
Abstract

This paper presents a new approach to hierarchical
high-level synthesis with respect to internal register-transfer
structures of complex components. Entire subdesigns can
efficiently be used as complex components at a higher hier-
archical level of the design. After synthesis, the calculated
schedule of each subdesign is added to its register-transfer
component model. This enables the sharing of unused sub-
components across different hierarchical levels of the
design. Especially, subcomponents of autonomous compo-
nents, with a separate controller, can also be shared. As a
result, the presented methodology offers a high degree of
optimization to hierarchically specified designs.

1 Introduction

In modern system design, the specification of complex
systems, which can be hierarchically composed of several
subsystems is becoming increasingly important. In this con-
text, the complexity of the subsystems, also called compo-
nents, is increasing as well. Examples for such subsystems
are microprocessor cores, application specific functional
units (e.g. DCT, FFT), and interface controllers. However,
state-of-the-art high-level synthesis systems produce insuffi-
cient results in terms of quality of the result and execution
time when considering large applications [1].

This paper addresses the problem of optimized integra-
tion of already synthesized system specifications as complex
register-transfer components, in the further high-level syn-
thesis flow. For this, it is important that the behavioral speci-
fication, the synthesized register-transfer structure, and the
already determined schedule of the used components are
known during further high-level synthesis steps. Among
others, the essential features of such components are the vis-
ible, hierarchical composed component structure, the usage
of a separate controller, and the data-dependent timing.
Hence, such components can be autonomous in the entire
system. Finally, components should have the capability to
share subcomponents with other components across differ-
* This work is partially supported by the DFG.

ent hierarchical levels, with respect to their visible struc-
tures. If necessary, the used components may be modified
during synthesis of the enclosing system. This allows an
efficient specification of less area consuming hierarchical
designs while synthesis time can be reduced.

1.1  Related Work

A closer investigation of existing approaches shows,
that the termshierarchical synthesis and complex compo-
nents are not used uniformly at algorithmic level. We can
identify three different methodologies, which use the term
hierarchical synthesis:

1. Data-flow graph clustering or partitioning methods
followed by the synthesis of the clusters and partly of
the clustered data-flow graph.

2. Using already synthesized systems as components,
but without regard to internal component structures
(“black-box reuse”).

3. Using already synthesized systems as components
with the possibility of sharing subcomponents with
regard to internal component structures (“white-box
reuse”).

One of the first clustering methods involves collecting
all operations with a high similarity measure into one cluster
[2]. The allocation and assignment of functional units, regis-
ters, and multiplexers are determined separately for each
cluster. The scheduling algorithm considers the whole data-
flow graph and takes specific cluster restrictions into
account. An extension to this approach can be found in
APARTY (System Architect’s Workbench) [3], in which the
user can choose a partitioning strategy like control, data,
procedure-call, procedure-data and operation clustering.
Another clustering approach extracts regular structures from
the data-flow graph in order to create an additional level of
hierarchy [4]. Then, the same scheduling algorithm is used
to synthesize each cluster, and subsequently the clustered
data-flow graph. The CATHEDRAL-III system [5] uses
another clustering approach for synthesis. In addition to the
other approaches, clusters with similar functional units are
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merged after the clustering step in order to build complex
data-path elements and to increase the cluster size [6]. A
larger cluster size allows an enlarged design space explora-
tion as opposed to the local decisions of other clustering
techniques. A further data-flow graph partitioning technique
proceeds scheduling in a bottom-up traversal of the loop/
subroutine hierarchy. One modern example is theSynopsys
Behavioral Compiler [7].

The first methodology perform scheduling in a bottom-
up traversal of the cluster or the given loop/subroutine hier-
archy. The second mentioned approach for hierarchical syn-
thesis allows the usage of already synthesized components
for further high-level synthesis tasks without regarding spe-
cific component structures. The register-transfer library used
in the Hebe system [8], which is integrated in the Olympus
synthesis system, can contain any component that is speci-
fied in HardwareC. A similar approach is integrated in AMI-

CAL [9], with the difference that a proprietary component
intermediate format is used for synthesis. However, all pre-
vious mentioned approaches perform component reuse and
resource sharing just at one hierarchical level of the design,
without respect to its component structures (“black-box
reuse”).

Our approach presented in this paper offers a technique
of hierarchical synthesis according to the methodology
under 3 and supports “white-box reuse”. Figure 1 illustrates
the proposed hierarchical synthesis technique. The entire
system is synthesized in a bottom-up traversal of the hierar-
chy. Each symbol represents a subdesign which is saved in
the component library after synthesis. The component
model of the library includes the VHDL behavioral descrip-
tion, the RT structure, and the calculated schedule. The
enhanced component model is a prerequisite to perform sub-
component sharing of autonomous components. Both
VHDL models are the basis for supporting the simulation of
the entire system at algorithmic level as well as RT level.

