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Abstract

In this paper, we present a new retiming-based technol-
ogy mapping algorithm for look-up table-based �eld pro-
grammable gate arrays. The algorithm is based on a novel
iterative procedure for computing all k-cuts of all nodes in
a sequential circuit, in the presence of retiming. The al-
gorithm completely avoids ow computation which is the
bottleneck of previous algorithms. Due to the fact that k
is very small in practice, the procedure for computing all
k-cuts is very fast. Experimental results indicate the overall
algorithm is very e�cient in practice.

1 Introduction

A look-up table-based FPGA consists of an array of pro-
grammable logic blocks together with programmable inter-
connects [1, 27, 15]. The core of a programmable logic block
is a k-input look-up table (k-LUT) which can implement any
combinational logic with up to k inputs and a single output,
where k is a small positive integer.

The technology mapping problem for LUT-based FPGAs
is to produce an equivalent circuit comprised of k-LUTs for a
given circuit. The problem has been extensively studied, but
most research focused on combinational circuits. Mapping
algorithms for combinational circuits have been proposed
for performance [3, 11, 14, 23, 28], area [8, 9, 10, 12, 17, 26],
routability [2, 24], and combinations of these [4, 22]. In par-
ticular, delay-optimal mapping algorithms have be proposed
for combinational circuits [3, 28].

There were only a few mapping algorithms targeted for
sequential circuits [16, 25, 20]. The standard approach is to
simply cut the circuits by removing all FFs, then map the
remaining combinational logic. This approach ignores signal
dependencies across FF boundaries and the possibility of
exposing the combinational logic between FFs in di�erent
ways, both of which are made available by retiming [13].

Recently, a new approach to the technology mapping

problem for LUT-based FPGAs was proposed [19, 21]. In
this approach there is no circuit cutting to remove FFs.
Moreover, FF positions are assumed to be dynamic in that
they can be repositioned by retiming. As a result, signal
dependencies across FF boundaries are exploited. The au-
thors proposed a polynomial mapping algorithm that can
obtain a mapping solution with minimum clock period. The
algorithm is based on two important concepts: l-values and
expanded circuits. The expanded circuit for a node captures
the information on all the k-LUTs at the node, while tak-
ing into consideration both retiming and logic replication.
l-values can be used to determine critical sequential paths.

Although it is polynomial, the algorithm proposed in
[19, 21] can be slow in practice due to repeated network
ow computation on graphs of large size. The amount of
ow computation is enormous for a circuit of moderate size
since, in general, several passes of ow computation need to
be carried out at all nodes in a circuit for a given target
clock period. Moreover, if a minimum clock period mapping
solution is desired, several target clock periods may need to
be examined. In fact, the running time of the algorithm is
so high that a controlling parameter has to be introduced
to trade-o� solution quality for reduced running time. Re-
cently, several techniques have been proposed to speed up
this algorithm [6, 7]. These techniques reduce both the size
of the graphs used in ow computation and and the number
of times that ow computation is carried out at each node.
Signi�cant improvement in running time was observed, but
the amount of ow computation is still very large.

In this paper, we present a new performance-driven tech-
nology mapping algorithm for sequential circuits. The algo-
rithm is based on a novel iterative procedure that computes
all k-cuts of all nodes in a sequential circuit. The procedure
is very e�cient in practice due to the fact that k is very
small. With all k-cuts available, the rest of the algorithm is
very e�cient since network ow computation is completely
avoided, and in its place are some simple arithmetic oper-
ations. The saving is even greater if an optimal clock pe-
riod mapping solution is sought since the k-cuts need only
be computed once even though several target clock periods
may need to be examined. The overall algorithm is very ef-
�cient in practice. Experimental results show the algorithm
can handle the largest ISCAS circuits with ease.

Since all k-cuts are available, our approach has potential



to consider other criteria such as equivalent initial states
and LUT minimization, in addition to performance. In fact
our algorithm employs a heuristic to minimize the number
of LUTs.

