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Abstract
Partitioning a system among multiple input and

output pin (I/O) limited packages is a widely re-

searched and hard to solve problem. We previously
described a new approach yielding large improve-

ments, which partitioned functions rather than struc-

ture, and which used a single bus for all inter-package
data transfer. In this paper, we describe an exten-

sion permitting arbitrary distribution of I/O among

the packages, and highlight experiments demonstrat-
ing even further I/O reductions as well as surpris-

ingly improved performance, with nearly no penalty.

1 Introduction

Systems often must be partitioned among mul-
tiple packages. For example, an embedded system
might use a software micro-controller package for
those functions that need not run very fast or that
are likely to change, and a hardware part for func-
tions requiring high-speed execution. The hardware
part might in turn consist of a number of FPGA
packages, since one FPGA might not have enough
gates or I/O to implement all the hardware func-
tions. Even with today's increasing package ca-
pacities leading to single-chip solutions for entire
systems, such a chip itself may still include one or
more processor cores, as well as numerous hardware
blocks. Logic emulation is another case requiring
system partitioning among numerous FPGA's.

The multi-package partitioning problem has been
widely researched, but has been hard to solve well.
A good survey of the problem is found in [1]. Much
of the research focuses on the fact that multi-package
partitioning is I/O driven, meaning the number of
I/O pins available on a package is the hardest con-
straint to satisfy, leading to underutilized gates and
hence more packages than gate count alone implies.
More packages can lead to larger systems, more
power consumption, and reduced performance due
to more inter-package signal crossings. Recent work
[2] signi�cantly reduced I/O for logic emulation,

by time-multiplexing inter-package signal transfers
over physical I/O, using multiple clocks and dis-
tributed controllers. Like most previous approaches,
this approach performs structural partitioning, in
which one �rst designs a system's structure (register-
transfer components and gates), and then partitions
the structure among packages.

We demonstrated signi�cant advantages of a new
and di�erent approach, functional partitioning, over
structural partitioning [3]. In functional partition-
ing, we take advantage of the recent trend of de-
signers �rst specifying a system's functionality us-
ing a program-like language, such as VHDL, Ver-
ilog, or C. We partition this program among pack-
ages, using SpecSyn estimators developed by UC
Irvine [4] to guide the partitioning process. After
partitioning, structure may be designed separately
for each package. The advantages included greatly
reduced I/O (often 50%), improved performance,
and reduced synthesis runtimes (often by an or-
der of magnitude). Such advantages were predicted
by some researchers for many years [5, 6, 7, 8, 9].
In addition, since programs are being partitioned
rather than gates, the approach supports hardware-
software partitioning, unlike structural partition-
ing which is for hardware only. Many hardware-
software functional partitioning approaches have re-
cently been proposed [10, 11, 12, 13, 14, 15, 16, 17].

In [18], we described an approach to implement-
ing inter-package data transfers, using the Func-
tionBus. In this paper, we utilize the Function-
Bus feature of �xed inter-package I/O size to de-
velop an improved approach. This new approach
uses a transformation we refer to as port calling,
which enables us to almost arbitrarily distribute
external port I/O among the packages, permitting
better balancing of I/O, and often even improving
performance and reducing total I/O, with nearly
no penalty. We �rst provide background on the
representation used and on the FunctionBus, intro-
duce the port-calling transformation, describe the
port-calling functions that are used, and summarize



void F()
{

a = Q / 32;
G(a, b);
H(b);

}

void G(int a, int& b)
{

b = 1;
for (int i=0; i<100; i++)
{

b = b + a*R;
H(b);

}
}

void H(int b)
{

S = b * 100;
P = d * 32;

}

Fig. 1: Example speci�cation.

experiments demonstrating the signi�cant improve-
ments obtained.

2 Background

In this section, we briey describe the SLIF rep-
resentation and the FunctionBus, which are used by
our technique. In our approach, a program (VHDL
or C) is �rst translated to SLIF (System-Level Inter-
mediate Format [19]). The SLIF, similar to a call-
graph used in software pro�ling, is a directed graph,
where each node represents a coarse-grained func-
tion or variable, and each edge represents an access
by a function to another function or variable. The
edge direction indicates the accessor and accessee,
not the direction of data ow, which can occur in
either or both directions over the same edge. For
example, Figure 1 shows a (trivial) functional spec-
i�cation program written in C, consisting of three
functions F, G and H, which call each other, and
which access four external 16-bit ports P, Q, R and
S. Figure 5(a) contains the SLIF for this program.
Each function becomes a node, and each function
call and port access becomes one edge.

