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Abstract| This paper propose an instruction
scheduling technique to reduce power consumed
for o�-chip driving. The technique minimizes the
switching activity of a data bus between an on-chip
cache and a main memory when instruction cache
misses occur. The scheduling problem is formu-
lated and a scheduling algorithm is also presented.
Experimental results demonstrate the e�ectiveness
and the e�ciency of the proposed algorithm.

1 Introduction
Due to the growing market for portable multimedia

products, power consumption has become one of se-
vere constraints in embedded system design. Many re-
cent high-performance embedded processors have on-
chip caches which help power reduction of the system.
This is because o�-chip driving requires much power
and the on-chip caches reduce data transfers among
chips on the system board. However, even in proces-
sors with on-chip caches, power for o�-chip driving is
very dominating and becoming more dominating, up
to 70% of the total chip power, along with the progress
of transistor scales [6]. It has been becoming impor-
tant to reduce o�-chip power at system-level design
phases.

In this paper, we concentrate on compiler opti-
mization techniques for power reduction. There ex-
ist two approaches to reduce power consumed by o�-
chip drivers for microprocessor-based systems with on-
chip caches. One approach is to reduce cache misses.
So far, many compiler optimization techniques to im-
prove cache performance have been proposed, such as
prefetching of instructions and data, loop transforma-
tions for data caches, and code placement for instruc-
tion caches [3]. Another approach is to reduce average
energy consumption per cache miss, but few e�orts of
compiler optimizations have been made towards this
approach.

This paper proposes an instruction scheduling tech-
nique to reduce energy consumption per instruction
cache miss. The proposed technique reduces transi-
tions on a data bus between an on-chip cache and a
main memory, and as a result, power consumed by
o�-chip drivers in the main memory is reduced. The
technique is very e�ective for embedded system design
since it require neither the additional hardware cost

nor a loss of the system performance. Furthermore,
most of compiler optimizations targeting cache miss
reduction and the technique proposed in this paper
are not exclusive but complementary to each other.

This paper is organized as follows. Section 2 sum-
marizes compiler optimization techniques targeting
low-power proposed before. In Section 3, an instruc-
tion scheduling problem for o�-chip power minimiza-
tion is proposed. A scheduling algorithm is proposed
in Section 4, and experimental results are shown in
Section 5. In Section 6, we provide conclusions and
our future works.

2 Related Works
In the past few years, compiler optimizations tar-

geting low-power systems have been studied [4, 10, 11].
Experiments by Tiwari et al. show that various

compiler optimization techniques targeting high ex-
ecution speed are also e�ective for low-energy [11].
One of the most e�ective approaches is register al-
location optimization. Decreasing memory accesses
reduces not only power consumed by the caches but
also potential cache misses and pipeline stalls.

Lee et al. have studied compiler optimizations for
DSPs (digital signal processors) [4]. Their experi-
ments also indicate that compiler optimizations for
high-performance result in low-energy. In [4], they
also proposed a compilation technique, called operand
swapping, which swaps source operands of Booth mul-
tipliers to reduce the switching activity.

Su et al. proposed an instruction scheduling tech-
nique, called cold scheduling [10]. The cold scheduling
reorders instructions in such a way that the switching
activity in the control path is minimized.

Some compilation techniques for cache miss reduc-
tion have been proposed before. One of the recent
studies is presented in [13]. The technique places ba-
sic blocks of the program in a main memory in such
a way that instruction cache misses are minimized us-
ing integer linear programming. Although the moti-
vation is performance improvement of the system, the
proposed technique is also e�ective for o�-chip power
reduction.

The approaches in the above papers can be classi-
�ed into the following three categories: (a) reduction
in instructions to be executed [4, 11], (b) reduction



Main memory
(DRAM)

Processor

CPU
core

Cache

Address bus

Data bus

Off-chip drivers

Figure 1: Hardware organization of target systems

in switching activity inside chips [4, 10, 11], and (c)
reduction in o�-chip transfers [11, 13]. This paper pro-
poses another approach, reduction in bus transitions
per o�-chip transfer.