The remainder of the paper is organized as follows: Sec-
tion 2 presents some de�nitions and concepts. In Section 3,
we present the procedure for generating all k-cuts of all
nodes in a sequential circuit. The overall technology map-
ping algorithm is described in Section 4. We present some
experimental results in Section 5. Finally, Section 6 con-
cludes this paper.

2 Preliminaries

A (sequential) circuit can be modeled as an edge-weighted
directed graph. The nodes are the primary inputs (PIs),
the primary outputs (POs), and the combinational elements
(e.g., gates and k-LUTs). The edges represent the intercon-

nections. There is an edge e from u to v (denoted u
e
! v)

with weight t if the output of u, after passing through t FFs,
is an input to v. We will use N to denote the circuit to be
mapped and w(e) to denote the weight of an edge e in N .
We also assume that every node in N can be reached from
at least one PI and can reach at least one PO.

The clock period of a circuit is the maximum delay on the
combinational paths (paths without FFs) in the circuit. In
this paper, we use the unit-delay model when we calculate
the clock period of a mapping solution. That is, each LUT
has one unit of delay and interconnection has no delay.

Retiming is a technique of repositioning the FFs in a
circuit without changing the functionality or the structure
of the circuit [13]. A retiming r can be represented as a
function from the nodes to integers where r(v) denotes the
retiming value at node v. In the circuit retimed according to
r, the weight of an edge u

e
! v becomes w(e) + r(v)� r(u).

As has been demonstrated [19], we can obtain better
mapping solutions that are otherwise impossible, by inte-
grating retiming into technology mapping. In this paper, we
study the technology mapping problem in conjunction with
retiming. The objective is to �nd a mapping solution with
minimum clock period. As in [19], we consider the decision
version of the problem: Given a target clock period �, �nd a

mapping solution with a clock period of � or less, whenever

such a mapping solution exists. With an algorithm for the
decision problem, we can carry out binary search on the tar-
get clock period to �nd a mapping solution with minimum
clock period, if such a solution is desired. Note that the
minimum clock period is obviously between 1 and n, where
n is the number of nodes in N .

One important concept in technology mapping for se-
quential circuits is l-values [19]. Consider a mapping solu-

tion S. For each edge u
e
! v in S, we assign an l-weight,

�� � d+ �(v), to it, where d is the number of FFs on e, and
�(v) = 1 if v is a LUT or 0 if it is a PI or PO. The l-value of
a node in S is de�ned as the maximum weight of the paths

from the PIs to the node using the l-weights. l-values have
the following property [19, 21]:

Theorem 1 S can be retimed to a clock period of � or less

i� the l-value of each PO is less than or equal to �.

It is evident from the above result that the concept of
l-values1 is very similar to arrival times used in combina-
tional synthesis and optimization. In fact, if a circuit is
combinational, l-values reduce naturally to arrival times. As
a result of Theorem 1, the technology mapping problem is
then reduced to that of �nding a mapping solution with min-

imum l-values at the POs.
To �nd the minimum l-value, a method is needed to ex-

amine all k-LUTs at each node. The concept of expanded
circuits was introduced for this purpose [19]. The expanded
circuit for a node v is formed by properly replicating the
nodes in N starting from v and going backward towards
PIs. It is constructed in such a way that all paths from any
node to the only output node have the same number of FFs.
In the expanded circuit for v, each node is a copy of a node,
say u, in N and is denoted by ud where the index d is the
number of FFs on a path from the copy to the only output
node which is v0.

Expanded circuits are constructed recursively. To con-
struct the expanded circuit for a node v in N , we start with
v0, then repeatedly carry out expansion at nodes that do
not have incoming edges. Let ud be one such node. An
expansion at ud refers to the operation that for each edge
x

e
! u in N , add node xd1 , where d1 = d+ w(e), to the ex-

panded circuit if it is not there, and add an edge xd1 ! ud

with weight w(e) to the expanded circuit. For the circuit in
Fig. 1(1), Fig. 1 shows three expansions in the construction
of the expanded circuit for g. From (2) to (5) each one is
obtained from the preceding one by expanding at the shaded
node.

