
Architectural Exploration and Optimization of Local Memory in Embedded
Systems�

Preeti Ranjan Panda Nikil D. Dutt Alexandru Nicolau

Department of Information and Computer Science
University of California, Irvine, CA 92697-3425, USA

Abstract

Embedded processor-based systems allow for the tai-
loring of the on-chip memory architecture based on
application-specific requirements. We present an analytical
strategy for exploring the on-chip memory architecture for
a given application, based on a memory performance esti-
mation scheme. The analytical technique has the important
advantage of enabling a fast evaluation of candidate mem-
ory architectures in the early stages of system design. Our
experiments demonstrate that our estimations closely follow
the actual simulated performance, at significantly reduced
run times.

1. Introduction

Increasing design complexity and shrinking product de-
sign cycle times have fueled the need for design reuse in
the IC-design industry. Reuse is enabled by modern design
libraries, which frequently consist of pre-designed mega-
cells such as microprocessor cores, memories, numeric co-
processors, and modules implementing standardized func-
tions such as JPEG. For example, the CW33000 proces-
sor core from LSI Logic, the TMS320 series of DSP pro-
cessors from Texas Instruments, the StrongARM processor
from Advanced RISC Machines are available in the form of
embedded cores, in addition to the standard packaged form.
Memory-based mega-modules are widely used in the indus-
try today in the form of cache, Scratch-pad SRAM [8] and
embedded DRAM [18].

An embedded processor-based system allows for cus-
tomization of on-chip memory configuration according to
the requirements of a specific application. This is an impor-
tant feature, because a large portion of typical (packaged,
off-the-shelf) microprocessors is occupied by cache mem-

�This work was partially supported by grants from ARPA (MDA904-
96-C-1472), NSF(CDA-9422095), and ONR(N00014-93-1-1348).

ory. However, if an analysis reveals that a smaller on-chip
memory results in a satisfactory performance, the resulting
die area could be reduced by using the processor core with
an appropriately sized on-chip memory. The large body of
work on cache organization in the traditional computer ar-
chitecture domain has focussed on improving the average
cache performance over a large variety of applications, re-
lying on benchmark suites such as SPEC [16]. The impact
of cache memory parameters on program behavior has been
widely studied in the past [14]. Techniques for modeling
cache features and utilizing them in program transforma-
tions have been reported in [1, 19]. However, individual
applications have widely varying memory characteristics,
and in an application-specific IC, it is essential to optimize
performance by tailoring the on-chip memory organization
to the requirements of a given application. We address this
issue in this paper.

In high-level synthesis of application-specific systems,
researchers have addressed the problem of generating effi-
cient multiport memory organizations for storing behavioral
scalar and array variables [17, 15]. A strategy for alignment
of behavioral arrays in off-chip memory in order to improve
cache performance was reported in [10]. The problem of
memory packing – determining the memory configuration
for logical behavioral arrays based on a library of physical
memory components has been addressed in [6, 5]. In the
PHIDEO synthesis system [7] multiport memory allocation
is performed for multidimensional data streams, taking in-
terconnect costs into account. The CATHEDRAL system
[3] uses a data-flow analysis technique to determine a mem-
ory architecture consisting of one or more (possibly multi-
port) memories satisfying a given timing constraint. How-
ever, the above works have not addressed the memory ar-
chitecture issues involved when the data size is too large to
be stored on-chip.

We present an exploration strategy for determining an
efficient on-chip memory architecture – characterized by
Scratch-pad memory size and cache parameters – based on
an analysis of a given application, so as to reduce off-chip



memory traffic. The advantage of such an analytical ap-
proach over a simulation-based strategy is that, it is possi-
ble to do a fast comparison of the expected performance re-
sulting from many different memory architectures, whereas
simulation of the application for all the possible memory
configurations could be prohibitively expensive, and im-
practical for purposes of exploration.

