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Abstract

Because general algorithms for sequential equivalence
checking require a state space traversal of the product
machine, they are computationally expensive. In this paper,
we present a new method for sequential equivalence
checking which utilizes functionally equivalent signals to
prove the equivalence of both circuits, thereby avoiding the
state space traversal. The effectiveness of the proposed
method is confirmed by experimental results on retimed
and optimized ISCAS’89 benchmarks.

1. Introduction

With the increasing use of sequential optimizations during
logic synthesis, sequential equivalence checking is becom-
ing an important practical verification problem. Conven-
tional algorithms for solving this problem require a state
space traversal of the product machine. Impressive progress
has been made in this area by the introduction of so-called
symbolic techniques, which are based on the application of
binary decision diagrams (BDDs) to traverse the state space
(see e.g. [2] for an overview). Although these techniques
can conceivably handle large circuits and are still being
improved (see e.g. [3]), they cannot be expected to scale
well with circuit size for many types of circuits.

For combinational equivalence checking, the state-of-
the-art verification methods combine a powerful base
verification algorithm with techniques to exploit the struc-
tural similarities of the circuits under verification (see e.g.
[7] for an overview). These similarities typically occur in
practical problem instances because of the incremental
nature of the design process. The techniques to capture them
are based on functional equivalences, indirect implications,
or permissible functions. The utilization of structural
similarities has shown to be very important for the efficient
verification of synthesized circuits. Because sequential
optimizations such as retiming only have a restricted
influence on the structure of a circuit, this approach of
exploiting structural similarities is also likely to be applica-
ble to sequential equivalence checking. In this paper, we
present a new method to prove the equivalence of sequential
circuits which show structural similarities. The method is

not based on a state space traversal, and therefore it can
handle larger circuits than existing methods.

When verifying combinational circuits, structural simi-
larities can be proved correct before they are used to
simplify the verification problem. When dealing with
sequential circuits, this is clearly more difficult. In the
presence of sequential feedback, it is necessary to combine
the detection and utilization of similarities to really benefit
from them. In this paper, we solve this problem by
proposing a fixed point iteration which gradually filters sets
of potentially equivalent functions until the actual equiva-
lences remain. This filtering process only requires combina-
tional techniques. Therefore the proposed method can be
viewed as a way to extend the applicability of the state-of-
the-art combinational verification techniques to sequential
equivalence checking.

2. Related work

In this paper, we focus on the utilization of structural
similarities to enable the verification of large sequential
circuits. Alternative approaches are to put restrictions on the
synthesis process, such as the C-1-D property proposed in
[1], or to use formal synthesis, as described in [8].

The conventional symbolic algorithms for sequential
equivalence checking do not attempt to benefit from the
structural similarities of the circuits under verification.
Several techniques are proposed in literature to improve
them in this respect. In [6], the use of functional dependen-
cies is proposed to exploit the relation between the state
encodings of both circuits during the state space traversal of
the product machine. In [12], a method is described to
incrementally re-encode one of the circuits to factor out
their differences.

When a sequential circuit is only optimized with
combinational synthesis techniques, the correctness of the
implementation can be verified with a combinational
verification method if the corresponding registers in both
circuits are known. An efficient technique to automatically
identify this register correspondence without calculating the
reachable state space of the product machine is described
independently in [5] and [9]. The detection of correspond-
ing registers also forms the basis for the utilization of



structural similarities in the verification method proposed in
[11]. A preprocessing step for handling retimed circuits is
described in [10], which relies on 3-valued equivalence and
name correspondences.

Recently, a new sequential verification method called
‘Record & Play’ was proposed in [14]. This method uses
recursive learning in combination with a so-called structural
fixed point iteration to find equivalent signals. By applying
retiming transformations, the two circuits are made more
similar. The concept of instruction queues is introduced to
capture the equivalent signals.

Based on the work outlined above, the following
important observation can be made: In many practical cases,
sequential equivalence of circuits can be proved by deter-
mining the correct relation between their state encodings
rather than by calculating the entire reachable state space of
the product machine. The method we propose in this paper
relies on this observation. It uses a greatest fixed point
iteration to identify functionally equivalent signals, which is
a generalization of the techniques used in [5] and [9] for
determining corresponding registers.