The expanded circuit for v is a DAG with one sink v0.
Due to possible presence of cycles, the expanded circuit may
have in�nite many nodes. This is obviously the case for
node g in Fig. 1(1), since expansion will be continued at
g1 in Fig. 1(5). Note that the expanded circuit becomes
repetitive in this case.

In the expanded circuit for v, a cut (X;X) is a partition
of the nodes such that v0 is in X and all sources are in X.
The node-set of the cut is the set of nodes in X that are
connected to one or more nodes in X. The cone of the cut
is the subgraph induced by X. If the size of the node-set of
a cut is less than or equal to k, the cut is further called a
k-cut. The following result was presented in [19, 21]:

Theorem 2 Given a k-cut in the expanded circuit for v, a

k-LUT at v can be derived. The logic of the LUT is the cone

of the cut less the FFs. u, after passing d FFs, is an input

to the LUT if ud is in the node-set of the cut. Moreover, for

any k-LUT at v there exists a k-cut in the expanded circuit

for v that derives a k-LUT with the same set of inputs.

The dotted line in the expanded circuit in Fig. 1(5) in-
dicates a 3-cut as the node-set consists of three nodes i01, g

1

and i12. The corresponding 3-LUT is shown in Fig. 2.

3 A procedure for generating all k-cuts

To determine the minimum l-values of the POs we need a
way to examine all k-LUTs at each node. We also need

1
l-values are a special version of the so-called continuous retiming

introduced in [18].
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Figure 1: Construction of expanded circuits.
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Figure 2: A LUT derived from a cut.

k-LUTs to construct the �nal mapping solution. Because
of the correspondence of k-LUTs and k-cuts as stated in
Theorem 2, it su�ces to �nd all k-cuts of each node. In this
section, we present a procedure for computing all k-cuts of
all nodes in N . The procedure actually computes the node-
sets of all k-cuts. Later, we will discuss how to obtain the
cones so that we can determine the logic of the corresponding
k-LUTs.

The node-sets of cuts can also be characterized indepen-
dent of the underlying cuts. A set of nodes form a node-set

of a cut if by removing all nodes in the set, we can break all

paths from the sources to the sink. In fact, all nodes that
can still reach the sink after the removal form one part of a
cut and all other nodes (including those in the set) form the
other part of the cut. As a slight abuse of notation, we will
use the term cut loosely to also mean a set of nodes that can
be the node-set of a cut. As a convention, we also view fv0g
as a cut of v and refer it as the trivial cut. Note that trivial
cuts �t the above new characterization of cuts. Trivial cuts
are important for determining other k-cuts although they
cannot be used in a mapping solution, as they are not the
node-set of any cut.

To understand our procedure for computing all k-cuts,
it is useful to examine the structure of an expanded circuit.
Suppose u

e
! v is an edge inN and w(e) = d. Then, ud ! v0

is an edge in the expanded circuit for v. It is evident from
the de�nition of expanded circuits that further expansion

0v

ud

Gu

Figure 3: Iterative structure of an expanded circuit.

down from ud is not di�erent from the construction of the
expanded circuit for u, except for the latter, expansion starts
with u0. Let Gu denote the subgraph rooted at ud in the
expanded circuit for v, as indicated in Fig. 3. If we subtract
d from the index of each node in Gu, the resulting graph is
then the expanded circuit for u. In general, for any node in
an expanded circuit its transitive fan-ins together with the
node form the expanded circuit for the node if we subtract
the index of the node from the indices of all nodes.

Let u1, u2, ..., ut be the fan-ins of a node v in N . Let
di denote the number of FFs on the edge from ui to v, and
Cui denote the set of k-cuts of ui for 1 � i � t. We de�ne a
set operation called merge as follows:

merge(Cu1; Cu2 ; � � � ; Cut) =

fc = c
d1
1 [ c

d2
2 [ � � � [ c

dt
t j ci 2 Cui and jcj � kg;

where cdii = fxd+di j xd 2 cig.
The following result is the basis of the procedure for gen-

erating all k-cuts. (The proofs of all results are omitted due
to space limitation.)