2. Architecture

Off−Chip
Memory

Scratch−Pad
Memory

Cache

On−Chip
Memory

Synth

Core
Processor

Figure 1. Embedded Processor-based Architecture

Figure 1 shows a simplified view of an embedded pro-
cessor core-based system, consisting of a processor core,
on-chip memory, and synthesized block (Synth), interfac-
ing with off-chip DRAM. The synthesized hardware block
Synth, often the result of behavioral synthesis, performs the
functions specific to the application that are mapped to hard-
ware, possibly for performance considerations. This deci-
sion of mapping different parts of a design into hardware
and software is taken in a prior Hardware/Software parti-
tioning step. In this paper, we assume that the partition-
ing has already been performed. The on-chip memory can
be implemented as a combination of cache andScratch-pad
SRAM. In the current work, we limit our attention to on-chip
data memory.

Data cache is fast, on-chip memory forming an interface
between the processor and the off-chip DRAM, that reduces
the effective memory access time by storing recently ac-
cessed data [14]. Internally, the cache is divided into blocks,
or cache lines, which constitute the smallest unit of interac-
tion between the cache and the off-chip memory.

Scratch-pad SRAM is on-chip memory, to which the as-
signment of data is compiler-controlled. The overall archi-
tecture is described in detail in [13]. In brief, a portion of
the total data memory space is mapped to on-chip SRAM
(typically used to store critical data), with the advantage of
guaranteed fast access, unlike the cache, where hardware-
controlled storage and replacement strategies could flush
out data into the off-chip memory, resulting in cache misses
that stall the processor. In some modern embedded systems
such as the F/X256 graphics controller from Silicon Magic

Corporation, the Scratch-pad memory assumes the form of
embedded DRAM[18].

3. Illustrative Example

We illustrate our strategy for architectural exploration
and optimization of on-chip memory on CONV, a convo-
lution program frequently used in Image Processing tasks
such as edge detection, regularization, and morphological
operations [2]. The code for CONV is shown below:

N = 128; M = 4; NORM = 16;
int source[N][N], dest [N][N], mask [M][M];
Procedure CONV
int acc, i, j, x, y;
for (x = 0; x< N � M; x++)

for (y = 0; y< N � M; y++) f
acc = 0;
for (i = 0; i < M; i++)

for (j = 0; j < M; j++)
acc = acc + source[x+i][y+j] * mask[i][j];

dest[x+M/2][y+M/2] = acc/NORM;
g

Mask Source Mask Source 

Iteration: x = 0, y = 0 Iteration: x = 0, y = 1

Figure 2. Memory access pattern in CONV example

A small (4� 4) matrix of coefficients,mask, slides over
the input image,source, covering a different 4�4 region in
each iteration ofy, as shown in Figure 2. In each iteration,
the coefficients ofmaskare combined with the region of the
image currently covered, to obtain a weighted average, and
the result,acc, is assigned to the pixel of the output array,
dest, in the center of the covered region.

We first attempt to solve the following problem: given a
maximum amount, say 4 KB of on-chip memory space, find
an efficient utilization of the space, in terms of data cache
size, cache line size, and Scratch-pad memory size, with the
objective of minimizing the number of processor cycles re-
quired to access the arrays from memory. We assume that
scalar variables are assigned to registers; the data cache is



direct-mapped and write-through [14]; and the largest al-
lowed cache line size is 128 Bytes.

We note that, since we use a write-through cache, in
which memory writes do not interfere with the cache con-
tents in case of cache misses, the access todestdoes not
cause cache conflicts. However, if the two arrayssource
andmaskwere to be accessed through the data cache, the
performance would be affected by cache conflicts. Further,
an associative cache, by itself, will not eliminate the prob-
lem in general, because most practical caches have a limited
associativity, and the general situation might require an as-
sociativity as large as the number of conflicting arrays.

