
1

A Top-down Hardware/Software Co-Simulation Method for Embedded
Systems Based Upon a Component Logical Bus Architecture

Mitsuhiro YASUDA Barry SHACKLEFORD Fumio SUZUKI
Katsuhiko SEO
Hisao KOIZUMI

Mitsubishi Electric Corporation, Hewlett-Packard Laboratories, Mitsubishi Electric
Corporation,
 Yokohama 220-81 Japan Palo Alto, CA 94304 Amagasaki 661 Japan
{yasu@cd.,seo@ds.,koizumi@} suzuki@dpe.mdl.melco.co.jp
 lmt.melco.co.jp

Abstract- We propose a top-down
hardware/software co-simulation method for
embedded systems and introduce a component
logical bus architecture as an interface between
software components and hardware components.
Co-simulation using a component logical bus
architecture is possible in the same environment
from the stage at which the processor is not yet
determined to the stage at which the processor is
modeled in register transfer language. A model
whose design is based on a component logical bus
architecture is replaceable and reusable. By
combining such replaceable models, it is possible
to quickly realize seamless co-simulation. We
further describe experimental results of our
approach.

I. Introduction

As semiconductor technology advances into deep-
submicron areas, high-performance processors
(microprocessors, DSPs, etc.) have begun to
appear. As a result, functions which had
previously been realized exclusively in hardware
circuitry have come to be implemented in
software, and it is now possible to design
electronic products as embedded systems,
combining hardware and software.

Particularly in the development of
multimedia products, it has become necessary to
combine flexible software with high-performance
hardware as a means of exploring new markets
and responding promptly to user needs and as a
means of reducing product development cycles.

Hardware/software co-design techniques
are now attracting attention as one means of
realizing embedded systems. There have been
numerous studies [1]-[5] on:

• hardware/software partitioning,
• hardware/software co-synthesis, and
• hardware/software co-simulation.

In the first stage of the top-down design,
the architecture and algorithm of the target

system are evaluated. Then, the embedded system
is partitioned into hardware components and
software components. These components are first
modeled at an abstract level and are evaluated by
co-simulation. These models are then
subsequently replaced by detailed models.

In order to realize seamless co-simulation
in the top down design flow, it is necessary to
define the interface between the hardware
components and the software components and
the modeling methods of hardware components
and software components.

Two methods for modeling hardware,
software and the interface between them--

• the channel-based component architecture [6],
• the virtual CPU approach [7]

--have been reported. In the channel-based
component architecture, the interfaces between
components and their operation are specified to
achieve co-synthesis at the system level. In the
virtual CPU approach, a CPU model and its
interface to other components are defined to
realize a co-simulation environment.

We propose an efficient top-down approach
of co-simulation for embedded systems in which
upper models are replaced successively by lower
detailed models.

By introducing a component logical bus
architecture as the interface between hardware
components and software components, this
method provides an environment for co-
simulation which does not depend on processor
and system bus architectures

2

Processor

Memory

Custom
Logic

Input
Output
Circuit

Software
Component

Hardware
Component

Fig.1 Embedded system hardware/software division.

System
 Bus

or on the method used for modeling hardware and
software. A model whose design is based on a
component logical bus architecture is replaceable
and reusable. By combining such replaceable
models, it is possible to quickly realize seamless
co-simulation.

In this paper, we present a modeling
method based upon a component logical bus
architecture. In section II, we describe the method
used for co-simulation in the top-down design of
embedded systems together with related
problems. In section III, we propose a method of
hardware and software modeling and co-
simulation based upon a component logical bus
architecture, and in section IV we describe and
analyze the experimental results of a line-drawing
system for graphical processing using the
proposed methods. In section V we further
discuss and summarize the results of this paper.

II. Problems in the Top-down
Hardware/Software Co-Design

A typical embedded system (Fig. 1) consists of
software components, hardware components, and
an interface connecting them.

Software and hardware components
exchange information via a system bus to realize
the system functions for an application.

Such a process of top-down
hardware/software co-design for embedded
systems can be divided into the six verification
stages (as shown below and in Fig. 2),
corresponding to software component modeling
methods.

(1) System model
In the first stage, the target application system is
modeled without distinguishing between
hardware and software functions.