Theorem 3 The set of k-cuts of v, Cv is equal to

merge(Cu1 ; Cu2 ; � � � ; Cut) [ ffv
0gg:



From Theorem 3, if the k-cuts of the fan-ins of a node are
given, we can �nd all non-trivial k-cuts of the node using the
merge operation. For a circuit without feedback loops, we
can compute the k-cuts of all nodes by examining the nodes
in topological order starting from the PIs. At each node,
the merge operation is applied to obtain all its k-cuts. Note
that a PI only has the trivial cut. In practice, most circuits
contain loops. For such circuits, this idea cannot be directly
applied since the k-cuts of the nodes are cyclically dependent
on each other. For example, in the circuit in Fig. 1(1), to
obtain all k-cuts of node g using the merge operation, we
need to have all k-cuts of node a, and vice versa.

For circuits with loops, we still can use Theorem 3 to
determine k-cuts although one pass of merging may not be
enough. Our approach is to determine all k-cuts of all nodes
by successive approximation, again using the merge oper-
ation. For each node v in N , we maintain a subset Lv of
Cv and successively update Lv by adding more and more
k-cuts. We update Lv by merging the current subsets for
the fan-ins of v. This process is repeated until no further
addition is possible for any of the subsets. Initially, for each
non-PO node v, the subset contains the only known k-cut
| its trivial k-cut fv0g. Since a PO is not mapped, a PO v

has only one k-cut fudg, where u is the node that drives v
and d is the number of FFs on the edge. The procedure is
summarized in Fig. 4.

Find All Cuts(N; k)
1. for each non-PO node v in N do

2. Lv = ffv
0gg;

3. Done = FALSE;
4. while (Done == FALSE) do
5. Done = TRUE;
6. for each node v (not PI or PO) in N do

7. tmp = merge(Lu1 ; Lu2 ; � � � ; Lut);
8. if tmp 6� Lv then

9. Lv = tmp [ ffv0gg;
10. Done = FALSE;
11. return success // Lv has settled to Cv for each v.

Figure 4: Procedure for generating all k-cuts.

We now use an example to illustrate the procedure. Con-
sider the circuit in Fig. 1(1) with k = 3. Initially, Lx =
ffx0gg for each non-PO node x. Suppose we examine the
nodes a; b, and g in this order and carry out the merge op-
eration. Consider the �rst iteration. For gate a,

tmp = merge(Li1 ; Lg)
= fc01 [ c

1
2 j c1 2 Li1 ; c2 2 Lg ; jc

0
1 [ c

1
2j � 3g

= ffi01; g
1gg;

so, after the updating in line 9, La = ffa
0g; fi01; g

1gg. Sim-
ilarly, for gate b after the updating, Lb = ffb0g; fi02; g

0gg.
Now for gate g,

tmp = merge(La; Lb)
= fc01 [ c

1
2 j c1 2 La; c2 2 Lb; jc

0
1 [ c

1
2j � 3g

= ffa0; b1g; fa0; i12; g
1g; fi01; g

1; b1g; fi01; g
1; i12gg:

Table 1 lists the cuts and the iteration in which they are
generated. After two iterations, all subsets stabilized and
all 3-cuts of all nodes are found. Note that for the PO o,
Co = ffg

0gg.

itr i1 i2 a b g

0 fi01g fi02g fa0g fb0g fg0g
1 fi01; g

1g fi02; g
0g fa0; b1g

fa0; i12; g
1g

fi01; g
1; b1g

fi01; g
1; i12g

2 fi01; a
1; b2g fi02; a

0; b1g

Table 1: Generating all cuts, an example.

Lemma 1 At line 7 in the procedure Find All Cuts, Lv �
tmp [ ffv0gg.

