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Abstract ent hierarchical levels, with respect to their visible struc-
tures. If necessary, the used components may be modified

This paper presents a new approach to hierarchical during synthesis of the enclosing system. This allows an
high-level synthesis with respect to internal register-transferefficient specification of less area consuming hierarchical
structures of complex components. Entire subdesigns cadesigns while synthesis time can be reduced.
efficiently be used as complex components at a higher hier-
archical level of the design. After synthesis, the calculated1 .1 Related Work
schedule of each subdesign is added to its register-transfer
component model. This enables the sharing of unused sub- A closer investigation of existing approaches shows,
components across different hierarchical levels of thethat the termsierarchical synthesisind complex compo-
design. Especially, subcomponents of autonomous compgrentsare not used uniformly at algorithmic level. We can
nents, with a separate controller, can also be shared. As adentify three different methodologies, which use the term
result, the presented methodology offers a high degree ofjerarchical synthesis:

optimization to hierarchically specified designs. 1. Data-flow graph clustering or partitioning methods

. followed by the synthesis of the clusters and partly of
1 Introduction the clustered data-flow graph.

2. Using already synthesized systems as components,

systems, which can be hierarchically composed of several b““t without regard to internal component structures
subsystems is becoming increasingly important. In this con- (“black-box reuss.

text, the complexity of the subsystems, also called compo- 3. Using already synthesized systems as components
nents, is increasing as well. Examples for such subsystems with the possibility of sharing subcomponents with
are microprocessor cores, application specific functional regard to internal component structurewhite-box
units (e.g. DCT, FFT), and interface controllers. However, reuse).

state-of-the-art high-level synthesis systems produce insuffi-  ong of the first clustering methods involves collecting
cient results in terms of quality of the result and executiony| gperations with a high similarity measure into one cluster
time when considering large applications [1]. [2]. The allocation and assignment of functional units, regis-

. This paper addres;es the problem Qf op't|m|zed Integragars  and multiplexers are determined separately for each
tion of already synthesized system specifications as compleg|ster. The scheduling algorithm considers the whole data-
register-transfer components, in the further high-level syn-., graph and takes specific cluster restrictions into
thesis flow. For this, it is important that the behavioral speci-;.count. An extension to this approach can be found in
fication, the synthesized register-transfer structure, and th@ o, -1y (System Architect's Workbench) [3], in which the
already determined schedule of the used components aigser can choose a partitioning strategy like control, data,
known during further high-level synthesis steps. AmMong nrqcedure-call, procedure-data and operation clustering.
others, the essential features of such components are the Vigy,other clustering approach extracts regular structures from
ible, hierarchical composed component structure, the USadfe gata-flow graph in order to create an additional level of
of a separate controller, and the data-dependent timing,ierarchy [4]. Then, the same scheduling algorithm is used
Hence, such components can be autonomous in the entifg gy nihesize each cluster, and subsequently the clustered
system. Finally, compongnts should have the capablllty tYata-flow graph. The AHEDRAL-IIl system [5] uses
share subcomponents with other components across diffelygther clustering approach for synthesis. In addition to the
* This work is partially supported by the DFG. other approaches, clusters with similar functional units are

