
Optimal Wire Shape with Consideration of Coupling Capacitance
under Elmore Delay Model �

Youxin Gao and D.F. Wong
Department of Computer Sciences, University of Texas at Austin, Austin, Texas 78712

Abstract
In this paper, by using calculus of variations, we determine the op-
timal shape for a wire under the Elmore delay model. Coupling
capacitance has been taken into consideration explicitly by treat-
ing it as another source of grounded capacitance. Given two wires
in parallel, one has uniform width and the other has non-uniform
width whose shape is described by a functionf(x). Let TD be
the delay through the non-uniform wire. We determinef(x) such
thatTD is minimized. We also extend our study to the case where a
non-uniform wire has two neighboring wires. Our study shows that
the optimal shape function satisfies an integral equation. Numer-
ical methods are employed to solve the corresponding differential
equation and carry out the integration. We provide an efficient al-
gorithm to find the optimal solution. Experiments show that it only
takes several iterations to get the optimal results by using our al-
gorithm. Our experiments also show that the wire delayTD is a
convex function of the wire width at the driver end.

1. Introduction
In today’s deep sub-micron design, interconnect delay becomes

an important factor in determining total delay of a system. To re-
duce the interconnect delay, wire-sizing is found to be an effective
way. To best describe the wire performance, it is believed that wire
capacitance should include at least area, fringing and coupling ca-
pacitance. [1, 7] have found the optimal wire shape to minimize
the interconnect delay considering only the area capacitance. [2, 6]
later on solve the similar problem by taking fringing capacitance
into consideration. [8] extends [2, 6]’s work to bi-directional wire.
Unfortunately, coupling capacitance has not been taken into con-
sideration in these work. Coupling capacitance can be comparable
to and even bigger than the sum of area and fringing capacitance
as the distance between two adjacent wires decreases [10, 11]. It
plays an important role in determining both the wire delay and the
crosstalk effect. To minimize the effect caused by coupling capac-
itance, one approach is to find the best routing pattern [12, 13] to
avoid two wires to be placed too close to each other. Another ap-
proach is to appropriately size the wire shape to minimize delay
and crosstalk effect.

In this paper, we will focus on minimizing the delay effect
caused by coupling capacitance. By using calculus of variations,
we determine the optimal shape for a wire under the Elmore de-
lay model. Coupling capacitance has been taken into considera-
tion explicitly by treating it as another source of grounded capaci-
tance. Given two wires in parallel, one has uniform width and the
other has non-uniform width whose shape is described by a func-
tion f(x). LetTD be the delay through the non-uniform wire. We
determinef(x) such thatTD is minimized. We also extend our
study to the case where a non-uniform wire has two neighboring
wires. Our study shows that the optimal shape function satisfies
an integral equation. Numerical methods are employed to solve
the corresponding differential equation and carry out the integra-
tion. We provide an efficient algorithm to find the optimal solution.

�This work was partially supported by the Texas Advanced Research
Program under Grant No. 003658288 and by a grant from the Intel
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Experiments show that it only takes several iterations to get the op-
timal results by using our algorithm. Our experiments also show
that the wire delayTD is a convex function of the wire width at the
driver end.

Due to space limitation, we only show our main results as lem-
mas and omit the proofs to these lemmas.

2. Elmore Delay Model
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Figure 1. Coupling capacitance between two adjacent wires.

For two adjacent wires shown in Fig.1, wire 1 has a uniform
width W , and wire 2 has a non-uniform width which is described
by a functionf(x). We partition wire 2 inton equal-length wire
segments, each of length�x = L

n
, and approximate it as a dis-

tributed RC network. Letxi = i�x, 1 � x � n. For segment
i, there is a coupling capacitance betweenith segment and neigh-
boring wire. The value is inversely proportional to the distance
D� f(xi), i.e.Cc;i =

cc�x

D�f(xi)
wherecc is unit coupling capaci-

tance.
It has already been found that [10, 11], if two adjacent wires

are driven by “in-phase signals”, i.e. two driving signals are go-
ing from low to high at the same time, the coupling capacitance
does not play a role in determining either delay or crosstalk effect.
If these two wires are driven by “off-phase signals”, i.e. one sig-
nal is going form low to high and the other is going from high to
low, the role of coupling capacitance is the same as that of a dis-
tributed wire with an extra grounded capacitance2Cc. Since in
practice it is not easy to determine whether two driven signals are
“in-phase” or “off-phase”, for safety we can assume the worst case
in our study. We always take the coupling capacitance into delay
consideration and treat it as another source of grounded capaci-
tance added to the original distributedRC network. Therefore,
the capacitance and resistance of segmenti can be approximated
by Ci = (Ca;i + Cc;i) =

�
c0f(xi) + cf + cc

D�f(xi)

�
�x and

Ri = r0�x=f(xi), respectively, wherec0 is unit area capaci-
tance,cf is unit length fringing capacitance, andr0 is unit resis-
tance. LetTD be the Elmore delay through wire 2. The commonly
used Elmore delay of the distributed RC network is given as the
sum over all segment resistance (Ri) multiplied by its down stream
capacitance [4, 9]. In this paper, because of the similar reason ex-
plained in [8], we use an alternative but equivalent form of Elmore
delay whereTD is given as the sum over all segment capacitance



multiplied by its upstream resistance, i.e.