During a pre-estimation phase, each SLIF edge
is annotated with estimation and pro�ling informa-
tion, such as the number of data bits for each trans-
fer (function parameters or variable data) and the
access frequency. Each SLIF node is also annotated
with information, such as the execution time and
size on various package types. Only external-port
bit-size annotations are shown in the example.

During partitioning, online-estimation combines
these annotations, using non-trivial equations, to
obtain fast yet adequately accurate estimates of de-
sign metrics, such as size (gates or bytes), I/O, and
execution time. For example, the execution-time
equation considers the time for a procedure to ex-
ecute on its current component, plus the time to
transfer data to and from any accessed procedures
and variables (which depends heavily on the local-

ity of those objects in the current partition), plus
the execution time for accessed procedures. The
cost function guiding partitioning is a weighted-
sum of normalized constraint violations. The parti-
tioning itself consists of moving SLIF nodes among
packages, where each package implements a cus-
tom or standard processor, and is thus performed
at the granularity of procedures and large variables
(though procedures can be inlined or exlined to ad-
just the granularity). It is achieved by using any
of several heuristics (such as simulated annealing,
a modi�ed Kernighan/Lin heuristic, clustering or
greedy improvement) or by manually moving ob-
jects. For further details on the partitioning ap-
proach, the reader is referred to [19, 4, 12, 20].

In addition to using the SLIF representation, our
approach uses the FunctionBus for inter-part com-
munication [18]. In contrast, many earlier multi-
package functional partitioning approaches used a
cut-edges approach to I/O implementation. In such
an approach, a graph's nodes, representing func-
tions of varying granularities, are partitioned among
parts. When an edge, which represents data, is cut
(i.e., crosses between two parts), a unique set of I/O
pins is used to transfer the data. However, observ-
ing that a large process often must be partitioned
among parts, and that a process' functions can or
do execute sequentially, we used a data transfer ap-
proach using what was called a FunctionBus. The
bus consists of one address valid line, one data valid
line, and a set of multiplexed address/data lines
of a designer-chosen width, as shown in Figure 2.
The bus works as follows. Each function is assigned
a unique address. Whenever a function A calls a
function B on another part, A �rst places B's ad-
dress on the bus and asserts the address line, as
shown in the timing diagram of Figure 3(a). If B is
called by more than one function, then A must also
send its own address as a return address. A then
places any input parameters that must be passed
to B on the bus, in chunks if the parameter size
exceeds the bus size, asserting the data valid line
for each chunk, and then A suspends. B detects
its address, receives the parameter data, executes
(perhaps calling other functions), and then returns
to A by sending A's address over the bus followed
by any output parameters. A detects its address,
receives any parameter data, and resumes execu-
tion. Figure 4 provides example send and receive
C routines for transferring long integer data over a
FunctionBus with 8 address/data lines.
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Fig. 3: Timing diagrams: (a) function call, (b) func-

tion return.

We demonstrated that the FunctionBus yielded
even further reductions in I/O over the already large
reductions of functional partitioning over structural
partitioning. The multiple functions of a process
on a given part require only one process, which
looks for an address of any of its functions, and
then branches to the appropriate one. In addi-
tion, the FunctionBus could be used for either hard-
ware partitioning, or for hardware/software parti-
tioning where the software component had parallel
I/O (e.g., a micro-controller having several N-bit
ports to which it can read or write, independent of
memory accesses).

3 Port-calling transformation

In a FunctionBus approach, the number of I/O
pins required for communication among packages
is �xed (and typically small, like 18 or 34 pins).
Hence, the only variation in a package's I/O comes
from the I/O connected to external ports, needed
by the functions on that package. The port-calling
transformation will allow us to redistribute such ex-

{
// Send the address

// Send the data

FB_AD
FB_Areq
FB_Delay();

= fb_addr;

FB_Areq

= 1;

= 0;

byte fb_addr;
void FB_SendLong(

long fb_data )

for (i=0; i<4; i++)
{

FB_AD
FB_Dreq
FB_Delay();
FB_Dreq

= 1;

= 0;
}

// Release the bus
FB_AD = Z;
FB_Areq = FB_Dreq = Z;

}

= (fb_data<<8)|FB_AD;

byte fb_addr )

// Receive the data
for (i=0; i<4; i++)

}

while (FB_Dreq);

{
while (! FB_Dreq);
fb_data

}

// Return the data
return(fb_data);

char FB_RecLong(

long fb_data;{

)  );
FB_AD==fb_addr
FB_Areq &&while ( ! (

// Wait for the address

=fb_data>>(8i)

Fig. 4: FunctionBus long-data transfer routines.

ternal port I/O to packages other than the accessing
function's package.