The conflict problem can be solved by storing the small
maskarray in the Scratch-pad memory. This assignment
eliminates all conflicts in the data cache – the data cache is
now used for memory accesses tosource, which are very
regular. Also, sinceM (= 4) rows of thesourcearray are
activeat any point in time, the data cache need be only as
large as 4 rows of the source array.1 Thus, we select a data
cache of sizeM � N = 4� 128 = 512 words = 2 KB.
Since the accesses tosourcehave good spatial locality, we
select the largest allowed cache line, i.e., 128 bytes. The
Scratch-pad memory size is 4� 4 words = 64 Bytes.

4. Memory Architecture Exploration

In our formulation, a local (on-chip) memory architec-
ture for an application is defined as a combination of:

� The total size of on-chip memory used for data storage.

� The partitioning of this on-chip memory into: (1)
Scratch-pad SRAM, characterized by its size; and (2)
data cache, characterized by the cache size; and the
cache line size.

The basic algorithm for memory architecture exploration is
summarized below:

Algorithm MemExplore
L1: for on-chip memory sizeT (in powers of 2)

L2: for cache sizeC (in powers of 2,< T )
SRAM SizeS = T � C

DataPartition(S)
L3: for line sizeL (in powers of 2,< C;< MaxLine)

Estimate Memory Performance
Select(C;L) that maximizes performance

For each candidate on-chip memory sizeT (loop L1),
we consider different divisions ofT (loop L2) into cache
(sizeC) and Scratch-pad SRAM (sizeS = T � C), se-
lecting only powers of 2 forC. ProcedureDataPartitionis

1As mentioned before, thedestarray is not allocated any storage in a
write-through cache. If awrite-backcache were used instead, we would
allocate an equal cache space todest, along with an appropriate memory
assignment so thatsourceanddestdo not conflict in the cache [12].

based on a technique for partitioning program variables into
Scratch-pad memory and cache [13]. Scalar and array data
identified to be the most critical, are assigned to the SRAM,
based on the data size, the memory access frequency and
the possibility of cache conflicts. In the rest of this section,
we describe the memory performance estimation step. For
eachT , we select the(C;L) pair that is estimated to maxi-
mize performance. Finally, we perform the memory address
assignment of the variables using the cache and SRAM pa-
rameters selected using the algorithms in [12] and [13].

4.1. Memory Performance Estimation

There is a trade-off in sizing the cache line. If the mem-
ory accesses are very regular and consecutive, i.e, exhibit
spatial locality, a longer cache line is desirable, since it min-
imizes the number of off-chip accesses and exploits the lo-
cality by pre-fetching elements that will be needed in the
immediate future. On the other hand, if the memory ac-
cesses are irregular, or have large strides, a shorter cache
line is desirable, as this reduces off-chip memory traffic by
not bringingunnecessary data into the cache. The maximum
size of a cache line is the DRAM page size, which is usu-
ally less than 1 KB = 256(= 28) words for most modern
DRAMs. Thus, there are typically a maximum of 9 alter-
natives for the cache line size (which is usually a power of
2).

Suppose there areN scalar variables stored in off-chip
memory, accessedM times in the program. We store all
scalar variables in consecutive locations in memory. Since
accesses to scalars invariably constitute a small fraction of
the total accesses, we make the simplifying assumption that
there is only one cache miss (acompulsorymiss that occurs
when the variable is first accessed into the cache) for ev-
ery cache line containing scalars. Although this assumption
looks too optimistic, it is actually reasonable when com-
bined with our partitioningstrategy for scalar and array vari-
ables – most of the scalars get mapped to the register file and
Scratch-pad memory, and not to the cache. Since there are
N scalars, we require

�
N
L

�
cache lines for them for a cache

line size ofL, i.e., there are
�
N
L

�
cache misses, and conse-

quently,M �
�
N
L

�
cache hits for theM accesses. A mem-

ory access resulting in a cache hit requires one cycle, while
a cache miss entails a delay of(K + L) processor cycles,
whereK is a constant (usually 10–20 in modern processors
[14]). Thus, the total number of processor cycles required
for theM accesses to scalar variables is:

Cycles (Scalars)= (K + L)

�
N

L

�
+M �

�
N

L

�
(1)

We determine an estimate of the processor cycles re-
quired to access the array elements by first dividing the
application program into loop nests. Straight line code is



for i = 1 to M � 1 step1
for j = 1 to M � 1 step1

A[i][j] = A[i][j] +A[i� 1][j] +A[i+ 1][j]+
A[i][j� 1] +A[i][j+ 1] +B[i] +C[j][i]

(a)

L1 : for i1 = l1 to h1 steps1

L2 : for i2 = l2 to h2 steps2

. . .
Lm : for im = lm to hm stepsm

Reada[i1][i2] . . . [im]
. . .
Ln : for in = ln to hn stepsn

Readb[i1 + k1][i2 + k2] . . . [in + kn]

Readb[i1 + k01][i2 + k02] . . . [in + k0
n
]

(b)

Figure 3. (a) Example loop (b) Generaln-level loop nest

treated as a singly-nested loop with an iteration count of
one. Multi-dimensional arrays are assumed to be stored in
row-major format.

Consider the example loop shown in Figure 3(a).B[i]
is reused in differentj-iterations, so it is moved up into the
i-loop. A[i][j]; A[i][j � 1], andA[i][j + 1] exhibit group-
spatialreuse [19] – the cache line accessed by one reference
will usually also contain the data for the others.A[i� 1][j]
andA[i+1][j] haveself-spatialreuse [19] – each can reuse
the cache line it accessed in the previousj-iteration. Finally,
referenceC[j][i] has no reuse. The memory references are
grouped intoreuse equivalence classes– each class con-
sists of memory references that exhibit self-spatial or group-
spatial reuse. This classification is used in [19] to aid in
loop transformation procedures, such as skewing, reorder-
ing, etc., by enabling a comparison of the reuse properties
of different candidate transformations. We propose a refine-
ment of the above procedure in order to utilize the reuse
analysis for our line size selection problem.

4.1.1 Refinement to self-spatial locality

In Figure 3(a) referenceB[i], after being moved to thei-
loop, was assumed to have spatial reuse. However, this
reuse can occur only if the cache line corresponding toB[i]
is still present in the cache when the nexti-iteration begins,
and has not been flushed out by the intervening accesses.

We generalize the above reuse condition for the exam-
plen-level nested loop of Figure 3(b). We assume that the
loop bounds, and branch probabilities for conditionals are
statically known, as is the usual case in many embedded
applications. We use the following locality criterion: spa-

tial locality for the referencea[i1][i2] . . .[im] in the level-m
loop (Lm) can be exploited if the total number of memory
accesses in inner loops (i.e., loopsLm+1 . . .Ln) is less than
the cache size. Let the number of memory references at loop
level j be cj. For example, in Figure 3(b),cm = 1 (for
the single memory read), andcn = 2 (for the two memory
reads). The number of iterations(rj) of loop levelLj is

given by: rj =
l
hj�lj+1

sj

m
. Thus, the sufficient condition

for utilizing locality for the reference at nesting levelm is:

nX
i=m+1

ci

0
@ iY
j=m+1

rj

1
A � CacheSize (2)

Note that the condition above, which involves thenum-
ber of elements accessed, is an approximation of the cache
behavior, for it assumes a fully associative cache with a per-
fect replacement policy. We incorporate the effect of cache
conflicts that occur in limited associativity caches in Sec-
tion 4.1.3.

4.1.2 Refinement to group-spatial locality

In Figure 3(a), referenceA[i�1][j] andA[i][j] are assumed
to have no spatial or temporal locality because they are in
different rows. However, this is a pessimistic assumption.
If one complete row ofA fits in the cache, then the data read
byA[i][j] in one iteration can be reused by theA[i � 1][j]
reference in the nexti-iteration.

