
VHDL Teamwork, Organization Units and Workspace Management

Serafín Olcoz, Lorenzo Ayuda, Iván Izaguirre, Olga Peñalba
SIDSA

Ronda de Poniente 8, 2 A.
28760 Tres Cantos (Madrid) Spain

vhdl-ice@sidsa.es

Abstract.

A new set of tools for Teamwork, Organization Units,
Workspace and Build management of VHDL-based
reusable components, organized in libraries, accessible
through an heterogeneous and distributed environment is
presented. These tools support the collaborative and
distributed development of systems-on-a-chip reusing
VHDL components available through the intranets and the
Internet. They must be used as a complementary support to
the design tools (simulation, synthesis, etc.) already
available in the market to enhance productivity, facilitating
maintenance, improving reliability, efficiency and
interoperability, and finally, capitalizing on the IP library
components investment.

1. Introduction.

According to VSI Alliance1 situation analysis, as
semiconductor technology advances, the business pressure
to design large ICs in a short time increases. Design reuse
is expected to be a prevalent method for improving design
efficiency of large ICs. In many cases, the reused blocks
are internally developed. However, even with the rapid
advances in fabrication technology and design tools, few
companies can dedicate to offer the customer a total
“system-on-a-chip” solution. Consequently, it is becoming
critical for companies to increase their access to a variety
of functional blocks (often referred to as IP, or Intellectual
Property).

1 VSI Alliance stands for Virtual Socket Interface Alliance

(http://www.vsi.org.). This alliance was formed from a common
understanding of a looming bottleneck for the continued rapid evolution
of the electronics industry and a shared vision for its solutions based on
the continued use or “reuse” of existing functions, but which are
designed in such a way as to make possible the mix-and-match of such
functions from different sources onto a single silicon solution.

Addressing this point, a library based approach and
design reuse of hardware components is presented in
section 2 of this paper. However, the availability and
management of reusable Hardware Description Language
(HDL) based libraries is very dependent on the particular
processing mechanisms of the chosen HDL, e. g. VHDL,
[1]. Section 3 presents the Teamwork, Organization Units,
Workspace and Build management tools. These tools are
part of a VHDL Integrated Common Environment (VHDL-
ICE2, [2]) and they have been developed taking care and
advantage of the specific processing and interoperability
mechanisms of VHDL descriptions, [3]. Finally, section 4
presents the conclusions and future work.

2. Library-Based Approach and Design
Reuse.

Technology advances should be encapsulated into
modular building blocks supported by new system design
tools that enable the system designer to effectively combine
and reuse them and evaluate the best solution. These
modular blocks can be considered as the reusable elements
of a design library. Making these library components
reusable holds a number of promises, such as enhancing
productivity, facilitating maintenance, improving
reliability, efficiency and interoperability, and finally,
capitalizing on the library components investment.

The reusability of the library components has not the
same meaning depending on your point of view as IP user
or as producer. The first five promises are useful for the
(re)user of the components. However the last two promises
are more related with the library components producer. On
the other hand, modeling rules and coding styles increases
the readability and modifiability of the library components.

2 VHDL-ICE is a leading VHDL Integrated Common

Environment, for UNIX and Windows NT, under development in the
OMI-ESPRIT Project TOMI. See http://www.omimo.be.

Dealing with libraries means to enhance the library
building and management facilities. The building facilities
mean the capability of building systems from the library
components. The management facilities mean the
capabilities to organize these components. Regarding both
criteria, no library component should be accepted into the
library unless it meets a set of quality criteria, defined
precisely by the company as part of its reusability policy.
To help the company in this job, some quality checker must
be available.

The goal of a reusability policy is to satisfy the
users/customers (the potential re-users of the library
components) by prevailing on the producers (the library
components designers) to do the best possible job.
However, no library component is reusable unless it is
useful and usable, which is not the same thing.