TD =

nX
i=1

�
c0f(xi) + cf +

cc

D � f(xi)

�
�x

�
�
RD +

nX
j=i

r0�x

f(xj)

�
+ Cl

�
RD +

nX
i=1

r0�x

f(xi)

�

As n!1, TD thus becomes

TD =

Z L

0

�
c0f(x) + cf +

cc

D � f(x)

�

�
�
Rd +

Z L

x

r0dt

f(t)

�
dx+ Cl

�
Rd +

Z L

0

r0dx

f(x)

�
(1)

3. Shaping a Wire with One Neighboring Wire
Lemma 1 To minimize the delay in (1), the optimal shape function
f(x) satisfies the following first order integral equation:

ccD

(D � f(x))2
+ 2c0f(x) =

c� cfr0u(x)

Rd + r0u(x)
(2)

whereu(x) =
R L
x

dx
f(x)

, andc is a constant.

(2) is derived by using calculus of variations [5]. Similar deriva-
tions can be found in [7, 8]. Unfortunately, it is difficult to get an
analytic solution to (2). This is different from previous work in
[7, 8]. In [7, 8], the Euler’s differential equations which are simi-
lar to (2) are derived, and they can be solved analytically. In [7],
the solution is an exponential function; whereas in [8], the solution
is expressed in terms of Lambert’sW function. In this paper, we
use numerical method to solve (2).

Let x = L in (2), sinceu(x)jx=L = 0, a direct result from (2)
is

c = Rd

�
2c0w0 +

ccD

(D �w0)2

�
(3)

where we denotew0 = f(x)jx=L as the wire width at driver end.
The importance of (3) is that givenc orw0, we can easily calculate
the other. In addition,c is a convex and monotonically increasing
function ofw0.

Obviously, the solutionu(x)(orf(x)) only depends on one con-
stantc. Substitute (2) into delay expression in (1), we get

TD =

Z L

0

�
Clr0

f(x)
+

cf + c0f(x) +
cc

D � f(x)

cf + 2c0f(x) +
cc

(D � f(x))2

� (c +Rdcf )

�
dx+RdCl (4)

Without solving equation (2), the following property of function
f(x) still holds.

Lemma 2 The optimal shape functionf(x) satisfying (2) is a
monotonically increasing function.

Let A =
c � cfr0u(x)
Rd + r0u(x)

, we can easily derive the following

equation from (2).

u
0(x) = v

1

3 +
1

9
w +

2

3

c0h+A

cc �Ah
(5)

where

v =
1

27

9ccM
2 + 27c0cc(DA+ cc)�DM3

DN3

+

p
3

9

�
27Dc20cc �M3

� 1
2 (ccD)

1

2

DN2

w =
3cc(4Dc0 +A) +DM2

DN2v
1

3

M = A� 2c0D

N = cc �AD

(5) is a first order ordinary differential equation ofu(x). As long
as we knowc, starting with the boundary conditionu(L) = 0,
u(x)(and equivalentlyf(x)) can be solved numerically by using
Runge-Kutta method or other multi-step methods. ThenTD can
be calculated through (4) numerically. In previous work [7], it is
shown thatTD is a convex function ofc, thus any local minimum
value forTD is also the global minimum. Later on in our experi-
ments, it is observed that numerically calculatedTD is still convex
in c.

If the driver end widthw0 is given, we can solvef(x) from (5)
directly. Furthermore, given a range of the drive end width, we
can search for the optimal solution that can minimizeTD within
the range.

To find the optimalc which minimizesTD in general, we pro-
pose an algorithm based on the following fitting formula ofTD,

TD =
�

c
+ �c (6)

whereTD is defined as a function ofc, and� and� are undeter-
mined coefficients. Given two points(c1; TD1) and(c2; TD2), we
thus can solve� and�. (6) has a unique minimum value at point

c =

r
TD2c1 � TD1c2

TD1c1 � TD2c2

p
c1c2

The idea of choosing such a special kind of formula originates
from previous work [7] on solving the optimal shape function with-
out considering fringing capacitance. In [7],TD is calculated as

TD = RdCle
2r0c0L=c +

1

2
cL (7)

which is obviously convex inc. But adopting this as a fitting for-
mula will be very expensive to solve for coefficients like� and�.
Probably, it will rely on solving a system of nonlinear equations.
(6) can be thought of as a first order Taylor series expansion of (7).