3. Verification method

Our basic model of a sequential circuit is a deterministic
Mealy-type finite state machine (FSM) with a specified
initial state. We assume that we are given two circuits, which
are combined into a product machine with input space X,
state space S, initial state s0 � S, next-state function
� : S� X � S, and output function � : S� X � B,
where B� {0, 1} denotes the set of Boolean values. The
output function � is 1 for a given state and input vector, if all
pairwise corresponding outputs of the two circuits assume
the same value. The objective of sequential equivalence
checking is to prove that � is 1 for every reachable state and
input vector.

The basis of our verification method is a greatest fixed
point iteration, which works on the set of all the functions of
the signals in both circuits. It gradually partitions this set
into equivalence classes, such that all functions in the same
equivalence class are sequentially equivalent, meaning that
for any reachable state and input vector, they have the same
value. In each step of the iteration, two consecutive time
frames of the product machine are considered which are
called the current time frame and the next time frame, as
shown in Figure 1. Each time frame consists of the
combinational logic of the product machine. The current
time frame is used to model the potential equivalences
between the signals found thus far. The correctness of these
equivalences is verified in the next time frame.

With each signal v, we associate a current-state function
fv : S� X � B which expresses the value of v in the
current time frame as a function of the current state and the
current input vector, and a next-state function
�v : S� X� X � B which expresses the value of v in the
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Fig. 1. Time frame model of the product machine

next time frame as a function of the current state, the current
input vector and the next input vector. Note that
�v(s, xt, xt+1)� f v(�(s, xt), xt+1).

Before we describe the fixed point iteration in detail, we
first introduce the theory on which it is based. The set of all
signals in the product machine is denoted V. Based on this
set, we construct the following set of functions F. We take
the initial state s0 and a randomly selected input vector
x0 � X as a reference point. For each signal v� V, we
consider the value of fv(s0, x0). If it is 1, then we add the
function fv to the set F, and otherwise its complement fv.
This procedure normalizes each signal in the product
machine with respect to its polarity, which is important for
the following reason: It allows the method to detect not just
equivalent, but also antivalent signals (i.e., signals having
opposite values in every reachable state).

Informally, the detection of structural similarities corre-
sponds to determining a signal correspondence, i.e., identi-
fying signals with sequentially equivalent current-state
functions. This can be formalized as the calculation of an
equivalence relation on F, such that all functions equivalent
with respect to this relation are also sequentially equivalent.
Note that this still allows a function to correspond with
several other functions. Before defining the conditions an
equivalence relation on F has to comply with to represent a
correct signal correspondence, we first introduce the notion
of a correspondence condition to associate a set of states
with an equivalence relation on F. More specifically, this
correspondence condition is a function which evaluates to
true for all states conforming to that relation.

Definition 1

Given an equivalence relation �
sc

 on the set F. The
correspondence condition Q

�
sc : S� X � B is the function

that defines whether a state conforms to the relation �
sc

, i.e.,
whether all functions in the same equivalence class of �

sc

indeed have the same value:

Q
�
sc(s, x)� �

fm,fn�F�fm�
sc

fn

fm(s, x)� f n(s, x) .

Note that the correspondence condition may also depend on
the current input vector. This is a technicality: The theory is
not influenced by adding a universal quantification over the
input space in the definition of the condition.



We can now define the conditions an equivalence
relation �

sc
 on F has to satisfy to represent a correct signal

correspondence. We impose the following two conditions.
The first condition is that if two functions correspond
according to �

sc
, then they must have the same value in the

initial state s0. This guarantees that both circuits start in a
state in which Q

�
sc holds. The second condition we impose is

that if we consider two functions that correspond according
to s0, and a state in which Q

�
sc holds, then the associated

next-state functions have to be equivalent in this state. This
condition guarantees that if the two circuits are in a state for
which Q

�
sc holds, then Q

�
sc will also hold for every next state

of the circuits. If both these conditions are satisfied, it can
directly be concluded that all functions in the same
equivalence class necessarily are sequentially equivalent.
We introduce the term signal correspondence relation to
denote an equivalence relation on F that complies with the
two conditions described above.