It is important to state that reusability can not be
added as an afterthought and that no library component is
really reusable until it has been already reused. For this
reason, it is possible to establish 5 levels of library
component reusability, see figure 1:

1. Used successfully in one system.
2. Used in several systems produced by the library

component’s provider.
3. Used in systems provided by the designer’s team.
4. Used in systems produced by third parties, all of

whom the library components’ designer knows about.
5. Used in systems provided by designers of whom the

library components’ author has never heard.

Library Components

First Product1

Many Products

2

Provider’s Environment

Many Products

3

Environment very close to provider

Many Products

4

Environment not related with the provider Many Products

5

Environment close to provider

Figure 1.- Reusability Levels.

Each progression to a new level on this list brings a
new set of requirements since it may reveal hidden

assumptions on the environment. Moving to level 2 means
removing dependencies on the original application of the
library components. At level 3, the people reusing the
library components are working at the same company
(division), or at least are close related to the library
components provider, but they are not the provider, so
some of the components provider may turn out not be valid
any more. Moving to level 4 means to start delivering
reusable library components to people outside of the
company (division), and that may cause some surprises.
But at this level the relationship between the IP customers
and the provider can solve the possible problems. At the
highest level, this is not true any more: people know about
the library components even the provider does not know
about them.

3. VHDL-ICE: A Distributed and
Heterogeneous Environment.

To use and reuse the library components not only the
hardware/software modules are needed, but also an
environment for its reuse. While the benefits and
advantages of such a kind of environment are widely
agreed, there appears to be very little commercial use of
them that are currently available. Particularly, HDL-based
hardware development is mostly supported by means of
customization of software-like development oriented
environments, [4]. In this approach the HDL data and
operations management is carried out using the typical
mechanisms to configure software development projects
without taking into account that the HDL description is just
a mean to deal with a hardware product and the software
programs are themselves the product. This approach does
not take advantages of the semantics behind the HDL. A
different and innovative approach is the one followed by
the VHDL Design Management tool called VHDL-ICE.

The VHDL-ICE environment relies on an object
oriented distributed system architecture3 implemented over
TCP/IP, allowing expandable and configurable installations
over local or wide area networks, i. e., intranets and the
Internet. Users of the VHDL-ICE access to a particular
environment, independent from the local machine used,
offered by a chosen VHDL-ICE database server. VHDL-
ICE client/server architecture supports and interoperates
across multiple platforms (Windows NT, UNIX). VHDL-
ICE data and metadata constitute a repository or database
based on the standard file system.

The VHDL-ICE database server is characterized as a
transaction processing system, which performs transactions

3 SIDSA’s ESDA (Electronic System Design Automation) tools
are implemented in Eiffel, [5], using Integrated Software Engineering
Inc. (see http://www.eiffel.com) tools, and ANSI C languages.

on the design data to take it from one consistent state to the
next consistent state. During a working session, a user may
access data over a distributed set of VHDL-ICE databases
on a transparent way.

Internet
Network 1

Workstation 1
(UNIX)

Workstation 2
(Windows NT)

VHDL-ICE
Database 1

Workstation 3
(UNIX)

VHDL-ICE
Database 3

Workstation 4
(Windows NT)

Workstation 5
(Windows NT)

VHDL-ICE
Database 4

Network 2

VHDL-ICE
Database 2

Figure 2.- Distributed Implementation of the
VHDL-ICE Environment.

Figure 2 shows an example of possible distributed
configurations over a network, [6].

3.1.The Main Capabilities of VHDL-ICE

The three main capabilities of the VHDL-ICE,
ordered by implementation steps, are:

1. Workspace Management. This facility allows to
organize multiple, flexible, and reproducible workspace
areas related to different organization units, such as Design
Projects and Teamworks. The workspace management also
includes VHDL build management capabilities that can be
considered as the “built-in” VHDL configuration
management

2. Version and Configuration Management facilities
to ease VHDL design reuse, beyond the VHDL language’s
built-in facilities, during the development of a given
design project as well as for the maintenance of the
resulting IP. This capability together with licensing and
protection issues will allow VHDL models become
products and to be commercialized.