Our algorithm starts with the solution without considering the
coupling capacitance, where it provides us with an initial value of
c. The driver end widthw0 is thusw0 = c=(2Rdc0) by letting
cc = 0 in (3). The algorithm in the following then searchs for the
optimalc which minimizesTD.

Algorithm Find the optimalc to minimizeTD
1. w1 = w0, c1 = Rd

�
2c0w1 +

ccD

(D�w1)
2

�
2. w2 = 0:8w0, c2 = Rd

�
2c0w2 +

ccD

(D�w2)
2

�
3. calculateTD1(c1), TD2(c2)
4. c =

p
TD2c1 � TD1c2

p
c1c2=

p
TD1c1 � TD2c2

5. calculateTD(c)
6. choose two smallest infTD1; TD2; TDg as newTD1, TD2

7. choose the correspondingc’s asc1, c2
8. repeat 4-6 until no improvement on successiveTD ’s

“CalculateTD(c)” in the above involves implicitly two steps:
first givenc solveu(x), and then carry out the integration forTD
numerically.
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Figure 2. Coupling capacitance between three adjacent wires. The dis-
tance between wire 1 and wire 3 is2D.

4. Shaping a Wire with Two Neighboring Wires
In this section, given three adjacent wires shown in Fig.2, we

will shape wire 2 so that the delay through it is minimized. Wire
1 and 3 have uniform widths. For wire 2, there are two sources of
coupling capacitance, one is between wire 1 and wire 2, and the
other is between wire 2 and wire 3. In Fig.2, we define the center-
line of spacing between wire 1 and wire 3 as the reference line.
The shape of wire 2 is defined by two functionsf1(x) andf2(x)
with respect to the reference line. If the insulators among these
wires are the same, we have the following lemma.

Lemma 3 The optimal wire shape to minimize the delay through
wire 2 will havef1(x) = f2(x), i.e. the shape is symmetric with
respect to the center-line of spacing.

A direct result from Lemma 3 is that the study in section 3 which
is dealing with one neighboring wire can also be extended to shap-
ing the wire with two neighboring wires. The shape of wire 2 can
be defined by a single functionf(x), therefore the delay is calcu-
lated by

TD =

Z L

0

�
2c0f(x) +

2cc

D � f(x)
+ cf

�

�
�
Rd +

Z L

x

r0dt

2f(t)

�
dx+ Cl

�
Rd +

Z L

0

r0dx

2f(x)

�

where “2” occurs because of two neighboring wires. Comparing
with equation (1), the only difference is that we have different pa-
rameters (e.g.c0 changes to2c0). Solving forf(x) can follow the
same procedure in section 3.

For a more general case where the insulators surrounding wire 2
are different, we have to solve for two functionsf1(x) andf2(x)
simultaneously. We thus have two first order differential equations
like (2) to solve. Solvingf1(x) andf2(x) can be done iteratively
by assuming one has fixed value and solving for the other.

5. Extension to Constrained Wire-sizing
Our study can be extended to constrained wire-sizing. In con-

strained wire-sizing, we are given upper boundWmax and lower
boundWmin. It is required thatWmin � f(x) � Wmax,
0 � x � L. In this section, we only present the extension of
shaping a wire with one neighboring wire. A similar study can be
extended to shaping a wire with two neighboring wires. Obviously,
if the optimal wire shape function obtained for the unconstrained
case lies within bounds[Wmin;Wmax], thenf(x) is also opti-
mal for constrained wire-sizing. On the other hand, if for some
x, f(x) is not within [Wmin;Wmax], we find that the optimal
constrained wire shape function can be any one of the 5 differ-
ent types of functions [1, 2], i.e. type-ABC, type-AB, type-BC,
type-A and type-C, which are shown in Fig.3. These types have at
most three parts. Part-A and part-C represent uniform width parts
having widthsWmin andWmax respectively. Part-B represents
non-uniform width part which is described by a functionf(x). To
determine which type is optimal, we calculate the minimum delay
each type can achieve. We then have five delay values from five
types respectively. The type which gives the minimum delay value
is thus the optimal shape.
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For illustration, we show briefly how to calculate delay for type-
ABC. The total delay through part-A, part-B and part-C can be
calculated as:

TD =

�
Cl +Wminl1c0 + l1cf +

ccl1

D �Wmin

�

�
�
Rd +

Z l2

0

r0dx

f(x)
+

r0l1

Wmin

+
r0l3

Wmax

�

+

Z l2

0

�
c0f(x) +

cc

D � f(x)
+ cf

��
Rd

+

Z l2

x

r0dt

f(t)
+

r0l3

Wmax

�
dx+

�
Rd +

r0l3

Wmax

�

�
�
Wmaxl3c0 + l3cf +

ccl3

D �Wmax

�
(8)