RTL
Model

Gate
Model

Programmable
 Component

H/W
System Model

Behavior
 Model

Fig.2 Verification stages in top-down design.

(1)

(2)

(3)

(4)

(5)

(6)

A

B

C

Instruction
Set Model

Timing
Accurate Model

RTL Model

Real Chip
Model

S/W

 High-level
Language Model

AP
(ML)

Software Component Hardware Component

AP(C)

System Emulation

AP: Application
 Program
ML: Machine
 Language

AP
(C)

AP
(ML)

AP
(ML)

AP
(ML)

Compiler

(2) High-level language model

In the second stage, co-simulation is achieved
without processor dependence. High-level
language programs for applications to be executed
by the software component are converted into the
machine language of the host machine running
the simulation and are executed directly.

Co-simulations can thus be begun before
the processor architecture is determined.
Moreover, in combination with behavior models of
hardware components, high-speed co-simulation
is possible.

(3) Instruction set model
In the third stage, co-simulation is performed by
executing machine language instructions for the
target processor. High-level language programs
executed as software components are first
converted into the target machine language, then
the converted machine language is interpreted
and executed by the instruction set simulator of
the target processor. Hardware components are
modeled at the RTL level.

(4) RTL model
In the fourth stage, co-simulation is performed on
a clock-synchronized cycle base using RTL models
of the target processor and hardware components.
The simulation is more accurate, but more time is
required for simulation execution.

(5) Timing-accurate model
In the fifth stage, timing-accurate co-simulation is
executed using gates models of processors and
hardware components. Simulation can be
performed with accurate timing, but execution
time is extremely long.

3

RTL
Model

Behavior
Model(2)

(3)

(4)

A

B

C

Instruction
 Set Model

RTL Model

 High-level
Language Model

AP
(C)

Fig.3 Seamless top-down co-simulation
 environment.

Software
Component

Hardware
Component

Component Logical
Bus Interface

AP
(C)

Compiler AP
(ML)

 (6) Real-chip model
In the sixth stage, the target system is emulated
by mapping the synthesizable models of
processors and hardware components onto
programmable logic devices and switch arrays.
High-speed execution is possible in an
environment approximating that of an actual
system.

The following problems arise when performing
top-down co-simulations of an embedded system.

Of the six verification stages, the interfaces
for three--

• the high level language model (Fig. 2, part 2-A),
• the instruction set model (Fig. 2, part 3-B) ,and
• the RTL model (Fig. 2, part 4-C)

--normally depend on processor and system bus
architectures, and are currently specified
individually. Consequently, when conducting top-
down design it may be necessary to modify the
modeling at each stage, and the models created by
others may not be usable without alteration.
These problems may arise and impede the
efficient co-design in the top-down design
methodology.

This paper describes a seamless co-
simulation method achieved through the
introduction of a component logical bus
architecture that is independent of processor and
system bus architecture and is used as the
interface for these three verification stages.

III. A Proposal of Seamless Co-Simulation
Using a Component Logical Bus
Architecture

The interfaces (A, B, C in Fig. 2) between the
hardware components and the software
components are currently dependent on the
verification stages of the high-level language
model, the instruction set model, and the RTL
model.

System Bus

Port Signals

System
Bus I/F

Control Reg.
Status Reg.
Data Reg.

Port 0

Interrupt
Interface

Software
Component

Hardware
Component

Component Logical
 Bus Interface

Application
S/W(C)

Compiler

Processor

Memory

 I/O
Port I/F

Address
 Space

Memory
Space

 I/O
Space

Application
 Specific
 Logic

External I/O
Interrupt
 Signals

Port n

Fig.4 Configuration of the software and hardware
 component logical bus interface.

•Address
•Data
•Control

As a common interface between the
hardware components and software components
in these three verification stages, we propose the
component logical bus architecture. By
introducing the common interface, the
replacement of the models between different
stages and the combination of the models
between hardware and software are expected to
be possible with little or no modification. The
purpose is to create replaceable and reusable
component models, realize seamless top-down co-
simulation environment as shown in Fig.3, and
shorten the translation time between the
verification stages.

A. Component Logical Bus Architecture

The component logical bus consists of three
different
kinds of signals:

• system bus signals,
• port signals, and
• interrupt signals.

The configuration of the component logical bus
which serves as the interface between software
components and hardware components is shown
in Fig. 4. Its implementation is dependent on the
verification stages.