We formalize the above observation into a general con-
dition for predicting reuse for the twob-references in Fig-
ure 3(b). We first determine a feasibility condition that
needs to be met if the two references are to access the same
cache line in different iterations. The sharing can occur
only if all the index expressions in the higher dimensions
(1 . . .n � 1) match exactly for different values of the loop
index, and the reuse-dimension (lowest dimension) resolves
to expressions that differ in less than the cache line size.
For example, we require that(i1 + k1) in one iteration, say
i1 = I, be equal to(i1 + k01) in some other iteration, say
i1 = I + s1 � t, for an integert, since the two iteration num-
bers are separated by a multiple of the loop stride,s1. We
need to have:I + k1 + s1 � t = I + k01, i.e.,k01� k1 = s1 � t,
i.e., (k1 � k01) mods1 = 0.

Generalizing for dimensions[1 . . .n� 1], we have:

8j 2 [1 . . .n � 1]; (kj � k0j) modsj = 0 (3)

For the reuse dimension (lowest dimension, indexed by
in), we do not need an exact match, but only need that the
expressions differ in less than the cache line sizeL. Thus,
for two iterations:in = I andin = I + sn � t, we need to
have:

(I + kn + sn � t)� (I + k0n) � L (4)



i.e.,
kn � k0n � L � sn � t (5)

To be applied as a feasibility test, this can be rephrased as:

9l 2 [1 . . .L]; such that(kn � k0n � l) modsn = 0 (6)

Further, we need to ensure that the number of elements
brought into the cache between the two accesses tob in Fig-
ure 3(b), is less than the cache size. For the two index ex-
pressions[i1+ k1] and[i1 + k01], the number of iterations of
loopL1 that elapse between the two expressions resolving

to the same value is:
j
jk1�k

0

1j

s1

k
. Sincec1 elements are ac-

cessed at the first loop level, the number of elements from

loopL1 brought into the cache in the
j
jk1�k

0

1j

s1

k
iterations

is: c1 �

j
jk1�k

0

1j

s1

k
. The number of elements in inner loops

accessed in each iteration of loopL1 is:
Pn

i=2 ci(
Qi

j=2 rj)
(LHS of Equation (2), withm = 1). Thus, the total number
of elements (f1) brought into the cache before[i1 + k1] and
[i1 + k01] resolve to the same value, is given by:

f1 = c1 �

�
jk1 � k01j

s1

�
�

nX
i=2

ci

0
@ iY
j=2

rj

1
A (7)

Summing over all then dimensions, we have the suffi-
cient condition to enable group-spatial reuse as:

nX
t=1

ft � CacheSize (8)

i.e.,

nX
t=1

0
@ct �

�
jkt � k0tj

st

�
�

nX
i=t+1

ci

0
@ iY
j=t+1

rj

1
A
1
A � CacheSize

(9)
We conclude that the twob-references in Figure 3(b) ex-

hibit spatial locality (i.e., fall into the same reuse equiva-
lence class) if they satisfy the conditions 3, 6 and 9. The
equations can be generalized to the case where the array in-
dex expressions are, of a more general form:[ajij + kj]
(whereaj andkj are constants), as is the case with array
references in many multimedia applications. The general-
ization is described in [11].

4.1.3 Refinement incorporating cache conflicts

Note that Equations 2 and 9 are approximations for cache
reuse, for they ignore the possibility of cache conflicts. We
apply the technique in [12] to determine an estimate of
the number of cache conflicts between memory references
in different equivalence classes. Each conflict represents
one off-chip memory access. We defineEstConflict() to

be a procedure that returns the number of processor cycles
wasted due to conflicts. This is given by:EstConflict(j) =
(# Conflicts predicted for accesses in loopLj) �(K + L),
whereK andL are as defined in Equation (1).

