
Enhancing the Efficiency of Reduction of Large RC networks
By Pole Analysis via Congruence Transformations*

Zheng Hui, Zhang Wenjun, Tian Lilin, Yang Zhilian
Institute of Microelectronics, Tsinghua University

Beijing 100084, P R. China
Tel: 86-10-62784684 Fax: 86-l0-62771130

E-mail: zh@dns.ime.tsinghua.edu.cn

* This work was supported by National Education Department under the contract 96-738-01-01-06.

Abstract--- Among the RC reduction algorithms,
the algorithm of PACT (Pole Analysis via
Congruence Transformations) [41 has been proved
to have several advantages. However, the original
implementation of the algorithm destroys the
sparsity of the internal capacitance matrix.
Consequently, the LASO process [4], used in the
computation of the dominant eigenvalues and
eigenvectors, becomes very time-consuming.
Therefore, the efficiency of the algorithm needs to
be improved.
 In this paper, a new method to implement the
PACT algorithm is presented. In order to maintain
the sparsity of the matrices, we use a special
Lanczos algorithm to directly compute the
eigenvalues and eigenvectors by solving a large
sparse symmetric generalized eigenvalue problem.
At the same time, this approach can avoid some
matrix multiplication to speed up the reduction
process. We have constructed a RC reduction tool
with the new implementation method. The
application of the tools to several RC networks has
shown that this tool greatly outperforms the
original implementation.

I. Introduction

 With the current trends of feature size shrinking,
signal speed enhancement and mixed-signal design,
signal integrity has become an important factor
determining the complexity of VLSI design. The signal
integrity problem has two sourcesÖ propagation delay
and crosstalk of interconnect and substrate coupling
noise. To solve the problem, we should find efficient
methods to analyze the behavior of interconnect and
substrate. At present, interconnects and substrate are
niainly modeled as RC networks which can be
extracted from the layout. Since the parasitic RC

networks are extremely large, it is very impractical to
use the SPICE-like simulator (based on numerical
integration) to calculate the waveform of the extracted
circuit directly. Therefore, the RC networks should be
reduced before simulation.
 The algorithm AWE [l] (Asymptotic Waveform
Evaluation) and PVL [2] (Padé Via Lanczos) have
emerged as efficient methods for analysis and
reduction of large linear networks. They are based on a
technique called Padé approximation mathematically.
However, they suffer from several fundamental
shortcomings. First, it is difficult to predict the order of
the reduced models. Secondly, the reduction procedure
is carried out in frequency-domain. The reduced
models can not been directly incorporated into a circuit
simulator. Extra processing, such as convolution, is
needed.
 Very recently, a RC network reduction algorithm
called PACT (Pole Analysis via Congruence
Transformations) was presented in [4]. It has been
proved to have several advantages. Instead of matching
the moments explicitly in AWE, this algorithm handles
the matrices directly while preserving the moments
implicitly. The stability of the algorithm is guaranteed
by preserving the passivity of the network. Moreover,
The reduced model can be easily incorporated into
SPICE-like simulator. However, in the implementation
of the algorithm, the sparsity of the internal
capacitance matrix is destroyed after the multiplication
of matrices. Consequently, the LASO process[4], used
in the computation of the dominant eigenvalues and
eigenvectors, becomes very time-consuming.
Therefore, the efficiency of the algorithm needs to be
improved.
 In this paper, we present a new method to implement
the PACT algorithm. In order to maintain the sparsity
of the matrices, we use a special Lanczos algorithm to
directly compute the eigenvalues and eigenvectors by
solving a large sparse symmetric generalized
eigenproblem. We have constructed a new RC

reduction tool with the new implementation method. In
section II, the original implementation of PACT is.
briefly described and the memory requirement and
computational complexity are analyzed. In section III,
our new implementation of PACT and its advantages
are presented. In section IV, We apply the different
Implementations to several RC networks. The
experimental results show that the reduction ratio of
RC elements can be up to 10% and our implementation
excels the original implementation in both memory
requirement and computational complexity.

II. Original Implementation of PACT

 The detailed description of PACT algorithm refers to
[4]. Here, we list the critical steps, that are related to
the efficiency of the original implementation, as
follows.
 PACT uses two congruence transformations during
the reduction process. The first is congruence
transformation based on Cholesky decomposition.
 Since the matrix D is symmetric positive definite,
it has the following Cholesky decomposition TLLD = ,
where L is a lower triangular matrix.