(1) System bus signals: The system bus consists
of address, data, and control signals. The specified
data is read or written according to the control
signal and the address. The address space
consists of the memory space and I/O space. The
memory of the software component is allocated in
the memory space. Ports within the software
component and registers in other hardware
components are allocated in the I/O space
(memory mapped I/O architecture).

(2) Port signals: These are specialized signals
capable of directly interfacing between software

4

components and hardware components. Ports
within the software components are allocated in
the I/O space.

(3) Interrupt signals: When software and
hardware components have completed an
operation, or when an error condition is detected,
these signals are used to notify a software
component.

Exchange of data between software components
and hardware components takes place as follows:

By writing to ports and registers within
hardware components, software components
initiate hardware component operations and
transfer data.

Hardware components use two methods to
notify software components of the completion of
processing. One is direct notification via an
interrupt signal; the other is by setting a
completion flag in the port or in the status register
of the hardware component. By reading ports and
registers within hardware components, software
components receive data and status information
from hardware components.

B. Implementations

Implementation methods for System bus signals
and Port signals are shown in Fig. 5.

(1) Common Memory Method
In the high-level language model in Fig. 5 part(a),
the component logical bus interface is
implemented by using common memory.
Consequently, I/O space is allocated as part of a
common memory address space, and data is
exchanged through access of this space by both
components.

The software component writes data to the
ports and to the hardware component registers
allocated to the common memory space. When a
series of operations has been completed, a startup
event is passed to the hardware component.

The hardware component reads the
required data from the ports and from the
hardware component registers allocated to the
common memory space, and then initiates the
corresponding processing. When processing is
completed, the processing results and status are
similarly written to ports and to registers allocated
to the common memory space.

(a)High-level language model example

Application
Program

(C)

Behavior
Model

(C)

Software Component Hardware ComponentComponent
Logical Bus

Common
Memory

I/O Space

(b)Instruction set model example in single process

Application
Program

(C)

RTL
Model

Software Component Hardware Component

I/O Space
Handling

Processor
(Instruction
Set Model)

Memory
loading

Using
Compiler/
Assembler

Component
Logical Bus

Memory
Space

(c) RTL model example in single process

Application
Program

(C)

RTL
Model

Software Component Hardware Component

I/O Space
Handling

Processor
(RTL Model)

Memoryloading

Using
Compiler/
Assembler

Component
Logical Bus

Memory
Space

(d)RTL model example in multi-process

Application
Program

(C)

RTL
Model

Software Component Hardware Component

Processor
(RTL Model)

Memoryloading

Using
Compiler/
Assembler

Using
TCP/IP
protocol

Memory
Space

Component
Logical Bus

Fig.5 Implementation examples.

At fix time intervals, the software
component reads the ports and hardware
component registers allocated to the common
memory space and so obtains the processing
results and status from the hardware component.

(2)Signal Event Method in Single Process
In the instruction set model in Fig. 5 part(b) and in
the RTL model in Fig.5 part(c), the component
logical bus interface is implemented by signal
event method in single process simulation.
 When the processor accesses the I/O space in
a write operation, the write data , the write
address and write operation signals are sent to the
hardware component. After receiving a write
operation signal, the hardware component takes
the data in the register specified by the write
address. When the processor within the software
component accesses the I/O space in a read
operation, the read address and a read operation
signal are sent to the hardware component.

5

After receiving a read operation signal, the
hardware component outputs the data in the
register specified by the read address.

(3)Inter-process Communication Method in
Multi Process
In the RTL model in Fig.5 part(d), the component
logical bus interface is implemented by inter-
process communication method in multi process
simulation.
 The processor and the hardware component
are operated in parallel in different processes. The
data communication via I/O space between the
processor and the hardware component is
executed by inter-process communication.

IV. Experimental Results and Evaluation

A. The Evaluation Model

In order to verify the efficacy of co-simulation in
top-down design through the introduction of a
component logical bus architecture, we conducted
experiments which applied the proposed
methodology to a line-drawing system for
graphical processing.
 The configuration of the line-drawing system
used in evaluations appears in Fig. 6. The
software component consists of a processor unit
and a memory unit. The line drawing control
program loaded in the memory unit is executed
on the processor to control the sequence of line
drawing. The hardware component is made up of
a line-drawing engine which rapidly draws lines
between two specified points, and a graphical
display unit.