3 Problem De�nition
3.1 Assumptions

In Figure 1, an example of our assumed hardware
organizations is illustrated. The processor has a CPU
core and an on-chip cache. When the CPU fails to
fetch an instruction, i.e. an instruction cache miss, the
processor �rst sends the address of the issued instruc-
tion to the main memory using the address bus. Next,
the main memory sends all instructions in the memory
block including the issued instruction to the cache us-
ing the data bus. Here, a memory block means a block
in the main memory which can be mapped onto one
cache line. After that, the CPU fetches the instruction
in the cache.

For simpli�cation, we assume as follows in this pa-
per:

� All the machine instructions have the same bit-
length.

� The bit-width of the data bus is equal to the in-
struction bit-length. For example, if the processor
has 32-bit instructions, the data bus width is also
32 bits.

� When the data bus is not used, each wire in the
data bus holds high-level to prevent from the high
impedance condition.

Although the above assumptions can be relaxed by
simple extensions of the technique proposed in this
paper, such extensions are omitted in this paper due
to the limited space for explanation.

3.2 Basic Idea
Since energy consumed by an o�-chip driver is al-

most proportional to the number of transitions on the
corresponding wire in the bus, low-energy is realized
by reducing transitions on the bus. The instruction
scheduling technique proposed in this paper schedules
instructions in each basic block in a way that binary
representations of consecutive two machine instruc-
tions in each memory block are less di�erent.
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Figure 2: Bus transitions without optimization
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Figure 3: Bus transitions with scheduling

Let us consider the example in Figure 2, and as-
sume 8-bit instruction width and 32-bit cache line
size. There are four instructions (a){(d) in the mem-
ory block. When the memory block is sent to the
cache, the instruction (a) is sent �rst. At the time,
four bits switch from high- to low-level. At the next
cycle, (b) is sent to the cache and six bits switch to op-
posite level. As a result, the cache miss invokes twenty
four transitions totally in the data bus. If changing
the positions of two instructions (b) and (c) keeps the
meaning of the program, it reduces bus transitions
by 25%, from twenty four to eighteen transitions (See
Figure 3). Thus the instruction scheduling can reduce
transitions on the bus.

The instruction scheduling does not allow global
instruction motions1 because global instruction mo-
tions may change binary representations of instruc-
tions such as addresses of branch targets.

3.3 Problem Formulation

This section provides a formulation of the instruc-
tion scheduling problem for o�-chip power reduction.
In the formulation, we use the following notations.

1Global instruction motions move instructions beyond basic
block boundaries.



� L : The number of instructions in a cache line.

� M : The number of memory blocks where an appli-
cation program is located.

� I : The number of instructions in the application
program. For simpli�cation, we assume that I is
equal to L�M , but this assumption does not lose
the generality.

� Miss(j) : The number of cache misses concerning
the jth memory block. 0 � j �M � 1.

� SW (j) : The number of bus transitions when the
jth memory block is sent to the cache once.

� b(i) : The binary representation of the ith instruc-
tion. 0 � i � I � 1.

� sw(b; b0) : The Hamming distance between b and b0.
sw(b; b0) corresponds to the number of switching
bits between b and b

0.

� 1 : The bit vector where every bit is 1.

In general, Miss(j)'s are unknown at compilation
time. If the behavior of the program does not depend
on the input data to the program, or if an input data
set is given, Miss(j)'s are predictable.

The number of transitions on the data bus without
scheduling, T , is expressed by Formula (1).

T =

M�1X

j=0

(Miss(j)� SW (j)) (1)

SW (j) = sw(1; b(j � L))

+

L�1X

k=1

sw(b(j �L+ k � 1); b(j � L+ k))

+sw(b((j + 1)� L� 1);1) (2)

Please remember the assumption that each wire in
the data bus holds high-level while the bus is not used.
In Formula (1), sw(1; b(j � L)) denotes the number
of switching bits when the �rst instruction in the jth

memory block is sent to the cache, and
P

L�1

k=1
sw(b(j�

L+k� 1); b(j�L+ k)) is the switching bits when the
rest of instructions in the block is sent. After that,
sw(b((j + 1) � L� 1); 1) bits switches from low-level
to high. The sum of the three values gives the number
of bus transitions per cache miss, which is multiplied
by the number of cache misses.