3. VHDL tools integrated in the VHDL-ICE
environment, in a near future, will be part of a Workflow
and Design Process Control facility. Therefore, VHDL-
ICE will offer a design management facility that will allow
to fulfill company procedures, such as coding styles, or
satisfy ISO 9000 standards applied to VHDL design. The
openness of this approach relies on the availability of
AIRE/CE and VHPI standardization processes, [7-8].

3.2. VHDL-ICE Teamwork Management.

This management tool allows to administer the
VHDL-ICE users (designers and managers) and teams
(groups of users) to whom the access to a given VHDL-
ICE database server is permitted. A VHDL-ICE server
administrator manages the information recorded about
them, see figure 3.

Figure 3.- VHDL-ICE Teamwork Management.

There is, at least ,one administrator per VHDL-ICE
database server available trough the network.

3.3. VHDL-ICE Organization Units Management.

Any organization can be described as a hierarchy of
organization units, e. g. a company can be considered as
composed by departments, which are composed by
projects, composed by tasks, and so on. The granularity of
the chosen organization units allows to manage a company,
department, project, etc.

Figure 4.- VHDL-ICE Organization Units
Management.

The Organization Units manager allows to associate
to a given organization unit the corresponding available
resources, see figure 4. Any user opening a session has to
chose a working organization unit among the ones to which
she belongs. Then, she has access to the available resources
of the chosen organization unit, e.g., the corresponding
workspace with the given privileges. In a near future, the
resources will also include the available design tools (for
simulation, synthesis, and so on) and IPs licenses.

3.4. VHDL-ICE Workspace and VHDL Build
Management.

Software-like build management is based on dealing
with source code dependencies analysis by means of home-
grown build scripts and the make program, [9-10]. In this
approach, the finest management granularity level are the
text files of the File System (FS), where the source code is
stored. State-of-the-art VHDL design tools are trying to
apply this build management approach to VHDL-based
designs. However, VHDL build management can not be
properly addressed by such approach as it will be shown in
this section.

Design Entity/Hierarchy

Entity
Declaration

Configuration
Declaration

Package
Declaration

Architecture

Package
Body

Secondary
Design Unit

Primary
Design Unit

Design Units

Design File

Design Library System

Design Library

Design Library

VHDL Design Units Analyzer

Design
Library Unit

VHDL Design
Hierarchy Elaborator

VHDL
Processes

VHDL Nets

VHDL
Kernel

File System

Figure 5.- VHDL Design Units Analysis and
Design Hierarchy Elaboration.

According to the VHDL Language Reference Manual
(LRM), [1], VHDL source code is organized in Design
Units (DUs) that may be independently analyzed and
inserted into a Design Library (DL). The DUs are
sequentially stored and analyzed in text files called Design
Files (DFs), i.e., implementation-dependent storage
facilities for previously analyzed DUs. A DU is composed
by a context clause and a library unit (Primaries: Entity
Declaration, Configuration Declaration and Package
Declaration; and Secondaries: Architecture Body, Package
Body). The context clause defines the environment in
which a DU is analyzed to check its syntax and static
semantics conformance with the LRM, [3]. This
environment is composed by the library units referenced
within the DU being analyzed. The analysis of a DU
defines the corresponding library unit in the DL. It seems
to be that the finest granularity relevant to VHDL build
management is not the DF but the DU.

On the other hand, the primary hardware abstraction
in VHDL is not the DU, but the Design Entity (DE), which
is defined by two DUs, an Entity Declaration together with
a corresponding Architecture Body, and can be optionally
configured by a Configuration Declaration. To identify all

DUs involved in the composition of a given DE it is needed
to statically elaborate the corresponding Design Hierarchy
(DH), see figure 5. So, even constraining the number of
DUs available in a DF just to only one, i.e., forcing to
identify a DF with a DU, will not be enough to offer the
possibility of properly using software-like build
management techniques to deal with DEs. Therefore,
VHDL build management has to be performed at DU and
DE levels and a work place for dealing with these VHDL
design objects has to be developed.