 Let 







−

= −TLX

I
V

0
(1)

 We apply the following congruence transformations
to the matrix G and the matrix C :








 ′
=











 −==′ −− I

A

DLL

XQA
GVVG

T

T
T

0

0

0

0
1 (2)













′′
′′=











 −−==′ −−−

−

ER

RB

ELLPL

LPRXXPB
CVVC

T

T

TTTT
T

11

(3)

where EXRPQDX −== − ,1 .
 Another congruence transformation is based on pole
analysis. Since the matrix E′ is still a symmetric
matrix, it can be decomposed as TUUE Λ=′ ,

()neediag ,,1 �=Λ , where the diagonal elements of Λ
are the eigenvalues of E′ . U is an orthogonal matrix,
whose column vectors are the relevant eigenvectors.
 Let









=

U

I
Z

0

0
(4)

We apply the following congruence transformations to
the matrix G′ and the matrix C′ :








 ′
=′=′′

I

A
ZGZG T

0

0
(5)













Λ′′
′′′=′=′′

R

RB
ZCZC

T
T (6)

where RUR T ′=′′ (7)

 The original implementation [4] is shown in Fig.1.
First, the RC netlist is stamped into and stored as
sparse matrices G and C . In the step of “Cholesky”,
internal conductance matrix D is factorized by a
sparse Cholesky decomposition method. Then,
calculation of G′ and C′ is performed according to
(2) and (3). The matrix 1−D , the inversion of sparse
matrix D , is generally a very dense matrix. Similarly,

1−L and TL− are dense matrices. Consequently, E is
transformed into a dense matrix E′ . As we see below,
this leads to the low efficiency of calculation of the
eigenvalues and eigenvectors.
 In the step of “LASO”, two method of implementing
LASO should be considered in terms of the scale of
internal matrices. LASO (Lanczos Algorithm with
Selective Orthogonalization)[5] uses a block Lanczos
process. The time complexity of each iteration of
LASO is determined by the multiplication of a fixed-
sized vectors and the matrix whose eigenvalues to be
solved. When n is small, we can compute E′ and store
it as a dense matrix. If we assume that the number of
iteration is irrelevant to n , the total time complexity of
LASO is O(n2). We call this kind of implementation D-
LASO, which means Direct LASO. When n is large, to
save memory, we can not compute E′ directly before
the LASO process. During the LASO process, the
matrix multiplication is accomplished by calculating a
column of E′ at a time so that only n elements need to
be stored. However, we have to compute E′ in each
iteration. The time complexity of each iteration is
O(n3n1~1.5). We call this kind of implementation MS-

RC net l i s t

S tampe r

Cho lesky

L A S O

U n s t a m p e r

RC net l i s t

G = C =

G = C =

G = C =

dense sparse

diagonal empty

F ig .1 . F lowchar t o f o r ig ina l imp lementa t ion . The
graphs on the r igh t : the conductance and

capac i tance mat r ices a f ter each s teps.

LASO, which means Memory-Saving LASO.
 As shown in Table II, D-LASO is highly memory
consuming while MS-LASO is extremely time-
consuming, which makes LASO implementation
unsuitable for RC network with internal nodes greater
than 2000. In next section, we propose a new
implementation, which is efficient in both memory
requirement and time complexity.

III. New Implementation of PACT

 For decreasing memory and time, the key point is to
preserve matrices D and E as sparse matrices.
Fortunately, we find a method to calculating the
eigenvalues and eigenvectors without transforming D

and E . That is to solve the generalized symmetric
eigenvalue problem as follows:

[] 0det =− DE λ (8)

 Given two nn× matrices D and E , we can define
the generalized eigenvalue problem as follows.
Determine scalar λ and nonzero vectors x such that

DxEx λ= (9)

Here D is positive definite matrix. The Cholesky
factorization TLLD = is available. It is easy to deduce
that this problem is equivalent to the real symmetric
problem:

yyELL T λ=−−1 where xLy T= (10)

 The Lanczos recursion for the generalized
eigenvalue problem is given by following equations:

111 −++ −−= iiiiiii DvDvEvDv βαβ (11)

()1−−= ii
T
ii DvEvvα (12)

()1
1

1 −
−

+ −−= iiiiii vvEvL βαβ (13)

 During this Lanczos process, the sparsity of matrices
D and E is unchanged. Therefore, we save. the
memory that is needed to contain the dense matrix.
Moreover, the time complexity of each iteration only is
O(n1~1.5), as determined by the multiplication of sparse
matrices and vectors.
 If we get the eigenvectors V of (10), the
eigenvectors of E′ is determined by

VLU T= (14)
 The (7) is then changed into

PVPLLVRUR TTT ==′=′′ −1 (15)

Thus, the matrix computation in (7) is reduced.
 Using the above new implementation, we have
constructed a RC network reduction CAD tool called
RCRED in C language. The flowchart is shown in
Fig.2. First, we use a software package called LANZ[6]
to solve the generalized eigenvalue problem. We can
get the desired eigenvalues and eigenvectors. In the
process of “Cholesky”, we first compute the Cholesky

factorization of D . Then, matrices A′ , B′ and R′′
are calculated according to (2), (3) and (15). The
computational complexity is the same as the original
implementation.

