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Abstract Experiments show that it only takes several iterations to get the op-

In this paper, by using calculus of variations, we determine the op- timal results by using our algorithm. Our experiments also show
timal shape for a wire under the Elmore delay model. Coupling that the wire delaf’p is a convex function of the wire width at the
capacitance has been taken into consideration explicitly by treat- driver end. o )

ing it as another source of grounded capacitance. Given two wires ~ Due to space limitation, we only show our main results as lem-
in parallel, one has uniform width and the other has non-uniform mas and omit the proofs to these lemmas.

width whose shape is described by a functjtfx). LetTp be

the delay through the non-uniform wire. We determjife) such 2. Elmore Delay Model
thatTp is minimized. We also extend our study to the case where a

non-uniform wire has two neighboring wires. Our study shows that o > —
the optimal shape function satisfies an integral equation. Numer-
ical methods are employed to solve the corresponding differential
equation and carry out the integration. We provide an efficient al-
gorithm to find the optimal solution. Experiments show that it only
takes several iterations to get the optimal results by using our al-
gorithm. Our experiments also show that the wire délayis a
convex function of the wire width at the driver end.

1. Introduction

In today’s deep sub-micron design, interconnect delay becomes
an important factor in determining total delay of a system. To re- Figure 1. Coupling capacitance between two adjacent wires.
duce the interconnect delay, wire-sizing is found to be an effective
way. To best describe the wire performance, it is believed that wire  For two adjacent wires shown in Fig.1, wire 1 has a uniform
capacitance should include at least area, fringing and coupling ca-width W, and wire 2 has a non-uniform width which is described
pacitance. [1, 7] have found the optimal wire shape to minimize by a functionf(z). We partition wire 2 inton equal-length wire
the interconnect delay considering only the area capacitance. [2, 6]segments, each of lengthz = % and approximate it as a dis-
later on solve the similar problem by taking fringing capacitance triputed RC network. Let; = iAz, 1 < z < n. For segment
into consideration. [8] extends [2, 6]'s work to bi-directional wire. ; “there is a coupling capacitance betwetinsegment and neigh-
ggggﬁgﬁﬁh{hgggwgﬁ( Cg%i‘;ﬁ%gcgaggiipaﬂcgeggntggi%m;%g’g‘léboring wire. The value is inversely proportional to the distance
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to and even bigger than the sum of area and fringing capacitanceD — f(zi),1e.Cei = D—f(z;) wherec. is unit coupling capaci-
as the distance between two adjacent wires decreases [10, 11]. [fance. ) ) )
plays an important role in determining both the wire delay and the It has already been found that [10, 11], if two adjacent wires
crosstalk effect. To minimize the effect caused by coupling capac- are driven by “in-phase signals”, i.e. two driving signals are go-
itance, one approach is to find the best routing pattern [12, 13] to ing from low to high at the same time, the coupling capacitance
avoid two wires to be placed too close to each other. Another ap- does not play a role in determining either delay or crosstalk effect.
proach is to appropriately size the wire shape to minimize delay If these two wires are driven by “off-phase signals”, i.e. one sig-
and crosstalk effect. nal is going form low to high and the other is going from high to

In this paper, we will focus on minimizing the delay effect low, the role of coupling capacitance is the same as that of a dis-
caused by coupling capacitance. By using calculus of variations, tributed wire with an extra grounded capacitar2¢g.. Since in
we determine the optimal shape for a wire under the EImore de- practice it is not easy to determine whether two driven signals are
lay model. Coupling capacitance has been taken into considera- in-phase” or “off-phase”, for safety we can assume the worst case
tion explicitly by treating it as another source of grounded capaci- in our study. We always take the coupling capacitance into delay
tance. Given two wires in parallel, one has uniform width and the consideration and treat it as another source of grounded capaci-
other has non-uniform width whose shape is described by a func-tance added to the original distributét’ network. Therefore,
tion f(z). LetTp be the delay through the non-uniform wire. We the capacitance and resistance of segnesin be approximated
determinef(z) such thatl’p is minimized. We also extend our by C; = (C,,; + Ce,i) = (cOf(a:i) +ef + %)Am and
study to the case where a non-uniform wire has two neighborin ; ; o ;
Wire)s/. Our study shows that the optimal shape functiongsatisfiegsg’ncg roAz/f(zi), respectively, whereo is unit area capaci-