Definition 2

An equivalence relation �
sc

 on F is a signal correspondence
relation iff for each pair of functions fm, fn � F with
fm�

sc
fn:

� for all x� X : fm(s0, x)� f n(s0, x) ,
� for all s� S, xt, xt+1� X :

Q
�
sc(s, xt) � �m(s, xt, xt+1)� �n(s, xt, xt+1) .

We will use the example of Figure 2 to illustrate the notion of
a signal correspondence relation and the associated corres-
pondence condition. An example of a correct correspon-
dence relation for this example is given by the partition
{{f 1}, {f 2}, {f 3, f6}, {f 4, f7}, {f 5}}. This relation states that
the signals v3 and v6 are sequentially equivalent, as well as
the signals v4 and v7. The associated correspondence
condition is (v1v2� v6)(v1v2xt� v6xt), which can be
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Fig. 2.  Example of a retimed and logically optimized
           circuit

simplified to v1v2� v6. Using the information given in the
table of Figure 2, it can be checked that this correspondence
relation satisfies both conditions stated in Definition 2. For
example, the condition to determine whether f3 and f6 are
equivalent, is:

v1v2� v6 � v1v2 xt� xt� v6 ,

which is a tautology. Similarly, it can be proved that the
functions of the outputs v4 and v7 are equivalent, and thus
that the two circuits are equivalent.

For a given pair of circuits, there may exist several signal
correspondence relations. We state without proof that the set
of all correspondence relations is a partially ordered set in
which each pair of elements has a least upper bound. As a
consequence, there is a unique maximum relation �

msc
. This

maximum correspondence relation can also be character-
ized by the property that for any other correspondence
relation �

sc
 and for all fm, fn � F:

fm�
sc

fn � fm�
msc

fn . (1)

Our verification method uses the following theorem to
prove the equivalence of sequential circuits.

Theorem 1

Let �
msc

 denote the maximum signal correspondence relation.
If:
� s� S, x� X : Q

�
msc(s, x) � �(s, x) ,

then the two circuits are sequentially equivalent.

We will now describe the greatest fixed point iteration to
calculate the maximum signal correspondence relation �

msc
.

A sequence of equivalence relations Ti is calculated, which
converges to the maximum correspondence relation. The
first relation T0 compares the functions in F with respect to
the initial state:

fm T0 fn � � x � X : f m(s0, x)� f n(s0, x) . (2)

Starting with T0, a sequence of relations is calculated by
applying the second condition of Definition 2:

fm Ti+1 f n � fm Ti f n� (� s� S, xt, xt+1� X :
QTi

(s, xt) � �m(s, xt, xt+1)� �n(s, xt, xt+1)) . (3)

Since there is only a finite number of functions in F, a fixed
point is reached after a finite number of iterations, i.e., at
some point Ti � Ti+1. This Ti is the maximum signal
correspondence relation. The number of iterations is at most
| F | + 1, because in every iteration, except the last one, the
number of equivalence classes increases by at least one.

Theorem 2
Given the sequence of equivalence relations as defined by
the Equations 2 and 3. If Ti � Ti+1, then Ti is the maximum
signal correspondence relation.

The proof of Theorem 2 follows a similar line of reasoning
as the proof of Theorem 4.1 in [7].



The ‘scope’ of the fixed point iteration explained above
is determined by the functions in the set F. Its accuracy can
therefore be improved by extending this set with extra
functions. In our verification method, we do this by
applying forward retiming transformations to the product
machine. Note that this differs from the way retiming
transformations are used in [10] and [14]: we do not actually
move latches (and thus we avoid the problems related to
maintaining a valid initial state [13]) but rather add the extra
combinational logic that would result from the retiming
transformations. We only consider retimings with a lag of
–1, meaning that at most one register is moved from every
input to every output of a gate. This is illustrated in Figure 3.
In the circuit at the left, the AND gate can be retimed with a
lag of –1 by moving the registers r2 and r4 to the output of the
gate. We model the effects of this retiming move by
introducing an extra AND gate connected to the registers r1

and r3.

r1 r2

r3 r4

v v� v

r1 r2

r3 r4

Fig. 3.  Retiming with lag –1 to generate additional logic

The outline of the resulting verification method is shown in
Figure 4. First the maximum signal correspondence relation
is calculated. If the current-state functions of all pairwise
corresponding outputs of the two circuits are equivalent
according to this relation, then the sequential equivalence of
both circuits is proved and we can stop. Otherwise it is
checked whether the set F can be extended using retiming
transformations as explained above. Note that because this

calculate max. signal
correspondence rel.