In modern system design, the specification of complex

0-89791-993-9/97 $10.00 O 1997 |EEE



merged after the clustering step in order to build complexthermore, a behavioral simulation of the entire system,
data-path elements and to increase the cluster size [6]. Ancluding the chosen register-transfer components, should
larger cluster size allows an enlarged design space explorde supported.
tion as opposed to the local decisions of other clustering A closer investigation of the existing approaches shows
techniques. A further data-flow graph partitioning techniquethat specific libraries developed for the respective high-level
proceeds scheduling in a bottom-up traversal of the loopkynthesis systems and technology-oriented libraries can be
subroutine hierarchy. One modern example isSyweopsys  distinguished. Specific libraries are used in the high-level
Behavioral Compilef7]. synthesis tools System Architect's Workbench (SAW) [3],
The first methodology perform scheduling in a bottom- Synopsys Behavioral Compiler [7], Hebe [8], anéaN
up traversal of the cluster or the given loop/subroutine hier{10]. The libraries differ in the complexity of their compo-
archy. The second mentioned approach for hierarchical synaents, but neither consideration of specific component struc-
thesis allows the usage of already synthesized componentsres nor behavioral simulation at algorithmic level,
for further high-level synthesis tasks without regarding spe-including the used register-transfer components, are sup-
cific component structures. The register-transfer library usegorted. Only some recently introduced approaches consider
in the Hebe system [8], which is integrated in the Olympusan enhanced component modebd@r [11] and ISE [12]
synthesis system, can contain any component that is specdiepresent complex component as behavior templates in
fied in HardwareC. A similar approach is integrated im-A  order to match multiple operations by a single component.
cAL [9], with the difference that a proprietary component Additionally, in [12] components may contain multiple
intermediate format is used for synthesis. However, all prefunctional outputs. In contrast to the other systems men-
vious mentioned approaches perform component reuse arntibned, GsTHEDRAL-III [5] uses a constructive approach.
resource sharing just at one hierarchical level of the designComplex data-path elements are constructed from primitive
without respect to its component structures (“black-boxoperators, which are mapped to primitive library compo-
reuse”). nents, or to hardware building blocks of a module generator.
Our approach presented in this paper offers a techniqu®eusing complex components as primitive operators or
of hierarchical synthesis according to the methodologycomplex data-path elements is not possible. A similar tech-
under 3 and supports “white-box reuse”. Figure 1 illustratesnique is used in the pre-synthesis system ACE [13]. Their
the proposed hierarchical synthesis technique. The entireomponent models are more abstract, but the system only
system is synthesized in a bottom-up traversal of the hierarprovides some architectural transformations, like compo-
chy. Each symbol represents a subdesign which is saved iment merging, in order to increase the potential of resource
the component library after synthesis. The componentsharing within components.
model of the library includes the VHDL behavioral descrip- GENuUS [14] is a generic, technology oriented register-
tion, the RT structure, and the calculated schedule. Theransfer library used by the high-level synthesis system
enhanced component model is a prerequisite to perform sutBdA, formerly VSS. GNus automatically generates a com-
component sharing of autonomous components. Botlponent for an operation from elementary function units. But
VHDL models are the basis for supporting the simulation ofit is not possible to hierarchically combine elementary com-
the entire system at algorithmic level as well as RT level. ponents to build complex components. Hence, several oper-

ations of a given behavioral specification can not be

assigned to such complex components. Simulation models

in VHDL can be generated for functional simulation as well
:

as timing simulation.

Hierarchical synthesis in terms of reusing complete
designs as components at a higher hierarchical level is either
performed without regarding specific component structures
or infeasible due to the lack of flexible component features.

9 Therefore, the component concept must be extended and the
@eh.-VHDD CsChedu@ CRT-VHDL) synthesis must be enhanced, in order to handle complex
- components. Components should especially be able to be
v reconfigured or partially re-synthesized so that their sub-
components can be shared with other components. In con-
trast to black-box reuse with direct assignment to the

Another requirement for hierarchical synthesis is a visi- corresponding DFG operation, the degree of optimization is
ble and changeable structure of complex components, whicincreased.
can be composed hierarchically from subcomponents. Fur-  This paper is organized as follows: Section 2 describes

Figure 1. Hierarchical Synthesis with Component Model



the basic concepts of hierarchical synthesis. Section 3ng, all DFG operations covered by one component are
addresses the hierarchical resource sharing problem dblded into a single complex operation node. Hence, no
autonomous, parallel working components. Some examplesnhancements are needed in the further synthesis steps. Due
including experimental results, are presented in section 4to space limitations, this task is beyond the scope of this
Finally, this paper concludes with a summary in section 5. paper.

2 A Concept for Hierarchical Synthesis 2.2 Hierarchical Resource Sharing

In this section, we explain in more detail our hierarchi- The most important task during hierarchical synthesis is
cal synthesis concept. First, the identification of complexthe sharing of subcomponents across different hierarchical
components is described. Then, the most important task itevels of the design. This aims at reusing an already synthe-
hierarchical synthesis, the sharing of subcomponents acrossized design as a complex component at a higher hierarchi-

different levels of hierarchy, is outlined. cal level with respect to the internal component structure
and the already determined component schedule. The com-
2.1 Identification of Complex Components ponent schedule lists all used subcomponents per clock step.