The VHDL-ICE workspace is a hierarchical
collection of clusters containing other clusters and/or DLs.
The content of a given DL can be shown by means of DUs
or DEs. Therefore, the Workspace Management tool deals
with the two kind of VHDL design objects relevant to
VHDL build management, i.e., DUs and DEs, see figure 6.
However, this tool manages much more information. In
fact, the VHDL-ICE data are all the possible processing or
building stages of a given DU or a DE, i.e., the DU’s
source code, the Abstract Syntax Tree (AST) resulting of
the DU’s parsing (the VHDL AST, VAST), the AST
resulting of the DU’s analysis (the VHDL Intermediate
Format, VIF), the AST resulting of the DE’s static
elaboration (the Elaborated AST, EAST) and the AST
resulting of the simulation model generation of a given DE
(the Simulatable AST, SAST), [2]. The VHDL-ICE data
can be shared among users/organization with different
access privileges (read, write and IP in the near future) to
avoid unnecessary rebuilds of shared DUs and/or DEs. So,
the Workspace Manager implicitly includes all required
VHDL build management facilities.

Figure 6.- VHDL-ICE Workspace
Management.

The VHDL-ICE Workspace Management tool offers
the common edit options to manage the workspace objects:
create, delete, copy, move and rename. It allows the
introduction of already edited VHDL descriptions into the

VHDL-ICE environment by importing the DUs of a given
set of DFs and placing them in the chosen DLs. It is also
possible to extract information from the VHDL-ICE
environment by exporting a piece of the current workspace
data into the FS.

The tool also provides relevant and very useful
information about the workspace objects not directly
related with their building mechanisms, e. g. it could be
information for IP commercialization about compliance
with the industry standards or VSI, market segment,
company, contact point, system level application notes,
datasheet, synthesis scripts information and so on.

The tool sustains the collaborative work, it lets that
multiple users share a common repository through their
workspaces. To deal with the shared access to data, the
VHDL-ICE implements three locking layers: a general
locking system to avoid concurrent modification of an
object; a lock defined in the LRM, needed by the nature of
the objects engaged, that is set on the resources during the
analysis; and a persistent locking system to provide an
enhanced management control on the shared data. While
the first two lock kinds are automatically applied by the
VHDL-ICE, the last is an additional tool for the managers
and designers used to forbid the concurrent modification of
objects or to ensure an invariant state.

The Workspace Management tool gives updated
information related to the collaborative work, i.e.: how
objects are shared, which are the access rights during a
particular session, or who made changes to a particular
design object. From this tool, data from distributed
repositories can be managed. This tool can request
connections with multiple VHDL-ICE servers to deal, in an
integrated way, with distributed design objects. This allows
an easy manipulation of distributed data as design objects
in heterogeneous systems.

Figure 7.- DU’s Closure.

The build management capabilities of VHDL-ICE
properly deal with DUs and DEs by means of including
VHDL analysis and static elaboration processing steps to
take advantage of the built-in configuration mechanisms
provided by the VHDL language. The VHDL-ICE, when
analyzing a given DU, produces a library unit and
automatically provides information regarding its transitive
closure, i.e., the set of DUs on which it is dependent, and
its anticlosure, i.e., the set of DUs depending on this
particular DU. The closure and anticlosure information of a
DU is also automatically maintained by the VHDL-ICE
build management capabilities, see figure 7. The closure
and anticlosure of DE is similarly defined regarding the
corresponding DEs.

According to the LRM, for a given library logical
name, the actual name of the corresponding DLs in the host
environment may or may not be the same. Therefore the
closure and anticlosure information of a given DU results
to be an implementation-dependent one. To adequately
solve this usually unknown VHDL feature for most of the
existing VHDL tools in the market, the VHDL-ICE build
management capability provides a friendly mechanism to
associate a library logical name with the VHDL-ICE host-
dependent library.

The VHDL-ICE, when viewing the information
regarding the DLs content from the DEs perspective, also
offers the possibility of automatically produce a
Configuration Declaration DU corresponding to the design
hierarchy static elaboration of each DE. This DU, together
with the closure and anticlosure information of all DUs and
DEs, can be considered as the equivalent to the bills of
materials that document software system builds, and can
completely and reliably recreate the environment of any
build.