- : . ,cf is unit length fringing capacitance, amg is unit resis-
an integral equation. Numerical methods are employed to solvetance Lep be the Eimore delay through wire 2. The commonly
the corresponding differential equation and carry out the integra- used .Elmor% delay of the distributed RC network is given as the
tion. We provide an efficient algorithm to find the optimal solution. sum over all segment resistande Y multiplied by its down stream

*This work was partially supported by the Texas Advanced Research capacitance [4, 9]. In this paper, because of the similar reason ex-
Program under Grant No. 003658288 and by a grant from the Intel plained in [8], we use an alternative but equivalent form of EImore
Corporation. delay wher€el'p is given as the sum over all segment capacitance
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multiplied by its upstream resistance, i.e.

Tp = i(COﬂ“HCHD—Ci}(m)M

. (RD+§;°@§)+C,(RD+§;@§)

Asn — oo, Tp thus becomes

/0 (cor@) +er+ 5=5)
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3. Shaping a Wire with One Neighboring Wire

Lemma 1 To minimize the delay in (1), the optimal shape function

f(z) satisfies the following first order integral equation:

ccD ¢ —cyrou(z)
G=r@r M ey @
whereu(z) = EL %, andc is a constant.

(2) is derived by using calculus of variations [5]. Similar deriva-
tions can be found in [7, 8]. Unfortunately, it is difficult to get an

analytic solution to (2). This is different from previous work in

[7, 8]. In [7, 8], the Euler’s differential equations which are simi-
lar to (2) are derived, and they can be solved analytically. In [7],
the solution is an exponential function; whereas in [8], the solution

is expressed in terms of Lamber¥® function. In this paper, we
use numerical method to solve (2).
~ Letz = Lin (2), sinceu(z)|,=z = 0, a direct result from (2)
is

ceD )
(D —wo)?

where we denotay = f(z)|.=z as the wire width at driver end.
The importance of (3) is that giveror wy, we can easily calculate
the other. In additiong is a convex and monotonically increasing
function of wo.
Obviously, the solutiom(z)(or f(z)) only depends on one con-
stantc. Substitute (2) into delay expression in (1), we get
cf +2cof(z) + Ce

A Ry

x (c+ RdCf))da: + R4C (4)

c=Ry (20011)0 + ©))

cy+ Cof(l’) + D—Ciff(l’)

Without solving equation (2), the following property of function
f(z) still holds.

Lemma 2 The optimal shape functioif(z) satisfying (2) is a
monotonically increasing function.

_ c—cfrou(z) . . .
Let A = R+ rou(z)’ we can easily derive the following

equation from (2).

I 1 1 2coh+ A
— 3 4= z
u(z)=v +9w+3c¢—Ah
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(5) is afirst order ordinary differential equationfz). As long
as we knowe, starting with the boundary conditiom(L) = 0,
u(z)(and equivalentlyf(z)) can be solved numerically by using
Runge-Kutta method or other multi-step methods. Tfencan
be calculated through (4) numerically. In previous work [7], it is
shown thafl'p is a convex function o, thus any local minimum
value forTp is also the global minimum. Later on in our experi-
ments, it is observed that numerically calculaféglis still convex
inc.

If the driver end widthwy is given, we can solvg(z) from (5)
directly. Furthermore, given a range of the drive end width, we
can search for the optimal solution that can mininiizg within
the range.

To find the optimak which minimizesTp in general, we pro-
pose an algorithm based on the following fitting formul&&f,

T =2 + Be (6)
C

whereTp is defined as a function af anda and are undeter-
mined coefficients. Given two poin{s:, Tp1) and(c2, I'p2), we
thus can solvex andg. (6) has a unique minimum value at point

Tpaci — Tpice
c= | =——————=/cica

Tpici — Tpacz

The idea of choosing such a special kind of formula originates
from previous work [7] on solving the optimal shape function with-
out considering fringing capacitance. In [7]p is calculated as

1
Tp = RqCie®0%0L/e 4 cL @

which is obviously convex ife. But adopting this as a fitting for-
mula will be very expensive to solve for coefficients likeand 5.
Probably, it will rely on solving a system of nonlinear equations.
(6) can be thought of as a first order Taylor series expansion of (7).
Our algorithm starts with the solution without considering the
coupling capacitance, where it provides us with an initial value of
c. The driver end widthwy is thuswo = ¢/(2Raco) by letting
cc = 0in (3). The algorithm in the following then searchs for the
optimalc which minimizesT'p.