In the case of sharing subcomponents, the component struc-

The first task that has to be solved during hierarchicalture is needed in order to estimate the additional required
synthesis is the identification of complex components in thearea and to extract the set of allocated subcomponents. All
control-data flow graph, distinguishingjrect component unused subcomponents at one clock step can now be added
instantiation and component matchingDirect component 1o the set of allocated and unused components of the overall
instantiation denotes a user specified component instantiggystem.
tion in the algorithmic specification. In this case, the user ~ Figure 3 clarifies the sharing of subcomponents of the
may preset the allocation of a complex component by invok£xample given in figure 2, simplified to components without
ing the corresponding procedure in the specification. Theseparate controllers. The starting point is the data-flow
term component matching denotes the matching of compogdraph of the overall system and the schedule of the already
nent and system data-flow subgraphs, in order to identifysynthesized componefy. Assuming that componefy is
suitable optimized complex components for the design. Theised for the second part of the system data-flow graph (see
basis of component matching is the component behaviorafigure 2), just one complex componégtis needed to cover
specification, which can easily be transferred into a controlthe overall system. This is true, due to sharing the mult-add
data flow graph. Thus, the matching problem needs to b&ubcomponent of componetwith the remaining multiply
solved for both the data-flow subgraphs and the control-flonand add operations of the overall system. Note that the allo-
subgraphs of the specification. cation of one complex componeftimplies the allocation

Figure 2 illustrates both mentioned possibilities of com- of one mult-add and one add component, due to the visible
plex component identification with three levels of hierarchy. structure of componerfg. The allocation of one mult-add
In the first step, the mult-add subcomponent has been identfomponent does not cause a resource conflict at clock step 3
fied as a part of componef. Componentf; has been of the system schedule because a pipelined component with
instantiated directly by nodg of the overall system and can an initiation interval of one clock step is assumed.

also be identified as a part of the overall SyStem- Overall System System Schedule Schedule of Compdgent

Overall System Componefy Subcomponen @ 0
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Figure 2. Identification of Complex Components Allocated Components: Allocated Components:
. . . « 1 x Mult-Add
For the sake of clarity, this example illustrates only the * 1x Component; ——m { 1x Add

data-flow graph matchings. The task of component identifi-
cation is to be integrated in allocation as well as scheduling.
Thereby, the synthesis system has to decide automatically In the following, we want to extend the hierarchical
whether specialized and optimized complex components oresource sharing to autonomous, parallel working compo-
several primitive components are allocated. After schedulnents with separate controllers.

Figure 3. Hierarchical Resource Sharing



3 Hierarchical Resource Sharing of Autono- resent the schedule of this loop, or branch path, respectively.
mous Components The root node represents the entire process and has an infi-

nite iteration counti€.,., = ). An unbounded iteration
Here we will concentrate on hierarchical resource sharcOUNt which can not be statically determined, is denoted by

ing, applicable to autonomous, parallel working compo- (Cmax= U- In case of a statically determined iteration count,
nents. Especially, the additional needed calculations tdh€ formulasicy, andicy., are equal. In order to be more

perform subcomponent sharing of autonomous componentg€neral and to avoid the distinction between system and
are presented in this section. components, the term module is used as a genus.

3.1 Component Model 3.2 Sharing Interval

The underlying component model is not restricted to _Resource sharing among different modules is only pos-

specific synthesis limitations. It consists of a flowgraph, rep-SiPl€, if the state of the concerning modules can be deter-
resenting the functional specification, a hierarchical schegMined statically. On the condition that some modules may

ule, the generated RT structure, and the physical componef€ autonomous in the entire system and using a separate
attributes. controller, the module state is determined, once the module

_ o under synthesis communicates with the other modules. The
Definition 1. A componenbf a design is denoted by the giate of @ module in which such a data transfer is initiated, is
tuple C:= [FG, HS, FSMD, FLJwhereFG is an intermediate  ¢4jieq synchronization point (v V). The reset state is a
flowgraph format, compiled from an algorithmic specifica- hjori a synchronization point. During list scheduling, a
tion, for instance written in VHDLES denotes the cOmpo-  mqqy e state can be determined, as soon as the correspond-
nent schedule, which will be defined néxBMDrepresents 4 synchronization point is reached. Resource sharing is
the synthesized RT structure as a finite state machine withq, hossible until a loop, with an unbounded iteration count
datgpath, an@ Qegcrlbes the common physical cpmponent(icmalx = u) is reached and then only during the ficst;,
attributes, e.g. timing, area, and power consumption. iteration of this loop, such a state is caltEbynchroniza-