The VHDL-ICE Assessment facilities include the
possibility of navigating through the block hierarchy of a
DU, showing a lot of useful information created after the
DU analysis process, through the design hierarchy defined
by a DE and created in the DE elaboration process or
through the simulatable VHDL processes network,
obtained from the initialization of the elaborated model.
The debugging facility allows to navigate upon the
dynamic simulation model, using three different views :
source code, components hierarchy and simulatable code.
Finally, the VHDL Style give the possibility of verifying if
a given set of DUs or DEs satisfy different quality rules,
proposed as a guideline to the design process. The
collection of rules applied is flexible (selecting or
deselecting rules from the whole available set) and it is also
possible to vary the priority level they are checked with.

4. Conclusions and Future Work.

The availability of the Teamwork ,Organization
Units, Workspace and Build Management tools, integrated
in the VHDL-ICE environment, provides benefits such as
reducing engineering design time, reduced time-to-market,
and increased VHDL product quality and IP
commercialization. For most organizations in highly
competitive industries such as the ones using VHDL based
methods and tools, these benefits are too great for this
technology to be overlooked.

VHDL-ICE can be considered as a pioneer of a new
kind of VHDL tools supporting a system level
methodology based on IP commercialization. Current
version of VHDL-ICE is implementing the first of the three
expected capabilities described in subsection 3.1. This
VHDL-ICE version already presents the advantages
offered by a concurrent and distributed implementation of a
common environment in comparison with state of the art
VHDL environments currently on the market. However,
the other two expected capabilities will definitely increase
the gap between the existing approaches and the one
presented in this work.

Next step will increase the VHDL models
management and their IP commercialization. Future work
will also be focused on AIRE/CE and VHPI
standardization activities for increasing VHDL-ICE tools
integration and providing an open solution for Workflow
and Design Process Control.

References.

[1] "1076-93 IEEE Standard VHDL Language Reference Manual", IEEE
Inc., New York, N.Y., U.S.A., September 1993.

[2] S. Olcoz, Lorenzo Ayuda, Ana Castellví, María García, Iván
Izaguirre, Olga Peñalba, “Implementing a VHDL Design Manager:
VHDL-ICE.” VHDL International Users’ Forum, Spring
Conference, April 1997, pp. 93-102.

[3] S. Olcoz and P. Menchini, “HDL Interoperability: A Compiler
Technology Perspective”, VHDL International Users’ Forum, Fall
Conference, October 1996, pp. 51-58.

[4] H. Sahm, C. Mayer, J. Pleickhardt, J. Schuck, S. Späth, “VHDL
Development System and Coding Standard.” Proceedings of the 33rd

Design Automation Conference, Las Vegas, NV, 1996, pp. 777-782.
[5] B. Meyer, “Eiffel: The Language”, Interactive Software

Engineering, Inc. July 1989, also published by Prentice Hall.
[6] S. Mullender, “Distributed Systems”, Addison-Wesley Publishers,

1993.
[7] J. Willis, R. Newshutz, P. Wilsey, D. Martin, G. Peterson, J. Hines,

A. Zamfirescu, “Advanced Intermediate Representations with
Extensibility (AIRE)”, VHDL International Users’ Forum, Fall
Conference, October 1996, pp. 33-42.

[8] Francoise Martinolle, Debra Corlette, Sathyam Pattanam, “A VHDL
Procedural Interface for VHDL: VHPI”, IEEE/VIUF International
Workshop on Behavioral Modeling and Simulation, Washington,
October 1997.

[9] Stuart I. Feldman. “Make – A Program for Maintaining Computer
Programs”. Software – Practice and Experience, 9 (4), pp. 255-265,
April 1979.

[10] Clovis L. Tondo, Andrew Nathanson and Eden Yount. “Mastering
Make: A Guide to Building Programs on DOS and UNIX

Systems”. Prentice-Hall, Inc., 1992.

	CDROM Home Page
	DATE98 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