4.1.4 Computation of Processor Cycles

Based on the analysis in the previous sections, we deter-
mine the number of processor cycles,Tji, due to each reuse
equivalence classRji in loop levelLj , as in the loop nest of
Figure 3(b). Let the number of memory references inRji

be jRjij. For therj iterations of loopLj , the total number
of memory accesses for classRji is: rj � jRjij, of which
rj �jRjij

L
are cache misses, and the rest(rj � jRjij �

rj �jRjij

L
)

are hits. Since a cache hit costs 1 cycle and a miss(K +L)
cycles, we have:

Tji =
rj � jRjij

L
(K + L) + rj � jRjij �

rj � jRjij

L

= rj � jRjij �

�
K � 1
L

+ 2

�
(10)

For the setE of all the equivalence classes at levelj, we
have, the total cycles,Tj given by:Tj =

P
i Tij .

The number of accesses with no reuse at loop levelLj is
given by: cj �

P
i jRjij. The number of cycles,Qj, spent

in accessing elements with no reuse is given by:

Qj = (K + L) �

 
cj �

X
i

jRjij

!
(11)

Finally, the number of processor cycles,Pj, wasted due
to cache conflicts for accesses in loopLj is given by:

Pj = rj �EstConflict(j) (12)

Thus, the total time, spent accessing memory data at level
Lj is given by:(Tj+Qj+Pj). For the entire loop nest, we
multiply the total cycles at each loop level by the number of
times the loopLj is executed. Thus, the total cycles,C for
the loop nest under consideration is given by:

C =
nX
j=1

 
(Tj +Qj + Pj) �

j�1Y
i=1

rj

!
(13)

To determine the number of cycles required for all mem-
ory accesses in the program, we take the cumulative esti-
mate over all loop nests. We use this estimate in the memory
performance estimation step in algorithmMemExplore.

5. Experiments and Results

We present some exploration results on sample applica-
tion routines from the image processing and digital signal



processing domain. The benchmark examples are:His-
togram– a histogram evaluation routine, commonly used
in image enhancement algorithms [4];Lowpass– another
image processing algorithm used for accentuating low fre-
quencies in an image, so that the resulting image has lower
changes between neighboring pixel values [9]; andBeam-
former – a radar application, involving the summation of
digitized signals from an antenna array [9]. We present be-
low a comparison of the estimated memory cycles for the
benchmarks with the actual memory cycles. The estimated
cycles are determined by the computations in Section 4. The
actual cycles are measured by a memory simulator we de-
veloped, which takes as input a stream of memory addresses
generated during execution of a benchmark, and reports the
number of accesses to off-chip memory by simulating the
data cache and Scratch-pad memory. For our experiments,
we used a penalty of 10 processor cycles for off-chip mem-
ory accesses (i.e.,K = 10 in Equations 1 and 11).

4 8 16 32 64 128 256 512
Cache Line Size (Bytes)

200000

400000

600000

800000

1000000

M
em

or
y 

C
yc

le
s

Estimated Cycles
Actual Cycles

Figure 4. Variation of memory performance with line
size for fixed cache size of 1 KB (HistogramBenchmark)

Our first experiment focusses on loopL3 of the explo-
ration algorithmMemExplore, where we study variation of
the memory performance with the cache line size, for a
given cache size. Figure 4 shows a comparison between
the actual simulation result and the estimated number of
processor cycles for the memory accesses in theHistogram
routine, for a fixed cache size of 1 KB. We note that the
estimated performance very closely follows the actual per-
formance, except for one line size (8 bytes). The best cache
line size selected by our algorithm (= 512 bytes), is also the
best line size parameter determined from the simulation.