The transformation consists of introducing a new
function, called a port-call function, in between the
original accessor function and the port itself. This
function may, upon being called by the accessor
function, read the port or write the port (as will
be discussed further in the next section) on behalf
of that function. Thus, from the accessor's per-
spective, accessing the port has been replaced by a
function call.

In SLIF, a port-call function is represented as any
other function, i.e., a node. This node can be parti-
tioned among packages just like any other function.
If this node is separated from its accessor function,
any data transfer will take place over the existing
FunctionBus; since the I/O for the FunctionBus al-
ready exists and is �xed, such data transfer does
not require any additional inter-package I/O. Since
a port-call node has extremely simple contents and
hence when implemented will not contribute notice-
ably to a package's size, it can be partitioned to
nearly any package. Hence, we see that introduc-
ing port-call nodes, in conjunction with the Func-
tionBus, yields the ability to freely distribute I/O
among packages, at the possible expense of a few
extra clocks cycles required to pass the data along
from the port-call function to the accessor function.

For example, Figure 5(b) provides a simple ex-
ample of a partitioned SLIF with several port ac-
cesses. Assuming a FunctionBus size of 18, the total
I/O for the part on the right would be 66, since 48
I/O pins are required by the part's functions that
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Fig. 5: Port calling example: (a) Original SLIF, (b)

Partitioned SLIF using FunctionBus, (c) After port-

calling transformation.

access three 16-bit external ports. However, notice
that the left part only requires 34 I/O. There is a
signi�cant imbalance in I/O. Though the total I/O
is 100, we would not be able to use two 50-pin pack-
ages, but instead would have to use a more expen-
sive and larger package on the right with at least 66
pins.

If, however, we insert a port-call function AccP

in between function H and port P, as shown in Fig-
ure 5(c), we can repartition the SLIF to achieve a
perfect balance of 50 I/O for each part. H now
must call AccP, which in turn accesses P directly.
The write data is transferred from H to AccP over
the FunctionBus.

We must decide which port accesses should have
port-call nodes introduced to achieve improvements
like that illustrated in Figure 5. Predicting those ac-
cesses that, when replaced by port-call nodes, would
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Fig. 6: Extended parallel I/O.

lead to such improvements, is a di�cult task. We
note, though, that the number of external ports is
such that we can introduce a port-call node for ev-
ery port access without much problem. Thus, our
approach is to:

1. Transform the SLIF by introducing port-call
nodes for every port access,

2. Partition the SLIF using existing heuristics,
and

3. Untransform the SLIF by eliminating each port-
call node that appears on the same part as its
accessor.

The untransform step is necessary to eliminate
unnecessary port-call nodes, so that only those nodes
needed to distribute I/O to another part remain.

Note that port-calling is a generalization of the
commonly used technique of extended parallel I/O.
For example, consider Figure 6. A micro-controller
with limited ports must interface to four 8-bit ex-
ternal ports A, B, C and D, using just one 8-bit
port P3 and a few bits of P2. A common solution
to this problem is to introduce a parallel I/O (PIO)
chip, which multiplexes the four external ports over
the single 8-bit data port, or demultiplexes the 8-
bit data port to the four external ports, depend-
ing on its input address and control lines. The
bus between the micro-controller and PIO chip is
akin to the FunctionBus, and the control internal to
the PIO is essentially equivalent to port-call func-
tionality. Port-calling is more general since we can
move the functionality to chips other than just PIO
chips, such as to an FPGA or even another micro-
controller.

4 Port-call functions

After the SLIF is partitioned, new program-like
descriptions must be generated for each package.
For a process A from the original speci�cation, each



datatype  PortCallRead()
{
   return(P);

}

void PortCallWrite(datatype d)
{
   P = d;

}

datatype PortCallReadOrWrite(datatype d, bit read)
{
   if (read)
      return(P)
   else

}
      {P = d;  return(0);}

Fig. 7: Port-call functions.

package will have its own process for A. This pro-
cess will consist of detecting one of its function's
addresses on the FunctionBus, capturing any input
parameters from the bus, calling the function, and
then returning by placing a return address and any
output parameters on the bus. A call to a func-
tion on another part is replaced by FunctionBus call
and return routines, as shown in Figure 4. Port-
call functions are treated as any other function, re-
quiring no special treatment. We thus need only
describe the contents of such functions here; parti-
tioning and subsequent FunctionBus routine inser-
tion will take care of the communication between
the port-call function and the accessor function.