Algorithm Find the optimak to minimizeTp
w1 = wo, 1 = Ra(2cowr + ﬁ)
w2 = 0.8wop, c2 = Ry (200102 + ﬁ
calculatel'p1 (c1), Tp2(c2)

¢ =+/Tpa2c1 — Tpicay/cica/VTpici — Tpace
calculateT’p (c)

choose two smallest f'p1, Tp2, Tp} as newl'p:, T
choose the corresponding asci, c2

repeat 4-6 until no improvement on succesdivyes
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“CalculateTp(c)” in the above involves implicitly two steps:
first givenc solveu(z), and then carry out the integration f@p
numerically.
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Figure 2. Coupling capacitance between three adjacent wires. The dis-
tance between wire 1 and wire 329.

4. Shaping a Wire with Two Neighboring Wires

In this section, given three adjacent wires shown in Fig.2, we
will shape wire 2 so that the delay through it is minimized. Wire
1 and 3 have uniform widths. For wire 2, there are two sources of
coupling capacitance, one is between wire 1 and wire 2, and the
other is between wire 2 and wire 3. In Fig.2, we define the center-
line of spacing between wire 1 and wire 3 as the reference line.
The shape of wire 2 is defined by two functiofigz) and f2(z)
with respect to the reference line. If the insulators among these
wires are the same, we have the following lemma.

Lemma 3 The optimal wire shape to minimize the delay through
wire 2 will have f1(z) = f2(z), i.e. the shape is symmetric with
respect to the center-line of spacing.

A direct result from Lemma 3 is that the study in section 3 which
is dealing with one neighboring wire can also be extended to shap-
ing the wire with two neighboring wires. The shape of wire 2 can
be defined by a single functiof(z), therefore the delay is calcu-

lated by
L
/(2cof(a?)+
0
R L rodt d o (r L rodx
% (‘“L/z 2f(t)) vt ’( d+/0 2f(x))

where “2” occurs because of two neighboring wires. Comparing
with equation (1), the only difference is that we have different pa-
rameters (e.geo changes t@co). Solving for f(z) can follow the
same procedure in section 3.

For a more general case where the insulators surrounding wire
are different, we have to solve for two functiofig(z) and f2(z)
simultaneously. We thus have two first order differential equations
like (2) to solve. Solvingf:(z) and f2(z) can be done iteratively
by assuming one has fixed value and solving for the other.

5. Extension to Constrained Wire-sizing

Our study can be extended to constrained wire-sizing. In con-
strained wire-sizing, we are given upper boufl,., and lower
bound Wy,i. It is required thatWp,in, < f(z) < Wiaaz,
0 < z < L. In this section, we only present the extension of
shaping a wire with one neighboring wire. A similar study can be
extended to shaping a wire with two neighboring wires. Obviously,
if the optimal wire shape function obtained for the unconstrained
case lies within bound§V,in, Winaz], then f(z) is also opti-
mal for constrained wire-sizing. On the other hand, if for some
z, f(z) is not within [W,in, Wmae], We find that the optimal
constrained wire shape function can be any one of the 5 differ-
ent types of functions [1, 2], i.e. type-ABC, type-AB, type-BC,
type-A and type-C, which are shown in Fig.3. These types have at
most three parts. Part-A and part-C represent uniform width parts
having widthsW,,;, and Wy, respectively. Part-B represents
non-uniform width part which is described by a functiffr). To
determine which type is optimal, we calculate the minimum delay
each type can achieve. We then have five delay values from five
types respectively. The type which gives the minimum delay value
is thus the optimal shape.
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Figure 3. 5 different types of optimal shape functions under constraint:
Type-ABC, Type-BC, Type-AB, Type-A and Type-C.

For illustration, we show briefly how to calculate delay for type-
ABC. The total delay through part-A, part-B and part-C can be
calculated as:

el
T, = (c, + Wininlico + licy + D—Ciw;mn)
£
rodz roly rols
X (Rd + o (x) + Winin Wmaw)
la C
* / (0s@)+ 5=y +er) (R
la
rodt s rols
% (Wm”lgco +lsep + D_ccivl%,m) ®

We find thatf(z) still satisfies equation (2) in order to minimize
delay, except thaR, is replaced byR; + Wl% The shape func-

2tion f(z) for part-B can be determined by using the algorithm we

introduced. Since its driver end width ¥, constant in (3)

can be calculated directly. Solving equation (5) thus gives(as.