From the above lemma, we know that after each merge

operation the updated subset contains the subset before the
merge operation. Each merge may also discover some new
k-cuts. The subset for each node becomes larger and larger
(at least keeps the same), as more and more merge opera-
tions are carried out.

Another implication of Lemma 1 is that we can replace
the test in line 8 in the procedure by jtmpj > jLv j � 1 (note
that Lv contains the trivial cut, but tmp does not) and avoid
the more expensive set operation of testing tmp 6� Lv .

We now show any k-cut of any node in N will be discov-
ered sooner or later. Let c be a k-cut of v. From Theorem 2,
we know c is a k-cut in the expanded circuit for v. Let p(c)
denote the number of edges on a path with the largest num-
ber of edges from the nodes in the cut to the sink v0. We
have the following result:

Lemma 2 After m iterations of the while loop in the pro-

cedure Find All Cuts,

Lv � fc j c is a k-cut of v such that p(c) � mg:

It has been shown that p(c) � kn for any k-cut c of any
node, where n is the number of nodes in N [19]. Therefore,
the procedure will �nd all k-cuts of all nodes after at most
kn iterations. Of course, this is the worst-case scenario. One
nice feature of the procedure is that if the maximum p(c)
for all cuts is D, the number of iterations is at most D. In
practice, we expect D to be substantially smaller than kn.

To further reduce the number of iterations, we arrange
the nodes in N in a particular order and call the merge

operation in that order during each iteration. The guiding
principle in choosing an order is to carry out the merge op-
eration at a node after at its fan-ins as much as possible.
The particular order we use is obtained by removing all out-
going edges of a feedback vertex set in N and topologically
order all nodes starting from those nodes that do not have
incoming edges. Using this order, the procedure stopped
in at most �ve iterations for all the ISCAS89 benchmark
circuits when k = 4.



The basic procedure can be further improved in several
aspects. An obvious one is to add an event-driven mech-
anism to the procedure so that we do not carry out the
merge operation on a node if none of its fan-ins have new
cuts added in the previous iteration.

From Lemma 1, it is obvious that in addition to some
possible new ones, the merge operation will regenerate the
cuts that are already in Lv. To remove the redundant work,
we number the merge operations sequentially and time-
stamp the cuts by the merge operation in which they are
generated. If a cut c is introduced in the q-th merge op-
eration, c gets a time-stamp s(c) = q. We also associate
each subset Lv with a time-stamp s(Lv), representing the
latest merge operation carried out at v. We then modify
the merge operation so that it only combines those cuts in-
volving at least one cut with a time-stamp larger than the
time-stamp of Lv. That is,

merge(L1; L2; � � � ; Lt) =

fc = c
d1
1 [ c

d2
2 [ � � � [ c

dt
t j

ci 2 Cui ;maxi s(ci) > s(Lv); jcj � kg:

If a cut in the above set is indeed new (not in current
Lv), we stamp it by the current merge operation and insert
it into Lv. To carry out the insertion e�ciently, we organize
Lv as a hash table. With a hash table, the insertion can be
down in an expected time O(1), independent of the size of
Lv .

Finally, we discuss how to obtain k-LUTs from the k-
cuts. Remember that what Find All Cuts computes are
actually the node-sets of the cuts. In other words, they are
the input sets of the k-LUTs. Suppose c is a k-cut of v.
To generate the corresponding k-LUT, we start with node
v0 and carry out expansion repeatedly just as we construct
the expanded circuit for v, until all sources fall into c. For
example, for the 3-cut fi01; g

1; i12g of g in Fig. 1(1), the ex-
pansion leads to the expanded circuit in Fig. 1(5), and the
corresponding k-LUT is exact the one shown in Fig. 2.