The port-call functions for accessors that read,
write, or both read and write a port are shown in
Figure 7. Note that each is trivial to implement, so
could be moved freely among parts.

5 Experiments

We implemented SLIF transformations to insert
port-call functions for every port and to delete port-
call functions accessed only by functions on their
own parts. We incorporated these transformations
with existing tools that convert a VHDL speci�-
cation to SLIF (using SpecSyn [12] estimators to
annotate the SLIF with size, I/O, and execution in-
formation), and that partition the SLIF using stan-
dard heuristics (we used simulated annealing here)
making use of the FunctionBus. We then applied
two-way partitioning with and without port-calling
on �ve examples: an answering machine controller
ans, and Ethernet coprocessor ether, an fuzzy-logic
controller fuzzy, an interactive TV processor itv,
and a microwave transmitter controller mwt, each
consisting of a few hundred lines of VHDL algorith-
mic code. Partitioning was achieved using simu-
lated annealing, with a cost function that sought to

Example Without Port Calling With Port Calling
Size1 Size2 IO1 IO2 Time Size1 Size2 IO1 IO2 Time

ans 6140 6491 85 98 44 6164 6494 32 35 44
ether 13326 11343 39 48 194 13478 11202 38 37 194
fuzzy 51899 59802 26 34 10888 58511 53193 34 26 8356
itv 51649 101483 91 61 10049 53288 99872 70 57 9653
mwt 4511 5447 40 32 799 4877 5095 35 23 791

Fig. 8: Partitioning without and with port calling.

minimize I/O and execution time while balancing
part sizes. Details of the partitioning and estima-
tion system are extensive and have been described
elsewhere [12, 4].

Results are summarized in Figure 8. The table
shows the size in gates for each part, the I/O for
each part, and the execution time of the example,
including communication time over the Function-
Bus. Port calling yielded signi�cant improvements.
Note that not only is the maximum required I/O
usually reduced, but that in most cases, total I/O is
also reduced and performance is actually improved;
these improvements come at the cost of negligible
total size increase in some cases.

The improvements can be better seen in Figure 9.
The �rst chart shows the maximum I/O required on
either part without and with port calling. Note the
reductions, especially in the case of ans. The sec-
ond chart shows the reductions in total I/O, which
is the sum of the I/O of both parts. The third chart
shows the reductions in execution time. Note that
we developed port-calling in order to achieve im-
provements in the maximum I/O metric; we would
have been satis�ed with the same total I/O and
a slight penalty in performance (due to extra cy-
cles for transferring port data over the Function-
Bus). However, those other metrics were actually
improved. Such improvement can be explained by
noting that the maximum I/O is a di�cult metric to
satisfy, and it can dominate the cost function and
hence steer the partitioning heuristics. By intro-
ducing port-calling, which allows for arbitrary I/O
distribution, this pressure is greatly relieved, and
hence the cost function is driven to a greater extent
by the other metrics, so the partitioning heuristics
can seek to improve those metrics; hence, we see
substantial improvements in those metrics.

Future work includes investigating the reduction
in power that can be obtained using a FunctionBus-
based approach to functional partitioning, develop-
ing heuristics for partitioning, and developing li-
braries for communication among the various hard-
ware and software parts after partitioning.
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6 Conclusions

We have introduced an approach allowing for
nearly arbitrary distribution of I/O among packages
during partitioning. The approach extends func-
tional partitioning with a port-calling transforma-
tion, using the FunctionBus for inter-package com-
munication. The ability to arbitrarily distribute
I/O among packages leads to smaller maximum I/O
requirements and hence can reduce package cost
or quantity. In addition, by easing this previously
burdensome metric, partitioning heuristics can fo-
cus on other metrics, like performance and total
I/O, and hence we see even further improvements
in those metrics. Such improvements are important
for multi-package partitioning, as well as for par-
titioning among blocks within a single large ASIC,
which may become necessary to perform hardware-
software partitioning or to reduce design complex-
ity, routing complexity, power, and synthesis run-
times. Thus, port-calling in conjunction with the
FunctionBus can signi�cantly improve increasingly-
important functional partitioning environments.
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