For the processor, we have used a 16-bit
ASAP (application-specific adaptable processor) [8]
which is generated by a high-level synthesis tool
as a function of the CPU bit-width and register file
size required by the application program.

The 16-bit ASAP had a cost of 5.3K gates
and the hardware component cost was of 1.5K
gates.

In Fig. 6, coordinates of the start point are
set in the start point registers (X0,Y0) and
coordinates of the end point are set in the end
point registers (X1,Y1). Then, the start flag EN is
set and the line drawing engine is activated. When
the line engine completes the drawing of a line,
the end flag DONE is set. In this case, a polling
mechanism is used in place of an interrupt
mechanism.

B. Results and Evaluation

Software
Component

Hardware
Component

Processor
 (ASAP)

Memory

 Line
Drawing
 Engine

2D Viewer

System Bus
•Control
•Address
•Data

Fig.6 Configuration of a line drawing system.

 Line
Drawing
Control
Program

Loading
I/O Space

•Control Register(Start Flag:EN)
•Status Register(End Flag:DONE)
•Start Point Registers(X0,Y0)
•End Point Registers(X1,Y1)

Common Memory

Address

Data

Control

Software
Component

Hardware
Component

High
-level

Language
Model

Instruc-
tion

Set Model

RTL
Model
(Single

Process)

Application
Program(C)

Verification
Stage

RTL
Model

(Multi Process)

Component
 Logical
Bus Model

x0
y0
x1
y1
en

done

x0
y0
x1
y1
en

done

Address

Data

Control

x0
y0
x1
y1
en

done

Fig.7 Component logical bus model example
 of a line drawing system.

x0=0
y0=0

x1=127
y1=127
en=1

MPline

x0=0
y0=0

x1=127
y1=127
en=1

Behavior
Model

(C)

RTL
Model

Processor
Model

(RTL Model)

Processor
Model

(Instruction
Set Model)

IO Space
Handling

Start-up
 Event

In order to verify the effectiveness of our design
method, we created a system model for the line-
drawing system. After division into software
components and hardware components, we
constructed processor-independent high level
language models, processor-dependent
instruction set models, and conventional RTL
models, and then evaluated each.

Fig.7 shows a component logical bus
model example of a line drawing system. The
high-level language model in the software
components was replaced easily by an instruction
set model with a slight modification, such as
removal of the startup event. The instruction set
model was replaced by the RTL model with no
modification. Moreover, both the instruction set
model and the RTL model of the processor could
be connected to the RTL model of the hardware
component with no modification. Therefore, our
approach could shorten the translation time
between the verification stages.
 Co-simulation execution performance was
measured for fore different cases:

• (a)high level language model,
• (b)instruction set model,
• (c)RTL model in single process, and
• (d)RTL model in multi-process.

6

The results appear in Table 1 (normalized by a
value of unity for the results of the RTL model
simulation in multi-process).

Co-simulations of the high-level language
model were executed directly by compiling on the
host machine, including the behavior model in C
language of the hardware component. For the
instruction set model, an ASAP instruction set
simulator written in C and a VPS cycle-based
simulator [10] capable of high-speed execution of
the hardware component RTL model were used in
the single process environment. For the RTL
model in single process, VPS was used to execute
simulations of the ASAP RTL model and the
hardware component RTL model. For the RTL
model in multi-process, an ASAP instruction set
simulator and VPS were used, and VPS simulator
was executed synchronously with ASAP
instruction simulator using inter-process
communication method based on TCP/IP
protocol.

Performance between single process and
multi-process varies depending on the
communication times. The amount of
communication a time did not have much effect
on the performance. In this example, the speed of
co-simulation between single process and multi-
process was increased by 370 times over that for
the single process model. In this case
communication times are about 40,000.
 Performance between instruction set model
and RTL model varies depending on the scale of
the processor and the extent of application of
hardware components. In this example, the speed
of co-simulation for the instruction set model was
increased by 1.3 times over that for the RTL
model. Owing to the fact that RTL models were
used for the hardware component in both cases
and that the cycle-based simulator was used for
both, there was not so great a difference in
performance.
 In the high-level language model, all
simulations were executed directly on the host
machine in the C language, and so a considerable
speed increase over the RTL model in multi-
process by a factor of over 11,100 was achieved.