We find thatf(x) still satisfies equation (2) in order to minimize
delay, except thatRd is replaced byRd+

l3r0
Wmax

. The shape func-
tion f(x) for part-B can be determined by using the algorithm we
introduced. Since its driver end width isWmax, constantc in (3)
can be calculated directly. Solving equation (5) thus gives usf(x).
On the other hand, the load end width is fixed atWmin, so the wire
lengthl2 is determined. The total delayTD is then expressed as a
function only depends onl1 and l3, sincel1 + l2 + l3 = L. To
determinel1 and l3, we solve@TD=@l1 = 0 and@TD=@l3 = 0
simultaneously. Delay calculations for other types can follow the
similar procedure.

6. Experimental Results
In this section, we show some experimental results of shaping a

wire with one neighboring wire. We use Runge-Kutta method to
solve the ordinary differential equation (5). Then we apply Simp-
son’s rule to carry out the integration for calculatingTD in (4). The
circuit parameters are chosen as follows:L = 3; 000�m, r0 =
0:03
=2, c0 = 0:2fF=�m2 , cf = 0:2fF=�m, Cl = 10pF .
Other parameters, such asRd, cc andD are subject to change in
different case studies. Those parameters are listed in Table 1. In
addition, we also list the driver end widthw0 for each case with-
out considering coupling capacitance, since we can solve them in
advance. Those widhts are the initial values when we use our al-
gorithm to find the optimal shapes. The formulas involved in this
step of calculation can be found in [8].

Case 1 and 2 are two extreme examples. The initial driver end
width is 1:9�m. Therefore the distance between two adjacent



Case Driver end Load end Number of Log(c) Delay(ns) Log(c) Delay(ns)
width(�m) width(�m) iterations Search Search

1 1.5207 0.7692 3 -12.9368 0.4415 -12.9365 0.4415
2 1.6239 0.8392 2 -13.0148 0.3970 -13.0130 0.3970
3 1.9284 0.9438 2 -13.0958 0.3594 -13.0944 0.3594
4 7.4551 2.0168 4 -13.4827 0.09181 -13.4727 0.09178

Table 2. Calculated optimal shapes and delays for case 1 to 4

Case Rd(
) cc(fF ) D(�m) w0(�m)
1 100 0.4 3 1.9144
2 100 0.2 3 1.9144
3 100 0.2 10 1.9144
4 10 0.2 10 8.0993

Table 1. Circuit parameters and initial driver end widthw0.

wires is only about1�m. Case 4 is another similar extreme exam-
ple, where the driver end width is8�m, so the distance between
two adjacent wires is2�m. We expect that in these three cases the
coupling capacitance plays an important role in determining the
optimal shape. Case 3 is an opposite extreme example, where the
distance between two adjacent wires is about8�m. Therefore in
case 3, coupling capacitance may not play an important role in de-
termining the optimal shape. These extreme examples are chosen
to test the efficiency of our algorithm.

The first result we want to show is that in all cases we have
studied, the delayTD is convex in the driver end widthw0 (also in
c). The calculation is done by choosing a range ofw0 (thus we get
a range ofc) for each case. The delay can be calculated within this
range. In Fig.4,TD is plotted versusc in all cases. It is clear that
TD is convex inc. Equation (3) shows thatc is also convex inw0,
thereforeTD is convex inw0.
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Figure 4. Numerically calculated delay is shown as a convex function of
c in four case studies.

The results of finding the optimal shape function are shown in
Table 2 and Fig.5. In Table 2, we list the optimal solutions by us-
ing our algorithm in first six columns. The optimal solutions are
listed as the driver end width and load end width, the number of
iterations to get the optimal solutions, the optimal value ofc in log-
arithm and the calculated delay for each case. Last two columns
are the optimalc’s and delays found using binary search (labeled
with “search” in the table). Comparing the last four columns, we
find that the value ofc found by our algorithm is indeed the op-
timal value to minimizeTD. But our algorithm converges within
only several iterations. In a SUN Sparc Station 5, it takes about
0:2 seconds for one iteration in all cases with a relative error of
1:0 � 10�6. This indicates that our algorithm also works very
fast. The calculated optimal shapes are plotted in Fig.5, where
solid lines represent optimal shapes considering coupling capaci-

tance and dashed lines represent optimal shapes without consider-
ing coupling capacitance. To our expectation, the optimal shapes
in case 1 and 2 differ much from the optimal solutions without
considering coupling capacitance. Because of the coupling capac-
itance, the wire should be made thinner in order to minimize its
coupling effect. In case 4, it does not differ that much because
two adjacent wires are not close enough. In case 3, the two shapes
are almost the same just because the coupling capacitance is not
comparable to the area or fringing capacitance.
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