Figure 5 illustrates another slice of the exploration space
on the same benchmark, where the estimated memory per-

4 8 16 32 64 128 256 512 1024 2048
Cache Size (Bytes)

200000

400000

600000

800000

1000000

M
em

or
y 

C
yc

le
s

Estimated Cycles
Actual Cycles

SRAM Size = 2048 − Cache Size

Figure 5. Variation of memory performance with differ-
ent mixes of cache and Scratch-pad memory, for total
on-chip memory of 2 KB (HistogramBenchmark)

formance for different divisions of a fixed total on-chip
memory space of 2 KB into data cache and Scratch-pad
memory, is compared against the simulated performance.
The memory cycles plotted correspond to one iteration of
the outerL2 loop ofMemExplore, where the best cache line
size (from loopL3) is selected for each candidate cache size.
For each selected cache size, the corresponding Scratch-pad
SRAM size is given by: 2 KB� cache size. The points on
the left and right extremes represent divisions incurring se-
vere cache conflicts (for cache size = 2048 Bytes, the SRAM
size is 0, causing unavoidable conflicts in the cache). The
estimation process gives the best division of the 2 KB space
as: 1 KB cache + 1 KB Scratch-pad memory – this selection
is validated with the actual simulation results, as shown in
Figure 5.

Figure 6 shows the variation of the memory performance
with the total on-chip memory space for theHistogramex-
ample. They-axis shows the best performance obtained by
any architecture (i.e., division into Scratch-pad memory and
cache, as well as selection of cache line size) for a given total
on-chip memory space, i.e., one iteration of the outer loop
L1 in MemExplore. For a given application, the variation
of the memory performance with the total on-chip memory
is generated as feedback to the designer. The designer can
then select an appropriate total on-chip memory size, based
on the value beyond which no significant improvement is
predicted. In the example of Figure 6, the total size of 2
KB is a good selection, as we observe very little improve-
ment in cycle time beyond this cache size. Figures 7(a) and
(b) show the results of the exploration for theLowpassand



4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
On−chip Memory Size (Bytes)

0

500000

1000000

1500000

2000000

M
em

or
y 

C
yc

le
s

Estimated Cycles
Actual Cycles

Figure 6. Variation of memory performance with total
on-chip memory space (HistogramBenchmark)

Beamformerexamples. We notice that the estimated perfor-
mance curve follows the actual performance very closely.
This curve can help the designer select the optimal on-chip
memory size. Once the designer chooses an appropriate
total memory size based on the estimation curve, the best
memory architecture (consisting of the division of this space
into Scratch-pad memory and cache, as well as cache line
size) is automatically chosen. Note that the each point in
the exploration spaces of Figures 6 and 7 corresponds to the
best architecture found for the given total on-chip memory
space.

The most important advantage of our analytical tech-
nique for exploring the memory performance of embedded
applications is that candidate architectures can be rapidly
evaluated for their memory performance. The estimation-
based exploration for our experiments above required only
a few seconds, which was about 1000 times faster than the
simulation of the memory performance for the same set of
architectures explored. This estimation capability is very
important in the initial stages of system design, where the
number of possible architectures is too many, and a simula-
tion of each architecture is prohibitively expensive.

6. Conclusions

The management of local memory space is an important
problem in embedded systems involving large behavioral
arrays, all of which cannot be stored on-chip. The ideal local
memory architecture, consisting of a judicious division of
the memory into Scratch-pad SRAM (software-controlled)
and data cache (hardware-controlled), as well as the cache

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
On−chip Memory Size (Bytes)

0

250000

500000

750000

1000000

M
em

or
y 

C
yc

le
s

Estimated Cycles
Actual Cycles

(a)

4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K
On−chip Memory Size (Bytes)

0

500000

1000000

1500000

2000000

M
em

or
y 

C
yc

le
s

Estimated Cycles
Actual Cycles

(b)

Figure 7. Memory exploration for (a) Lowpassand (b)
Beamformerbenchmarks



line size, depends on the characteristics of the specific ap-
plication.

We presented a strategy for exploration of on-chip mem-
ory architecture for embedded applications, based on an es-
timation of the memory performance. Our experiments on
benchmark routines show that the estimated performance
matches the actual simulated performance very closely, and
is three orders of magnitude faster. Thus, the exploration
technique is very useful during the early stages of system
design, when a large number of different possible memory
architectures need to be evaluated for their performance.