Next, let us denote the injection x and x
�1 as fol-

lows.

� x(i) : The position of the ith instruction after
scheduling. 0 � i � I � 1, 0 � x(i) � I � 1.

� x
�1

: The inverse mapping of x. x�1(x(i)) = i.

Then, the number of transitions on the data bus
with instruction scheduling is expressed in Formula
(1) and (3), which is obtained by replacing function b

in Formula (2) with b � x
�1.

1: Find Schedule(G;PS; addr)

2: f

3: if (G = �) return (�;0);

4: if (Not Found in Hash(G)) return Get Hash(G);

/* See Section 4.2 */

5: SN := the set of schedulable nodes in G;

6: vlast := the lastly scheduled node in PS;

7: foreach v 2 SN f

8: if (addr is a boundary of memory blocks) f

9: tv := sw(b(vlast); 1) + sw(1; b(v));

10: g else f

11: tv := sw(b(vlast); b(vi));

12: g

13: g

14: NSN := Select N Nodes(SN);

/* See Section 4.3 */

15: Increment addr;

16: foreach v 2 NSN f

17: (Sv; Cv) := Find Schedule(G� v; PS [ v; addr);

18: g

19: v := the node in NSN minimizing (Cv + tv);

20: Set Hash(Sv [ v; Cv + tv);

/* See Section 4.2 */

21: return (Sv [ v; Cv + tv);

22: g

Figure 4: Scheduling algorithm

SW (j) = sw(1; b(x�1(j � L)))

+

L�1X

k=1

sw( b(x�1(j �L+ k � 1));
b(x�1(j �L+ k)))

+sw(b(x�1((j + 1)� L� 1)); 1) (3)

The instruction scheduling problem is formally de-
�ned as follows: For given L, M , b(i)'s, and m(j)0s,
�nd x minimizing T keeping control and data depen-
dencies among instructions.

4 Scheduling Algorithm
4.1 Outline of the Algorithm

In Figure 4, a scheduling algorithm for o�-chip
power reduction is presented. The algorithm is applied
to each basic block of an application program. Inputs
to the algorithm are a DAG (directed acyclic graph)
of instructions which are not scheduled yet, denoted
by G, the partial schedule, PS, and the address of the
main memory where the next instruction is located,
addr. Each node and edge in the DAG represent an
instruction and a control/data dependency between
instructions, respectively. The algorithm outputs the
schedule of G and the cost. The cost is the number of
transitions on the data bus when the instructions in
G are sent to the cache.
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Figure 5: Example of DAG and its search tree

In this paper, how the algorithm works is described
using some examples, instead of explaining each state-
ment in Figure 4.

Basically, the algorithm examines all possible
schedules of G, and �nds the schedule with the lowest
cost. Let us consider the DAG illustrated in Figure 5
(a). The DAG has eight possible schedules which are
represented by the search tree in Figure 5 (b). The al-
gorithm performs the depth-�rst search to the search
tree, and outputs the best solution.

Since searching the whole search tree is ine�cient
in terms of computation time, the algorithm employs
two techniques for speed-up. One technique avoids the
potentially redundant search. Another technique lim-
its the number of subtrees to be searched. In Section
4.2 and Section 4.3, the two techniques are described
respectively.

4.2 Redundant Search Space Reduction
For example, let us consider the DAG and its search

tree in Figure 6, where two subtrees enclosed by dot-
ted circles have the same structure. If the schedule
(v3 ! v5 ! v4 ! v6) has the lowest cost in the left
subtree, the schedule is also the best in the right sub-
tree. Since the two subtrees have the same solution,
searching both subtrees just wastes the computation
time. The proposed algorithm avoids such potential
redundant search by remembering the best schedule of
each searched subtree in a hash table. When search-
ing tree, if the DAG has already been registered in the
hash table, the schedule and its cost in the table are
used.

This mechanism is realized by the three functions,
Not Found in Hash, Get Hash, and Set Hash in
the algorithm Find Schedule (Line 4 and 20 in Figure
4).

