed at both
the beginning and end, these operands are given dedicated storage
which is not included in theMemory Registers column.

As one might expect, scheduling performance is best for configu-
rations with the least amount of freedom. Increasing instances of
any resource causes a resulting increase in CPU time. All solu-
tions are exact and produced in reasonable time. Although a mini-
mum latency schedule is reported, all valid schedules of all
lengths were actually computed. As far as we know, we are the
first to report exact solutions for protocol-constrained scheduling
problems of this type.

Arithmetic processors marked with an asterisk use a slightly dif-
ferent protocol than described in Fig. 8. First, the multiply extra
cycle penalty is removed. Second, a new penalty for reconfigura-
tion is added. Any multiplication following an add or subtract or
any add or subtract following a multiplication pays an extra cycle
penalty for reconfiguration. In these cases we see the same results
for a minimum latency schedule but with a possibly simpler arith-
metic processor and control structure.

The minimum latency schedule marked with an asterisk uses a
modified interface protocol which is intended to explore alterna-
tive controllers. A address, B address and the index may now be
produced by the controller in any consecutive order. Although this
added freedom increases the runtime by 12 seconds, there is no
gain in the minimum latency schedule.

7. FUTURE WORK
The models used in this paper were chosen with great care to be
amenable to future work with scheduling hierarchy and abstrac-
tion. A scheduled external interface NFA and a resource NFA
have interchangeable meanings. This allows for a general protocol
NFA to be a vehicle for refinement and abstraction in a hierarchy.
This protocol NFA can be a resource instance NFA at one level of
hierarchy or an external interface NFA at another level. With a
bottom up design flow through the hierarchy, internal complexity
of lower levels is hidden from higher levels since only external
communication events are propagated up. With a top down design
flow, local freedom of lower levels is restricted by the protocol

TABLE 1: 2-Point DFT Results

Memory
Registers

Memory
Ports

Arithmetic
Processors

Minimum
Latency
Schedule

CPU Time
in Seconds

1 1 1 26 2.2

2 1 1 20 6.2

3 1 1 20 8.2

2 2 1 15 11.9

2 1 2 18 54.5

3 2 1 15 20.0

3 1 2 18 50.4

no limit 2 2 13 15.7

2 1 2* 18 164.0

2 2 1* 15 42.4

2 2 1* 15* 54.1

NFA of the higher level. The entire synthesis and scheduling pro-
cess involves refining all protocol NFAs through repeated con-
straint propagation when coexecuting protocols at adjacent
hierarchy levels. We believe that such a hierarchical model is nec-
essary when synthesizing and scheduling systems of meaningful
scale.

Although simple looping structures were present in the example,
our future work will address loops in a more general way. The
method described in [8] provides a starting point. Furthermore,
control structures were not directly addressed in this short paper.
Our previous work in [4] demonstrates a possible way of adding
control. Finally, our use of symbolic reachability to determine
valid schedules will be refined by related work in symbolic tra-
versal techniques for verification.

8. CONCLUSIONS
This paper presented a model and technique for representing all
valid schedules of a data flow graph mapped to a protocol-inten-
sive environment. Both an external interface protocol as well as
internal resource protocol constraints were adhered to. All valid
schedules were modeled exactly using a ROBDD NFA composed
of local smaller protocol NFAs and additional constraints applied
between local NFAs. An extensive design example with results
showed the versatility of this technique.

9. REFERENCES
[1] R. Camposano, “Path-Based Scheduling for Synthesis”,IEEE

Trans. CAD/ICAS, vol. 10, no. 1, pp. 85-93, Jan. 1991.
[2] C. N. Coelho Jr, G. De Micheli, “Dynamic Scheduling and

Synchronization Synthesis of Concurrent Digital Systems
under System-Level Constraints”,Proc. IEEE Int. Conf.
Computer-Aided Design, pp. 175-181, 1994.

[3] C. H. Gebotys and M. I. Elmasry, “Global Optimization
Approach for Architectural Synthesis”,IEEE Trans. CAD/
ICAS, vol. 12, no. 9, pp. 1266-1278, Sep. 1993.

[4] S. Haynal and F. Brewer, “Efficient Encoding for Exact
Symbolic Automata-Based Scheduling”,Proc. IEEE Int.
Conf. Computer-Aided Design, to appear, 1998.

[5] H. Hulgaard S.M. Burns, T. Amon, G. Borriello, “An Algo-
rithm for Exact Bounds on the Time Separation of Events in
Concurrent Systems”,IEEE Transactions on Computers,
vol. 44, no.11, pp. 1306-1317, Nov. 1995.

[6] C.-T. Hwang and Y.-C. Hsu, “A Formal Approach to the
Scheduling Problem in High Level Synthesis”,IEEE Trans.
CAD/ICAS, vol. 10, no. 4, pp. 464-475, Apr. 1991.

[7] C. Monahan and F. Brewer, “Scheduling and Binding
Bounds for RT-Level Symbolic Execution”,Proc. IEEE Int.
Conf. Computer-Aided Design, pp. 230-235, 1997.

[8] I. Radivojevic and F. Brewer, “A New Symbolic Technique
for Control-Dependent Scheduling”,IEEE Trans. CAD/
ICAS, vol. 15, no. 1, pp. 45-57, Jan. 1996.

[9] A. Seawright and F. Brewer, “Clairvoyant: A Synthesis Sys-
tem for Production-Based Specification”,Proc. IEEE Trans.
on VLSI Systems, vol. 2, no. 2, pp. 172-185, June 1994.

[10] K. Wakabayashi and H. Tanaka, “Global Scheduling Inde-
pendent of Control Dependencies Based on Condition Vec-
tors”, Proc. 29th ACM/IEEE Design Automation Conf., pp.
112-115, 1992.

[11] J. C.-Y. Yang, G. De Micheli, and M. Damiani, “Scheduling
and Control Generation with Environmental Constraints
based on Automata Representations”,IEEE Trans. CAD/
ICAS, vol. 15, no. 2, pp. 166-183, Feb. 1996.

	Main Page
	DAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