This data structure can be used for specifying both systion point Once the next synchronization point is reached,
tem under synthesis and instantiated components. In corresource sharing is possible again. Note that one module can
trast to conventional component models, our model is muchave multiple sharing intervals.

more detailed, in order to provide all necessary componenpeinition 3. The sharing intervalof a moduleM regarding
information for hierarchical resource sharing. Next, the for- statev, is given by the s&l(M, v;) and denotes the set of

mal definition of a hierarchical schedule is given. states between a synchronization point and a desynchroniza-
Definition 2. A hierarchical schedul®f a componen€ is tion point, such that, O SI(M, v) holds.
denoted by the tupleS(C) := [V, E, 1, OF IC, CLwhere The size of a sharing interval depends on the underlying
* Vis a set of nodes representing clock steps, conditional,oqje model. Modules without a separate controller (type
branches, or nested loops, respectively. MT1) are always statically determined (see figure 3). Hence,
* EULxVisasetofedges with:={viUV:tv)= g further calculation in this section are not needed for this
loop [t(v)) = branch}, where module type. Modules with a separate controller and data-
* the functiont(v;) U {operation loop, brancl} denotes  independent timing (typ®1T2) permit the static calculation
the type of a nodeg [ V. of their state. Only modules with a separate controller and

* The relationOP(v,;), O (vo, O V : t(v,,) = operation)  unbounded data-dependent delay (typ&3) have a
refers to the scheduled operations of the clockgiep restricted sharing interval, which can be calculated as men-

« The functionlC(v,), O (v, O V : t(v) = loop) returns the  tioned above. Figure 4 illustrates sharing intervals for the
minimal iteration countc,,, and the maximal iteration different module types. For the sake of clarity, the hierarchi-
countic,.,, Whereiteration countdenotes the number of cal schedule of modules with a separate controller is repre-
iterations of a loop, which may depends on outer loopSented as a state transition graph of a FSM, and its datapath
iterators. is not shown. In this case a sharing interval ending at the

« The functionC(op), 0 op 0 OP(y,) refers to the instan- first t.ransition of the FSM representation with unbouqded
tiated component or component type of an operatfpn iteration .cou.nt. The statésandW represent read and wntt_a

] ) communication to other modules and are the synchroniza-

The hierarchical schedulS(C) of a component repre- o hoints of the examples. Therefore, module i@ of

sents a tree, with the property that only nodes oflyBOr g re 4 contains two sharing intervals, the first beginning at
branchcan have descendants. The children of one node reRsiateR and the second beginning at state



calculation of the clock cycle space with a simple example.

<P q) The edge labels denote the iteration count of the correspond-
~@ou l l —@u b ing loop. The outermost loop represents the entire process.
I D g ¢ (})41 g Note that the innermost loop is specified with an iteration
e @ £ £ @ - count of three. The clock cycle space is shown for the states
= 2 g iU s 1,2,3,4,and 5.
B lE MR 0
% @ - CCS({1,2}) :=8 O +{1,2; where
{ @ 1 @' — u 0sx <4
@ CCS({3,4) :=8 [k + 2 [k +{3,4; where
Module TypeMT1 Module TypeMT2 Module TypeMT3 2 0<x<4,0sx<3
E
Figure 4. Sharing Intervals of Different Examples 0 @ 4 2 OGO:={1817.2
3.3 Clock Cvcle S f a Stat 3 g ggzg; ;g 207112}153 15, 19, 21, 23, 27, 29} 31
: oc ycle opace of a state l CCS(4):={4, 6, 8, 12, 14, 16, 20, 22, 24, 28, 30} 32
—(5) CCs(5) = {33}

In the case of modules with separate controllers, all
clock cycles of a module state, depending on their iteration
space, h_ave tp be calcula_ted, \{vherelmuon spaceof a 3.4 Collision Set
module is defined by the iteration counts of all loops. Note
that loops with loop increment or loop decrement greater -

o ; : The clock cycles spaces of all modules containing
than one can be handled similarly, because only the iteration .
i 4 ) shareable submodules have to be calculated and examined,
count has to be taken into account. Now, we will define the .
in order to determine whether submodules can be shared of
clock cycle space of a module state.

two or more modules.

Figure 5. Clock Cycle Spac€CS(R,y) of an Example

Definition 4. Theclock cycle spac€CS(v,) denotes the set
of all clock cycles in which the considered modMlés in
the given states,, within the previous calculated sharing
intervalSI(M, ).