4.3 Heuristics
If a node in a search tree have a large number of

children, to search all children's subtrees consumes a
long time. The scheduling algorithm selects up to N
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Figure 6: Example of redundant search space reduc-
tion

children whose subtrees are likely to have good sched-
ules, and continues scheduling for their subtrees (Line
14 in Figure 4). Generally, larger N leads to better
schedules.

When selecting children to be searched, the al-
gorithm only considers the number of the switching
bits between the current node and each child of the
node. Let us consider the search tree illustrated in
Figure 7, and assume that N is set to 2. The bi-
nary representation of each node, b(vi), is also de-
scribed in the �gure. The node v1 must be scheduled
�rst, and there exist seven nodes schedulable after v1.
Since sw(b(v1); b(v3)) and sw(b(v1); b(v7)) are the low-
est two, the algorithm selects v3 and v7 as the candi-
date nodes to be scheduled next to v1, and continues
scheduling for their subtrees. Note that if the address
of the instruction next to v1 is a boundary of memory
blocks, v4 and v6 are selected as the candidates. This
is because we assume that each wire in the data bus
holds high-level while the cache hits.

The worst case time complexity of the algorithm is
O(n2) if N = 1, otherwise O(Nn

� n), where n is the
number of instructions in the basic block.
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b(v2) = 11110000; sw(b(v1); b(v2)) = 8
b(v1) = 00001111

b(v3) = 10001111; sw(b(v1); b(v3)) = 1
b(v4) = 11111111; sw(b(v1); b(v4)) = 4
b(v5) = 00000000; sw(b(v1); b(v5)) = 4
b(v6) = 11111110; sw(b(v1); b(v6)) = 5
b(v7) = 00001100; sw(b(v1); b(v7)) = 2
b(v8) = 11110001; sw(b(v1); b(v8)) = 7

Figure 7: Example of heuristics

4.4 Limitations of the Algorithm

Even if N is large su�ciently2, it is not guaranteed
that the algorithm always �nds the optimal solution
of the scheduling problem de�ned in Section 3. There
exist two reasons. One reason is that the algorithm
takes no account of m(j) which denotes the number
of cache misses caused by the jth memory block. In
general,m(j) is unknown before executing the applica-
tion program. If m(j) does not depend on input data
to the program, or if m(j) is predictable, considering
m(j) during scheduling leads to better solutions.

Another reason is that, when scheduling a basic
block, the algorithm only considers which instruc-
tion was scheduled last in the previous basic block,
but does not consider which instruction is likely to
be scheduled �rst in the next basic block. In order
to guarantee the optimality, all basic blocks must be
scheduled simultaneously. However, in this case, the
scheduling time may not be acceptable.

5 Experiments
The scheduling algorithm proposed in the previous

section is implemented in C, and applied to several
benchmark programs for various N (See Section 4.3).
Table 1 shows the number of machine instructions and
basic blocks in each program, and the number of in-
structions in the largest basic block. compress(UNIX)
is a UNIX application and the other programs are se-
lected from [7]. The SPARC instruction set architec-
ture is used as a target. Since each SPARC instruction
has 4-byte width, we assume that the data bus has a
width of 4 bytes.

We assume two instruction cache models. One is
a direct mapped, 128-byte instruction cache with 32-
byte lines, and another is a direct mapped, 128-byte

2
N is large su�ciently if N is equal to or larger than the

number of instructions in the basic block.

Table 1: Benchmark programs
instruc- basic largest
tions blocks block size

compress 41 6 16
laplace 79 6 37
linear 48 10 15
lowpass 78 6 49
sor 100 6 43

wavelet 101 9 37
compress(UNIX) 1,805 471 35

instruction cache with 64-byte lines. Experimental re-
sults are shown in Table 2 and Table 3, respectively.

In each table, the second column labeled \naive"
gives the number of transitions without the optimiza-
tion. The \N = 1" column gives the number of tran-
sitions on the data bus and the CPU time required
for scheduling when N is set to 1. The \best" column
shows the case when N is large su�ciently, but, in any
case in our experiments, the best schedule is also ob-
tained when N = 5. The scheduling time is measured
on SPARCstation 5 (microSPARC-II, 85MHz, 32MB,
Solaris 2.5).