4 The technology mapping algorithm

We now describe the technology mapping algorithm assum-
ing all k-cuts of all nodes in N have been determined. The
algorithm �rst �nds the minimum l-values of the POs. It
then selects k-cuts to form a mapping solution that meets
the minimum l-values while trying to minimize the num-
ber of LUTs. Finally, for each node (signal) remained in
the mapping solution, the k-LUT is derived from the k-cut
selected for the node. This last step is discussed in the previ-
ous section. In the rest of this section, we discuss the details
of the �rst two steps.

4.1 Finding the minimum l-values

We determine the minimum l-values of the POs by �nding
the minimum l-values of all nodes in N , using dynamic pro-
gramming. The approach is to maintain a lower bound l(v)
on the minimum l-value of each node v and successively im-
prove the bound until no further improvement is possible,
which indicates that the lower bounds have settled to the
minimum l-values.

The l-values of the PIs are always zero. Initially, the
lower-bounds for all non-PI nodes are set to �1. Suppose
c is a k-cut of v and ud is in c. If the k-LUT derived from
c is selected for v, then u must be in the mapping solution
and there is an edge from u to v with d FFs according to
Theorem 2. Therefore, based on the current lower bound,
the l-value at v will be at least maxfl(u) � � � d + �(v) j
ud 2 cg. To minimize the l-value of v, we minimize the
new bound for v by updating l(v) according to the following
formula:

l(v) = min
c, a k-cut of v

�
maxfl(u)� � � d+ �(v) j ud 2 cg

�
:

In previous algorithms [19, 6], the new bound is deter-
mined by solving a max-ow problem on a network derived
from the expanded circuit for v. In our case, since Cv,
the set of k-cuts of v, has been computed, the new lower
bound for v can be determined by simply examining all
k-cuts in Cv. For each non-trivial k-cut c in Cv, we cal-
culate maxfl(u) � � � d+ �(v) j ud 2 cg and update l(v) to
the minimum of all such values. Of course, if a lower bound
for a PO is larger than � at any moment, we can stop the
algorithm as it becomes obvious that there is no mapping
solution with a clock period of �. Fig. 5 summarizes the
procedure.

Find Min Values(N;�)
1. for each node v in N do

2. if v is a PI then l(v) 0;
else l(v) �1;

3. Done  FALSE;
4.while Done == FALSE do

5. Done  TRUE;
6. for each non-PI node v in N do

7. tmp = minc2Cv�fv0g(maxfl(u)� � � d+ �(v) j ud 2 cg)
8. if tmp > l(v) then
9. l(v) = tmp;
10. Done = FALSE;
11. if v is a PO and l(v) > �, return failure;
12.return success; // Bounds have settled.

Figure 5: Procedure for computing the the minimum l-
values.

4.2 Constructing a mapping solution

In this step, we generate a mapping solution with a clock
period of �. Remember that for each node v in N , its mini-
mum l-value (denoted lopt(v)) has already been determined
in the previous step and the minimum l-values of the POs
are all less than or equal to �.

We start the construction at the POs and proceed back-
ward to select nodes and k-cuts to form a mapping solution.
More speci�cally, we maintain a set U consisting of the nodes
that will be included in the �nal mapping solution, but their
k-cuts are yet to be selected. Initially, the mapping solution
S consists of the PIs and POs, and U consists of only the
POs. At each step, a node v is removed from U . A k-cut c



of v is selected to include in S (details later). For each ud

in c, we add u to both U and S if it is not already in S.
An edge with d FFs from u to v is then created in S. This
process continues until U becomes empty.

We now discuss how to select a k-cut for a node v re-
moved from U . To guarantee the minimum l-values at POs,
we require the cut c achieve the minimum l-value at v.
Namely, lopt(v) = maxflopt(u) � � � d + �(v) j ud 2 cg.
(This requirement is not necessary though. In fact, relaxing
this requirement may further reduce the number of LUTs.)
In general, there are several such k-cuts. We want to choose
one that could potentially reduce the number of LUTs in
the �nal mapping solution. Intuitively, a node with a large
number of fan-outs in N is very likely to appear in a map-
ping solution. Consequently, we assign a cost to each cut
c, cost(c) =

P
1

fanout(u)
, where fanout(u) is the number of

fan-outs at v in N . The summation is taken over all ud in
c such that u is not currently in S. If cost(c) is small, the
nodes in c are either already in S or have a large number
of fan-outs, so c is a good candidate k-cut to select for v.
Thus, we select a cut for v that has the minimum cost. The
procedure is described in Fig. 6.