Definition 5. Assuming that modul#&l, is in statev;, and a
submodules, contained in modulil, should also be used
M, then thecollision setCOL (M4, v;, M,, S;) is given by

. ) g d
The clock cycle space depends directly on its loop nest- 0 0
ing. A single loop with ten iterations, for instance, implies CCSy,(v) n B, DSEM " HCCSMZ(VI)B' where
| 20 YVt

that all states of the loop body are reached ten times. O used My s,) 0

th Bekl:o:eftf:ef caI(;,.uIanon of (tjhefz_ clzck;yc:e tshpace 'SS'Ven]’cused(M, s) denotes all states of moduMy, in which sub-
ree helpiul functions are defined. First, the number o modules, is in use, within the given sharing inter§a(M,,

clock cycles of a loop body is given bycstepsg(v,) = V. :

v, O children(y) O t(v,) = operatior}|, where children(y) W), 50 thassl (My, ) [ SH(My, w) holds.

denotes the set of direct succesors,.oBecondly, the set of The collision set describes, whether resource conflicts
all subloops of a loop, is defined bysubloops(y = {V : Ve arises by applying resource sharing across different levels of
O children(y) Ot(vg) = loop}. Thirdly, the setoopH(w,, ) hierarchy of autonomous modules.

= {Vs : Vs O descendanty) 0 v, O ancestor(y O t(vy) = Definition 6. A collision setCOL(M;, v, M,, s,) is called
loop} specifies all subloops of the loop hierardliy, w[J  collision-free if and only ifCOL (M, v;, M,, s,) = O holds.
where the setdescendant(yandancestor(y represent the
transitive closure to the direct successors or predecessors g{at
v, respectively. Next, we calculate ttleck cycle spacef a

Generally, a submodukg of moduleM; can be used in
ev, of moduleM;, or can be shared with moduig, if
COL(M;, v, M;, §) is collision-free. In this case, the clock

given statey: cycle space oM; covers the clock cycle spaces Mf in
CCS(v,) = cstepgp(vy) + ; cstepsgy(v)) I, which the submodulg is not being used. This is the com-

Vi H1oopH(v, vi) plementary set of the above defined union of used submod-
subjectto  0<x, <icp,dv), Vi U loopH (i, w), ules. It should be noted, that checking, whether a module
where contains submodules which are able to perform a chosen

, operationop O OP(y) should be done before calculating the
cstepgy(v) = CStep%BfVé)stgcjo';$ms>&Vs) [estepsy(Vs)-  collision set. This is the remaining step of conventional

resource sharing techniques.
Figure 6 shows the collision set of state 3 of the module
M; with an assumed demand of one adder. The mddule

The functioncsteps,(v,) denotes the number of clock
cycles of a given loop hierarchy. Figure 5 illustrates the



contains one allocated add component, which is used in thin the remaining polyhedron can be tested by applying the
state set {2, 4, 5}. Because the determined collision set iextended integer Fourier-Motzkin projection [15], [17],
collision-free, the modul®1; may use the add submodule of which is recommendable due to the simple constraint sys-

the moduleM,. tem. Consequently, if no integer solution is found, the colli-
ModuleM; ModuleMz ey, (W,3):= 140, + 4 D, + 3; where sion setCCS is collision-free and thus, resource sharing is
@ - 0<% <2,0s%<3 possible.

__@ i il Y COSM(W3):={3, 7, 11,17, 21, 35 In general, the extended Fourier-Motzkin projection has
used(Ct) := {2, 4, 5} an exponential worst-case complexity depending on the

@ © CCsw(R2):={2, 10, 18, 2B number of variables. Nevertheless, the computation time for

J© (?Jr A CCSMZ(R’4)::{3’2'62’48"2;253’45’,2%6' 20, synthesis can be kept low, because the number of variables
2 @ 00 @ Ces(R5) = {33} is limited by the maximum levels of nested loops. For real
3 3 COL 1= CCSy (W,3) n problems, the nesting loop level is smaller than five. Fur-

@ @ (CCswR.2) 0 CCSw{R4) 0 CCS{RS)) thermore, the algorithm can stop once a collision is detected.