On the other hand, the load end width is fixedat,;,, , so the wire
lengthl, is determined. The total deld§p is then expressed as a
function only depends oh andis, sincel; + I> + I3 = L. To
determinel; andls, we solvedTp /0l = 0 anddTp /0l = 0
simultaneously. Delay calculations for other types can follow the
similar procedure.

6. Experimental Results

In this section, we show some experimental results of shaping a
wire with one neighboring wire. We use Runge-Kutta method to
solve the ordinary differential equation (5). Then we apply Simp-
son’s rule to carry out the integration for calculatifig in (4). The
circuit parameters are chosen as follows:= 3,000um, ro =
0.03Q/0, co = 0.2fF/um?, ¢; = 0.2fF/um, C; = 10pF.
Other parameters, such &y, c¢. and D are subject to change in
different case studies. Those parameters are listed in Table 1. In
addition, we also list the driver end width, for each case with-
out considering coupling capacitance, since we can solve them in
advance. Those widhts are the initial values when we use our al-
gorithm to find the optimal shapes. The formulas involved in this
step of calculation can be found in [8].

Case 1 and 2 are two extreme examples. The initial driver end
width is 1.9um. Therefore the distance between two adjacent



Case [ Driverend Loadend | Numberof [ Log(c) Delay(ns) [[ Log(c) Delay(ns)
width(um) | width(um) iterations Search Search
1 1.5207 0.7692 3 -12.9368 | 0.4415 || -12.9365| 0.4415
2 1.6239 0.8392 2 -13.0148 | 0.3970 || -13.0130| 0.3970
3 1.9284 0.9438 2 -13.0958 | 0.3594 || -13.09044| 0.3594
4 7.4551 2.0168 4 -13.4827 | 0.09181 || -13.4727 | 0.09178
Table 2. Calculated optimal shapes and delays for case 1 to 4
Case | Ra() | . (FF) | Dlam) | wolam) tance and dashed lines represent optimal shapes without consider-
1 100 0.2 3 1.0144 ing coupling capacitance. To our expectation, the optimal shapes
2 100 0.2 3 1.9144 in case 1 and 2 differ much from the optimal solutions without
3 100 0.2 10 1.9144 considering coupling capacitance. Because of the coupling capac-
4 10 0.2 10 8.0993 itance, the wire should be made thinner in order to minimize its

Table 1. Circuit parameters and initial driver end widihy.

wires is only about um. Case 4 is another similar extreme exam-
ple, where the driver end width &um, so the distance between
two adjacent wires i8um. We expect that in these three cases the
coupling capacitance plays an important role in determining the
optimal shape. Case 3 is an opposite extreme example, where th
distance between two adjacent wires is atutz. Therefore in
case 3, coupling capacitance may not play an important role in de-

termining the optimal shape. These extreme examples are chosen

to test the efficiency of our algorithm.

The first result we want to show is that in all cases we have
studied, the dela¥p is convex in the driver end widtl, (also in
¢). The calculation is done by choosing a rangevgf(thus we get
arange ot) for each case. The delay can be calculated within this
range. In Fig.47p is plotted versug in all cases. Itis clear that
T'p is convex inc. Equation (3) shows thatis also convex invo,
thereforel'p is convex inwo.
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Figure 4. Numerically calculated delay is shown as a convex function of
cin four case studies.

The results of finding the optimal shape function are shown in
Table 2 and Fig.5. In Table 2, we list the optimal solutions by us-
ing our algorithm in first six columns. The optimal solutions are
listed as the driver end width and load end width, the number of
iterations to get the optimal solutions, the optimal value ioflog-
arithm and the calculated delay for each case. Last two columns
are the optimat's and delays found using binary search (labeled
with “search” in the table). Comparing the last four columns, we
find that the value ot found by our algorithm is indeed the op-
timal value to minimizel's. But our algorithm converges within
only several iterations. In a SUN Sparc Station 5, it takes about
0.2 seconds for one iteration in all cases with a relative error of
1.0 x 107%. This indicates that our algorithm also works very
fast. The calculated optimal shapes are plotted in Fig.5, where
solid lines represent optimal shapes considering coupling capaci-

coupling effect. In case 4, it does not differ that much because
two adjacent wires are not close enough. In case 3, the two shapes
are almost the same just because the coupling capacitance is not
comparable to the area or fringing capacitance.
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Figure 5. Numerically calculated optimal shapes.
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