�� 1
proved?

The circuits
are equivalent

forward retiming
with a lag of –1

new
signals?

Equivalence is not proved.

Y

N

N

Y

Fig. 4. Outline of the verification method

step may be applied more than once, also retiming
transformations with a lag smaller than –1 are considered. If
the retiming generates new combinational logic and thus
results in an extension of the set F, the method continues
with the calculation of the maximum signal correspondence
relation for this larger set of functions.

The proposed verification method can easily be ex-
tended to also take sequential don’t cares due to the
non-reachable state space into account. For example, the
reachable state space of the specification can be used to
strengthen the correspondence condition, i.e., instead of
using the correspondence condition Q

�
sc, the condition

Q
�
sc� Sreach can be used, where Sreach denotes the character-

istic function of the specification’s reachable state space.
Note that by combining the specification’s reachable state
space with the correspondence condition, this information is
also applied to the implementation.

Instead of using the exact reachable state space, it is also
possible to use an upper bound approximation of the
reachable state space, which can be calculated efficiently
using techniques as e.g. described in [4].

4. Implementation issues

When implementing the method of Section 3, we have to
choose an appropriate data structure for storing the relations
Ti that are calculated during the refinement process.
Because every Ti is an equivalence relation, it can be
represented by its equivalence classes. Therefore, the choice
of an appropriate data structure is not difficult: We can
simply store the equivalence classes of Ti explicitly,
resulting in a space complexity of O(F).

In every iteration of the fixed point computation, a new
relation Ti+1 is derived from the previous relation Ti by
splitting some equivalence classes into a number of smaller
classes. This is done by evaluating Equation 3. The
complement of the correspondence condition is basically
used as a don’t care set when comparing the next-state
functions. We can use functional dependencies [6] of the
correspondence condition to better exploit this don’t care
set. To illustrate this, consider the example based on the
circuits of Figure 2 again. In this example, the correspon-
dence condition is v1v2� v6. This condition can be taken
into account by actually replacing state variable v6 by the
function v1v2. We use a greedy heuristic based on the
structure of the product machine to select the state variables
which can be written as a function of other state variables
before the correspondence condition is actually calculated.

Sequential simulation of the product machine with
random input vectors can be used to partition the set F into
sets of potentially equivalent functions; if two functions
have different values during simulation, it can directly be
decided that they are not equivalent. This results in a better
initial approximation of the maximum signal correspon-



dence relation, and thus reduces the required number of
iterations.

5. Experimental results

This section reports the results of some preliminary
experiments performed with the proposed verification
method. Our current implementation constructs BDDs
expressed over the input and state variables to represent the
correspondence condition and the next-state functions
without introducing extra variables for intermediate signals.
It is based on the BDD package developed at Eindhoven
University. Dynamic variable ordering is used to control the
BDD variable ordering. All tests are performed on a 99 MHz
HP9000/755 workstation with a memory limit of 100 (Mb)
imposed on the BDD package and a time limit of 3600 (s).
The verification method is tested on circuits from the
ISCAS’89 benchmark set. The circuits are verified against
the synthesized versions of these circuits from [14], which
have been optimized by kerneling and retiming. To make
these circuits more difficult to verify, we have further
optimized them using script.rugged of SIS. We compare our
method with the symbolic verification method of [6] which
uses functional dependencies to capture the relation be-
tween the state encodings of both circuits.

Table 1 shows the experimental results. The first two
columns show the name of the benchmark and the number of
registers in the circuits before and after synthesis. The
following columns list the run time, the maximum number
of BDD nodes during verification, and the required number
of iterations for both verification methods. For the proposed
method, the number between parentheses in the column
‘#its’ denotes the number of times the retiming procedure is
invoked. The last column shows the percentage of signals in
the specification for which a corresponding signal in the
implementation is found. The average percentage of equiva-
lences is 54%; without running script.rugged on the circuits
of [14], the percentage of equivalences is 85%.