The future work for this research includes the incorpo-
ration of other cache features, such as write policy, and the
incorporation of a more accurate cost function for on-chip
memory area that accounts for the memory decoder area.

References

[1] A. Agarwal, M. Horowitz, and J. Hennessy. An ana-
lytical cache model.ACM Transactions on Computer
Systems, 7(2):184–215, May 1989.

[2] P. Baglietto, M. Maresca, M. Migliardi, and N. Zin-
girian. Image processing on high performance RISC
systems. Technical Report TR SM-IMP/DIST/08,
University of Genoa, December 1995.

[3] F. Balasa, F. Catthoor, and H. D. Man. Dataflow-
driven memory allocation for multi-dimensional sig-
nal processing systems. InProceedings of the
IEEE/ACM International Conference on Computer
Aided Design, November 1994.

[4] R. C. Gonzalez and P. Wintz.Digital Image Process-
ing. Addison-Wesley, 1987.

[5] P. K. Jha and N. Dutt. Library mapping for memories.
In European Design and Test Conference, pages 288–
292, March 1997.

[6] D. Karchmer and J. Rose. Definition and solution of
the memory packing problem for field-programmable
systems. InProceedings of the IEEE/ACM Interna-
tional Conference on Computer Aided Design, pages
20–26, November 1994.

[7] P. E. R. Lippens, J. L. van Meerbergen, W. F. J. Ver-
baeghand, and A. van der Werf. Allocation of mul-
tiport memories for hierarchical data streams. In
Proceedings of the IEEE International Conference on
Computer Aided Design, November 1993.

[8] LSI Logic Corporation, Milpitas. CW33000 MIPS
Embedded Processor User’s Manual, 1992.

[9] P. R. Panda and N. D. Dutt. 1995 High level synthe-
sis design repository. InInternational Symposium on
System Synthesis, September 1995.

[10] P. R. Panda, N. D. Dutt, and A. Nicolau. Memory
organization for improved data cache performance in
embedded processors. InInternational Symposium on
System Synthesis, pages 90–95, November 1996.

[11] P. R. Panda, N. D. Dutt, and A. Nicolau. Architec-
tural exploration and optimization of local memory in
embedded systems. Technical Report ICS-TR-97-31,
University of California, Irvine, June 1997.

[12] P. R. Panda, N. D. Dutt, and A. Nicolau. Data cache
sizing for embedded processor applications. Techni-
cal Report ICS-TR-97-30, University of California,
Irvine, June 1997.

[13] P. R. Panda, N. D. Dutt, and A. Nicolau. Efficient uti-
lization of Scratch-pad memory in embedded proces-
sor applications. InEuropean Design and Test Con-
ference, March 1997.

[14] D. A. Patterson and J. L. Hennessy.Computer Organi-
zation & Design – The Hardware/Software Interface.
Morgan Kaufman, 1994.

[15] L. Ramachandran, D. Gajski, and V. Chaiyakul. An
algorithm for array variable clustering. InEuropean
Design and Test Conference, February 1994.

[16] Standard Performance Evaluation Corporation, Fair-
fax. SPEC Newsletter, December 1991.

[17] L. Stok and J. A. G. Jess. Foreground memory man-
agement in data path synthesis.International Journal
of Circuit Theory and Applications, 20(3):235–255,
1992.

[18] R. Wilson. Graphics IC vendors take a shot at
embedded DRAM. Electronic Engineering Times,
(938):41,57, January 27 1997.

[19] M. E. Wolf and M. Lam. A data locality optimizing al-
gorithm. InProceedings of the SIGPLAN’91 Confer-
ence on Programming Language Design and Imple-
mentation, pages 30–44, June 1991.


	CD-ROM Home Page
	ISSS97
	Front Matter
	Table of Contents
	Session Index
	Author Index