® —®:  coL=00 collision-free Most of the collisions can already be detected by the very

Figure 6. Collision SetCOL (M;, 3, M,, +) of an Example efficient gcd test. Due to the very simple constraint system,
the average complexity of the algorithm can be further
reduced. Their influence on the entire synthesis time is less

3.5 Collision Set Intersection Problem .
than one percent in all tested cases.

For the case of loops with a small iteration count, the3 6 Conditi B h
collision set can be determined by simple set operations™ onditional branches
However, this results in an exhaustive enumeration, with an

intractable complexity. For example, if two nested loops If the specification contains conditional branchig;(
ob V: t(v) = branch), occurring when using or casecon-

have been specified, both with an iteration count of 1000, ’ e
the corresponding clock cycle space consists of one milliorstructs, the calculation of the collision set must be extended.

members. Therefore, we will use the following integer prob-'n this context, ty\(o cases have to be distinguished. First, if
lem solving technique. the branch copd.ltlon.depends on outer loops and can be pre-

The collision se€OL (M;, v;, M;, 5) can be decomposed dlcted', then disjunctive clock cycle spaces has to be palcu—
into [SI(M;, W) n used(M, s)| subproblems which can be lated |nld.epende'ntly for gach alternative path. Accordingly,
solved independently as follows: disiuncive. dlock cycle Spaces. Second, in case. of data

CCSym,(v) n CCSMj(Vi)' O SHM;, W) n used(M, 3). dependent unbounded conditions, a submodule may be
~ Now we are able to formulate thellision set intersec-  shared in a given state, only if the submodule are unused in
tion problem all alternative paths. Hence, the set of used submodules,
Definition 7. The collision set intersection problenis ~ needed to determine the collision 66L, is calculated by
defined byCCSMi(Vt)_CCSMj(Vj) =0 Ov,OSIM;, W n the union of theisedsets of all alternative paths.
used(M, s), subject to0 < Xy, < iCmadV).00 Vv O loopH (%, W). o
Due to the linearity o€CS, the equation has the structure: 4 Implementation into CADDY-II

(AMi_A'\/'j)Dx = bM\_ij' . . . . . . .

This section outlines the integration of hierarchical
resource sharing into the high-level synthesis system

Now, we are interested in the question, whether an inteCappy-Il. The underlying synthesis algorithms are only
ger solution of the equation exists, which satisfies the consymmarized here. A more detailed description can be found
straints (€ x < iCma)(V|). This prOblem can be solved in four in [18]' [19], [20] and [21] The main Synthesis steps per-
StepS. FirSt, an unimodular mattikand an echelon matrix formed in the GDDY-II system aralata-flow ana]ysisa”o_
D are to be found, such thatlU = D holds [16], where  cation, scheduling binding data-path generationand
A = Ay, —Ay, - The matrixU describes the matrix transfor- - controller generation During allocation a suitable compo-
mations being applied to generate integer solutions. Seconghent set is selected. Tasks of scheduling are the assignment
the existence of an integer solution of the unrestricted equagf operations to clock steps and to component types under
tion can be determined by applying the gcd tef2 & =b,  resource constraints. The mapping of operations to compo-
whereb = by, —by, [16]. Thirdly, if the gcd test is success- nent instances and the allocation of registers are the tasks of
ful, the equationx = U [s describes all integer solutions and the binding. The presented hierarchical resource sharing
can be inserted in the constraint system:WWIs<ic,,(V),  approach has been integrated within scheduling and binding.
x O IN9, Finally, the existence of a feasible integer solution List-scheduling is used as scheduling algorithm, driven

subjectto X < icpa(V), x 0 INY, with d= [loopH (v, W)l-



by a global estimation function, which is based on the prob-ported, a resource conflict can only be solved by adding a
abilities of scheduling DFG operations to control steps. Infurther clock step. The CPU time for the filter on a Sun
each step of the list-scheduling algorithm, all ready operaSPARC 20 was less than 2 seconds for a fixed set of allo-
tions are mapped to unused components, which are able twated components and less than 12 seconds for an enlarged
execute the corresponding operation. If an already allocatedesign space exploration by synthesizing different sets of
autonomous module contains a subcomponent, which caautomatically allocated components.
perform an operation out of the ready set, the collision set  Second, we will present the results of the FDCT bench-
with respect to the currently scheduled state is calculatedmark, shown in table 2. The given component costs are
Since the current loop is not necessarily completely schedtaken from [11] and amount 10 units for using an adder, 20
uled, the remaining delay is expressed by additional parameanits for using an multiplier, and 25 units for using a multi-
ters, therefore the collision set has to be calculated withply-accumulate unit. The column entitled “costs” is filled
respect to this parameters. The determined parametric solwvith the area-time product as cost function. Applying sub-
tions are used as scheduling constraints of the outer loopsomponent sharing, a speedup of up to 8 clock cycles can be
During scheduling of the outer loops the algorithm decidesachieved. In comparison to non-encapsulated components,
whether the constraints for sharing subcomponents of autorthe performance results of the synthesized circuits are equal
omous modules can be fulfilled, suitably. During binding, in most of the determined cases, while the area costs can be
the collision set is calculated again, but with fully deter- reduced. Particularly, the optimal circuit in relation to the
mined variables in order to perform the mapping of an oper-area delay ratio is synthesized using two multiply-accumu-
ation to a specific component or subcomponent instance. late units and two adders. The CPU time for the FDCT
benchmark was less than 4 seconds for a fixed set of allo-