The experimental results clearly show that the proposed
verification method can handle larger circuits than a
symbolic method which uses BDDs to traverse the state
space, even if the latter method exploits functional depen-
dencies. If the detection of functional dependencies is
disabled, the symbolic traversal method performs consider-
ably worse. The proposed method can verify most circuits
within a reasonable time, even those having a very deep state
space such as s838. Only the circuits s3384 and s6669
cannot be handled, because the BDDs become too large.
This problem is however more related to the combinational
verification techniques used than to the proposed method.

6. Conclusion

We have proposed a new verification method for sequential
equivalence checking which proves equivalence by detect-

ing and utilizing structural similarities rather than perform-
ing a state space traversal of the product machine. A greatest
fixed point iteration is used to determine sequentially
equivalent signals. Because the method only requires
combinational verification techniques, it is significantly
more efficient than symbolic verification methods requiring
a state space traversal. As the experimental results show, it
can verify large circuits after extensive optimization even
using plain BDD-based combinational verification tech-
niques. We expect that the performance of the method on
larger circuits can be significantly improved by applying
techniques based on the introduction of extra variables
representing intermediate signals (see e.g. [7] for an
overview).

Although the proposed method is sound, it is not a
complete method, i.e., there are pairs of equivalent circuits
for which it cannot prove equivalence. The method can be
used as an effective preprocessing step for a general method
such as [6]. It is interesting to note that for some synthesis
steps, the method is complete. This is e.g. the case for
circuits optimized with combinational synthesis techniques,
and also for retimed circuits. Currently we are working on
further characterizing the combinations of synthesis tech-
niques for which the method is complete.
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Table 1. Experimental results on retimed and logically optimized circuits

circuit
#regs symbolic traversal proposed method

circuit orig./opt. time (s) nodes #its time (s) nodes #its eqs (%)

s208 8 / 14 0.7 1604 256 0.4 325 8 (0) 55

s298 14 / 29 3.8 6149 19 0.8 682 5 (0) 57

s344 15 / 38 21.0 18962 7 0.6 1061 2 (0) 49

s349 15 / 38 19.2 15944 7 0.7 1272 2 (0) 49

s382 21 / 36 8.9 11339 151 3.3 1103 21 (0) 60

s386 6 / 43 7.9 8876 8 2.2 1905 5 (0) 53

s420 16 / 34 73.3 11152 65536 5.3 1725 32 (0) 55

s444 21 / 36 14.3 11035 151 3.6 1172 22 (0) 58

s510 6 / 64 2683 708940 47 2.0 2473 1 (1) 42

s526 21 / 58 62.7 44942 151 6.7 1375 27 (0) 61

s641 19 / 17 2.9 5667 3 2.1 4178 2 (0) 83

s713 19 / 17 4.7 6667 3 2.5 4196 2 (0) 83

s820 5 / 53 228 165895 11 9.6 4443 8 (0) 42

s832 5 / 57 173 115889 11 11.8 4617 8 (0) 42

s838 32 / 74 ––– ––– ––– 55.6 4548 80 (0) 55

s953 29 / 76 130 85756 10 5.7 4225 3 (0) 51

s1196 18 / 18 4.5 8236 1 3.0 4152 2 (0) 33

s1238 18 / 18 5.5 5820 1 2.9 4015 2 (0) 30

s1423 74 / 85 ––– ––– ––– 676 100830 12 (0) 53

s1512 57 / 101 ––– ––– ––– 34.7 9339 13 (0) 60

s3271 116 / 189 ––– ––– ––– 808 28499 6 (4) 26

s3330 132 / 114 ––– ––– ––– 1316 1094772 3 (1) 64

s3384 183 / 506 ––– ––– ––– ––– ––– ––– –––

s4863 104 / 152 ––– ––– ––– 55.6 9547 2 (0) 56

s5378 179 / 263 ––– ––– ––– 801 34117 17 (1) 71

s6669 239 / 267 ––– ––– ––– ––– ––– ––– –––
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