Experimental results show that the algorithm
achieves a reduction of up to 28% in transitions on the
data bus. Signi�cant reduction in power consumed for
o�-chip driving is expected even though the technique
does not reduce transitions at data cache miss time.

The computation time for scheduling is short
enough, within 1.3 seconds in any case. It shows that
the algorithm proposed in Section 4 is e�cient though
it is very simple.

6 Conclusions and Future Works
In this paper, we have proposed an instruction

scheduling technique to reduce energy per instruc-
tion cache miss, which is consumed for o�-chip driv-
ing. The scheduling technique reduces transitions on a
data bus between an on-chip cache and a main mem-
ory of the system. The approach can reduce power
consumption without extra hardware cost and per-
formance loss. The scheduling problem is formulated
and a scheduling algorithm is proposed. Experimen-
tal results show that the proposed scheduling algo-
rithm achieves signi�cant reduction in transitions on
the data bus, up to 28% of reduction, and runs e�-
ciently.

There remain a lot of works to further reduce o�-
chip power consumptions. Since the scheduling tech-
nique is compatible with most of compilation tech-
niques for cache miss reduction such as [13], to apply
the technique proposed in this paper with these tech-
niques will achieve greater power reduction.

The power consumption for o�-chip driving de-
pends on code assignment of machine instructions. In
design of application speci�c processors, more reduc-
tion in bus transitions is expected by encoding instruc-
tions in such a way that the operation �elds of in-
structions which are frequently executed consecutively



Table 2: Experimental results (32-byte cache lines)
# transitions and CPU time instruction

naive our proposed algorithm reduction cache miss
N = 1 best rate

compress 17,002 16,174 (0.03 sec) 16,152 (0.04 sec) 5.0 % 1.3 %
laplace 4,282,378 4,101,352 (0.07 sec) 3,901,726 (0.08 sec) 8.9 % 10.8 %
linear 514,364 466,346 (0.04 sec) 428,346 (0.07 sec) 16.7 % 0.1 %
lowpass 7,761,708 5,941,252 (0.05 sec) 5,558,046 (1.21 sec) 28.4 % 12.3 %
sor 2,432,938 2,047,392 (0.06 sec) 1,976,212 (1.37 sec) 18.8 % 10.9 %

wavelet 13,750 10,312 (0.08 sec) 10,084 (0.33 sec) 26.7 % 10.5 %
compress(UNIX) 1,090,232 1,049,472 (0.30 sec) 1,032,682 (0.48 sec) 5.3 % 14.2 %

Table 3: Experimental results (64-byte cache lines)
# transitions and CPU time instruction

naive our proposed algorithm reduction cache miss
N = 1 best rate

compress 36,134 35,104 (0.03 sec) 33,892 (0.06 sec) 6.3 % 1.3 %
laplace 7,081,276 6,741,208 (0.05 sec) 6,541,176 (0.10 sec) 7.6 % 10.8 %
linear 446,440 392,384 (0.04 sec) 362,368 (0.06 sec) 18.8 % 0.1 %
lowpass 8,520,594 6,520,556 (0.08 sec) 6,120,538 (1.23 sec) 28.2 % 8.1 %
sor 3,724,530 3,293,460 (0.07 sec) 2,930,224 (1.10 sec) 21.3 % 10.8 %

wavelet 23,040 17,528 (0.06 sec) 16,574 (0.34 sec) 28.1 % 10.2 %
compress(UNIX) 1,087,742 1,050,040 (0.33 sec) 1,031,182 (0.49 sec) 5.2 % 8.3 %

are assigned closely. Similarly, it may be e�ective for
compilers to assign registers in such a way that the
operand �elds of instructions less switches. To op-
timize instruction encoding, register assignment, and
instruction scheduling simultaneously is one of our fu-
ture works.

This paper concentrates on bus transitions at in-
struction cache misses and does not consider data
cache misses. Reducing o�-chip power at data cache
misses is also an interesting research avenue for us.
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