Construct solution(N; �; lopt)
1. U  the set of POs;
2. S  fv j v is a PI or PIg;
3. while U 6= ; do
4. v  a node in U ;
5. U  U � fvg;
5. costmin =1;
6. for each non-trivial cut c 2 Cv do

7. if (lopt(v) == maxflopt(u)� � � d+ �(v) j ud 2 cg
and costmin > cost(c)) then

8. costmin = cost(c); cbest = c;

9. for each ud 2 cbest do

10. if u is not in S then

11. S  S [ fug;
12. U  U [ fug;
13. create an edge in S from u to v with d FFs;
14. return S;

Figure 6: Procedure for constructing a mapping solution.

Finally, we apply the following retiming to S to obtain a
mapping solution with a clock period of � or less:

r(v) =

�
0 v is a PI or PO

d l
opt(v)

�
e � 1 otherwise.

5 Experimental results

We implemented a prototype technology mapping package
called SeqMap-cut which searches the target clock period to
�nd a mapping solution with minimum clock period. For a
given clock period, SeqMap-cut employs the algorithm pre-
sented in this paper to �nd a mapping solution with the
clock period. Experiments were carried out on a set of IS-
CAS89 circuits. In this section, we describe our experiments
and summarize the results.

For each benchmark circuit, we �rst performed technol-
ogy independent optimization, then decomposed all gates
into two-input simple gates to arrive at the circuit used in
our experiment. The sizes of the circuits range from less
than a hundred to over ten thousand gates (excluding in-
verters).

In the experiment we set k to 4 to reect commercial
FPGA architectures [1, 27]. The experimental results are
summarized in Table 2. Column SeqMap-cut lists the
number of LUTs, number of FFs and the clock period of each
mapping solution from SeqMap-cut. Note that the clock pe-
riod of the mapping solution from SeqMap-cut is optimal.
For comparison purpose we also list the statistics of the map-
ping solutions from a mapping program called ComMap-cut.
ComMap-cut �rst maps the combinational logic between the
FFs optimally, using the algorithm for a target clock period
proposed in this paper2. (Note that when the algorithm is
applied to a combinational circuit, it produces a mapping
solution with minimum level as FlowMap.) It then retimes
the mapping solution to its optimal clock period. For all ex-
amples in the table, SeqMap-cut produced better solutions
in terms of clock period. It is also evident from the table
that a mapping approach based on mapping combinational
circuits between FFs may miss minimum clock period map-
ping solutions, which are guaranteed by SeqMap-cut.

In Table 2, we also list the CPU time of SeqMap-cut on
a SPARC5 with 32MB memory. Under gencut, we list the
CPU time of the procedure for generating all cuts. The total
CPU time for �nding the minimum l-values for all target
clock periods is listed under label. We also list the number
of passes of merging (the number of iterations of the while
loop) in Find All Cuts. It is obvious from the table that
SeqMap-cut is very e�cient and can handle large designs.

6 Conclusions

In this paper, we proposed a new technology mapping al-
gorithm for LUT-based FPGAs. The algorithm is based
on a novel iterative procedure to compute all k-cuts of all
nodes in a sequential circuit. It can �nd a mapping solution
with minimum clock period while minimizing the number
of LUTs. Experimental results show the algorithm is very
e�cient in practice.

Further research is needed in the direction of minimizing
the number of LUTs. A retimed circuit may not have an
equivalent initial state. If the initial state is an integral
part of a design, care must be taken in selecting cuts to
form a mapping solution so that an equivalent initial state
can be found. We believe our approach has potential to
consider these and other issues, since all k-cuts of all nodes
are available.
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