IV. Examples and Comparisons

 All examples presented in this section are executed
on a Sun SPARC-20 workstation. First, we apply
RCRED to a large RC tree with 25 external ports and
4687 internal nodes, which is extracted from a clock
distribution network. In Table I, which shows the
reduction and simulation statistics, we can find that the
reduction ratio of internal nodes is less than 0.l% and
the reduction ratio of elements is less than 10%.
Consequently, HSPICE simulation of the reduced
network is more than ten times faster than that of the
original RC network. Fig.3 illustrates the comparison
of HSPICE simulations of reduced and non-reduced
RC networks. It is clear that RCRED greatly reduces
the time and memory consumption of HSPICE
simulation and simultaneously guarantees the accuracy
of the behavior of the RC network.

Table I
HSPICE simulationSimulation

circuits

Total

nodes
R’s C’s

Time(s) Mem.(Mb)

Not reduced 4712 4711 4712 109.7 4.1

Reduced 29 192 419 7.7 0.5

 We then apply the three kinds of implementation
mentioned above to three RC network with different

RC net l is t

S tamper

L A N Z

Cho lesky

Uns tamper

RC net l is t

G = C =

G = C =

G = C =

dense sparse

d iagonal empty

F ig .2 . F lowchar t o f new implementat ion. The
graphs on the r ight : the conductance and

capaci tance matr ices af ter each steps.

numbers of external ports and internal nodes. The
results of time consumption and memory requirement
are shown in Table II. MS-LASO can not handle RC
network with more 1000 internal nodes for its
unacceptable long execution time. D-LASO consumes
so much memory that it can only deal with RC
network with no more than 2000 internal nodes. Our
implementation, LANZ, excels the other two
implementations in both memory requirement and time
complexity. RC network with nodes greater than
10,000 can be processed by RCRED in a few minutes
and with reasonable memory.

Fig.3 Comparison of HSPICE simulations

Table II

Examples
Exter: 13

Inter: 547

Exter: 47

Inter: 3019

Exter: 547

Inter: 12282

Time(s) 3343.9 --- ---MS-

LASO Mem.(Mb) 0.4 --- ---

Time(s) 7.2 1012.8 ---D-

LASO Mem.(Mb) 4.0 158.3 ---

Time(s) 0.6 15.6 423.3
LANZ

Mem.(Mb) 0.7 13.2 50.4

V. Conclusion

 A new implementation of PACT has been presented
which utilize a special Lanczos process for generalized
symmetric eigenproblem. This implementation
preserves the sparsity of the matrices.. Consequently,
memory requirement and time complexity are greatly
reduced. Several examples have shown that it greatly
outperform the original implementations with much
higher time and memory efficiency.

References

[1] Pillage, Lawrence T., Rohrer, Ronald A.,
“Asymptotic waveform evaluation for timing analysis,''
IEEE Trans. on CAD, v 9, n 4, Apr 1990, p 352-366
[2] Feldmann, Peter, Freund, Roland W, “Efficient
linear circuit analysis by Padé approximation via the
Lanczos process,'' IEEE Trans. on CAD, v 14, n 5,
May 1995, p 639-649
[3] Kevin J. Kerns, Ivan I. Wemple and Andrew T.
Yang, “Stable and Efficient Reduction of Substrate
Model Networks Using Congruence Transforms,”
ICCAD 95, p 207-214
[4] Kevin J.Kerns and Andrew T. Yang, “Stable and
efficient Reduction of Large, Multiport RC Networks
by Pole Analysis via Congruence Transformations'',
IEEE/ACM DAC'96, pp. 280-285
[5] B.N. Parlett and D. S. Scott, ''The Lanczos
algorithm with selective orthogonalization,''
Mathematics of Computation, v 33, pp. 217-238,Jan.
1979
[6] Jones, M. T., and Patrick, M. L., “The Use of
Lanczos`s Method to Solve the Large Generalized
Symmetric Definite Eigenvalue Problem,'' Technical
Report 89-67, Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley
Research Center, Hampton, VA, l989.

0.0 4.0 8.0 12.0 16.0 20.0 24.0 28.0 32.0

time(ns)

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

6.0

v(
vo

lts
)

Vin
Vo,not reduced
Vo,reduced

	Main Page
	ASPDAC99
	Front Matter
	Table of Contents
	Session Index
	Author Index