5 Experimental Results cated components and less than 16 seconds for an enlarged
design space exploration.
Experimental results of our approach on several Table 2.Fast Discrete Cosine Transformation
designs, including some benchmark circuits, are given in . -

. . . . e with complex components without complex compongnts
this section. F|.rst, just for. reasons o_f comparability the pv— Slook steps (03) T
rgsults for the fifth order elliptic wave filter bench.mark are [T * Twac with lwithout 1 +7=] ~ steps
given. This benchmark demonstrates two essential featuref 1o | 20 | 25 | cosdsharingsharing 93" [ 101 20/ cosls(cs)
of our hierarchical synthesis approach: First, recognitionof[ 1 | o | 3 | 765| 9 | 14| 5| 4| 3| 9d o
complex component structures in the system dataflom] 1 | o | 2 | 720 12| 18| 6| 3| 2| 774 11
graph, and second, the possibility of sharing subcompo{ 1 | 1 | 2 | 9% 11| 19| 8| 3| 3| 81 9
nents. Table 1 shows some results for different allocationq 2 | 0 | 2 | 700 11| 16} 5] 4| 2| 8 11
with and without subcomponent sharing, and compares thig 2 | 1 | 2 | 90f 10} 13} 3f 4} 3] 904
with the traditional component model. In this table, a com-| 2 | © | 3 | 85 9 138} 4 51 3} 99Q 9
ponent with a data initiation interval of one clock cycle and 2| 0 180 18] 200 2] 3} 1) 90Q 1§

. . . . 1 1 1 715 13 21 8 2 2 780 13
an executlon tlme.of two clock cycles is specified by the ol 2| 1 lesol 10l 13l 3| 3| 3| sd o
notation ‘1 : 2’, for instance. ) 1 1l 7sl o1l ol 2 3 >l 7d 1

Table 1.5th Order Elliptical Wave Filter Finally, the results of the simulated annealing processor

with complex components without complex componeipts  taken from [22] are presented. At first, the needed floating-
resources clock steps (¢s) fesources | glock point components and then the overall simulated annealing
lfl 'vl'ACZ MlA:CS oharing ehormd 80N I: - *1:1 *1 - ey algorithm have been specified. The high-level synthesis sys-
n n 5 TR n > n 5 = tem CADDY-II maps all floating-point operations to the pre-
) 1 0 15 | 15 1 3 1 0 15 vious designed components and synthesizes the entire
1 2 ol 12| 19| s 3 9 ol 14 system hierarchically with respect to the used floating-point
1 0 1 18| 21 3 2 0 1 19 components. All instantiated subcomponents of the floating-
1 0 2 17 | 21 4 3 0 2 17 point components are now ready to be used as shared com-

. ponents within the entire simulated annealing design. The
. AS. a result, we ge“t the:, perfqrmance Irnprovementsfloating-point multiplier for instance, consists of an integer

listed in column ‘?”““ed gain”. In this eX"?‘mp'e the, SpeEd'multiplier, an integer adder, and a barrel shifter. These com-
up of the .de.S'gn IS up to 5 clock _cycles with equal hardwar onents can be used additionally for other integer arithmetic
costs. This is bepause the multlp_ly-accumlljliate componen perations of the whole design. As a result, all specified
may share the '”te”?a' adder, if an add|t.|ona'l adder Sarithmetic operations could be covered by the subcompo-
needed. In contrast, if subcomponent sharing is not SUPhents of the floating-point units. Table 3 lists the synthe-



sized results for a hierarchical and a inline-expanded/ References
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» Multiple instances of one component have to be synthe-[zz]
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