 To summarize the above results, introduction
of a component logical bus architecture served to
make the component models replaceable,
shortened the

High-level
 Language

 Model (a)

Instruction
 Set Model
 (b)

RTL Model
 (c)

Verifica-
 tion
 Model

Co-simulation
Performance

(RTL Model=1)

Modeling

H/WS/W

C
Model

 C
Model

 Inst-
ruction
 Set
 Model

RTL
Model

RTL
Model

1

480

11,100

Interface

Common
Memory

Communication

AP Processor

Target
Machine
Inst.

A Slight

Modified
C Model

Compile

Signal Events
Communication

in Single
Process

Environment

RTL Model
 (d)

RTL
Model

Inter-process
Communication
in Multi
Process Env.

370

RTL
Model

Table.1 Results for line drawing system example.

translation time between the verification stages
and expedited co-simulation at each stage of
verification.

V. Conclusion

We have shown that by introducing a component
logical bus architecture as the common interface
between the software and hardware components
comprising an embedded system, each
component can be modeled in a manner
independent of other components, and that the
translation time between the verification stages
can be reduced.

In particular, by adoption of a high-level
language model, it was possible to execute co-
simulation prior to determination of the processor
architecture, and a consequent increase in
execution speed by a factor of 11,100 over RTL
models in multi-process was demonstrated.

The following problems must be left as
themes for future research:

•Because a component logical bus architecture
was introduced as the interface between
hardware and software components, it may be
possible to create RTL-level interface circuitry for
the component physical bus. To enable efficient
top-down design, further studies aiming at high-
level synthesis of such elements will be needed.

•In this paper, we discussed the model based on
component logical bus architecture was
replaceable for each verification stage. In near
future, it will be important to shift the
verification stage dynamically in single
verification environment. We will enhance the
component logical bus architecture to apply for
these needs.

7

•When the application program is executed on
real time OS(RTOS), the verification performance
is inefficient in this model. The study of co-
simulation methods between embedded
software on RTOS and hardware is needed.

 References

 [1] D.E. Thomas, J.K. Adams and H. Schmit, "A model
and

 methodology for hardware-software codesign," IEEE
 Design & Test of Computers, vol. 10, no. 3, pp. 6--15,
 1993.

 [2] R.K. Gupta and G. De Micheli, "Hardware-software
 cosynthesis for digital systems," IEEE Design and Test
 of Computers, vol. 10, no. 3, pp. 29--41, Sept. 1993.
 [3] H. Yasuura, S. Nakamura, H. Tomiyama, and

H. Akaboshi, "Hardware-software codesign with soft-
 core processor," SASIMI ’95, pp. 79--84, Aug. 1995.
 [4] H. Koizumi, K. Seo, F. Suzuki, Y. Ohtsuru, and

H. Yasuura, "A proposal for a co-design method in
control systems using combination of models," IEICE
Trans. Inf. & Syst., vol. E78-D, no. 3, pp. 237--247,
March 1995.

 [5] J.K. Adams and D.E. Thomas, "The design of mixed
 hardware/software systems," in Proc. 33rd DAC,
 pp. 515--520, 1996.
 [6] B. Lin, S. Vercauteren and H.D. Man, "Embedded
 architecture co-synthesis and system integration,"
 Codes/CASHE’96, pp. 2--9, March 1996.
 [7] B. Schnaider and E. Yogev, "Software development in
 a hardware simulation environment," in Proc. 33rd
 DAC, pp. 684--689, 1996.
 [8] B. Shackleford, M. Yasuda, E. Okushi, H. Koizumi,

 H. Tomiyama, and H. Yasuura, "Satsuki: an
 integrated processor synthesis and compiler
generation
 system," IEICE Trans. Inf. & Syst., vol. E79-D, no.
10,
 pp. 1373--1381, Oct. 1996.

 [9] ZUKEN Incorporated, Tsutsuji Reference Manual,
 1996.
[10] W.B. Culbertson, T. Osame, Y. Otsuru, J.B.
 Shackleford, and M. Tanaka, "The HP Tsutsuji logic
 synthesis system," Hewlett-Packard Journal,
 pp. 38—51, Aug. 1993.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