Another requirement for hierarchical synthesis is a visi-
ble and changeable structure of complex components, which
can be composed hierarchically from subcomponents. Fur-

thermore, a behavioral simulation of the entire system,
including the chosen register-transfer components, should
be supported.

A closer investigation of the existing approaches shows
that specific libraries developed for the respective high-level
synthesis systems and technology-oriented libraries can be
distinguished. Specific libraries are used in the high-level
synthesis tools System Architect’s Workbench (SAW) [3],
Synopsys Behavioral Compiler [7], Hebe [8], and NEAT

[10]. The libraries differ in the complexity of their compo-
nents, but neither consideration of specific component struc-
tures nor behavioral simulation at algorithmic level,
including the used register-transfer components, are sup-
ported. Only some recently introduced approaches consider
an enhanced component model. OSCAR [11] and ISE [12]
represent complex component as behavior templates in
order to match multiple operations by a single component.
Additionally, in [12] components may contain multiple
functional outputs. In contrast to the other systems men-
tioned, CATHEDRAL-III [5] uses a constructive approach.
Complex data-path elements are constructed from primitive
operators, which are mapped to primitive library compo-
nents, or to hardware building blocks of a module generator.
Reusing complex components as primitive operators or
complex data-path elements is not possible. A similar tech-
nique is used in the pre-synthesis system ACE [13]. Their
component models are more abstract, but the system only
provides some architectural transformations, like compo-
nent merging, in order to increase the potential of resource
sharing within components.

GENUS [14] is a generic, technology oriented register-
transfer library used by the high-level synthesis system
BdA, formerly VSS. GENUS automatically generates a com-
ponent for an operation from elementary function units. But
it is not possible to hierarchically combine elementary com-
ponents to build complex components. Hence, several oper-
ations of a given behavioral specification can not be
assigned to such complex components. Simulation models
in VHDL can be generated for functional simulation as well
as timing simulation.

Hierarchical synthesis in terms of reusing complete
designs as components at a higher hierarchical level is either
performed without regarding specific component structures
or infeasible due to the lack of flexible component features.
Therefore, the component concept must be extended and the
synthesis must be enhanced, in order to handle complex
components. Components should especially be able to be
reconfigured or partially re-synthesized so that their sub-
components can be shared with other components. In con-
trast to black-box reuse with direct assignment to the
corresponding DFG operation, the degree of optimization is
increased.

This paper is organized as follows: Section 2 describes
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the basic concepts of hierarchical synthesis. Section 3
addresses the hierarchical resource sharing problem of
autonomous, parallel working components. Some examples,
including experimental results, are presented in section 4.
Finally, this paper concludes with a summary in section 5.

2 A Concept for Hierarchical Synthesis

In this section, we explain in more detail our hierarchi-
cal synthesis concept. First, the identification of complex
components is described. Then, the most important task in
hierarchical synthesis, the sharing of subcomponents across
different levels of hierarchy, is outlined.

2.1  Identification of Complex Components

The first task that has to be solved during hierarchical
synthesis is the identification of complex components in the
control-data flow graph, distinguishingdirect component
instantiation and component matching. Direct component
instantiation denotes a user specified component instantia-
tion in the algorithmic specification. In this case, the user
may preset the allocation of a complex component by invok-
ing the corresponding procedure in the specification. The
term component matching denotes the matching of compo-
nent and system data-flow subgraphs, in order to identify
suitable optimized complex components for the design. The
basis of component matching is the component behavioral
specification, which can easily be transferred into a control-
data flow graph. Thus, the matching problem needs to be
solved for both the data-flow subgraphs and the control-flow
subgraphs of the specification.

Figure 2 illustrates both mentioned possibilities of com-
plex component identification with three levels of hierarchy.
In the first step, the mult-add subcomponent has been identi-
fied as a part of componentf3. Componentf3 has been
instantiated directly by nodef3 of the overall system and can
also be identified as a part of the overall system.

For the sake of clarity, this example illustrates only the
data-flow graph matchings. The task of component identifi-
cation is to be integrated in allocation as well as scheduling.
Thereby, the synthesis system has to decide automatically
whether specialized and optimized complex components or
several primitive components are allocated. After schedul-

ing, all DFG operations covered by one component are
folded into a single complex operation node. Hence, no
enhancements are needed in the further synthesis steps. Due
to space limitations, this task is beyond the scope of this
paper.

2.2  Hierarchical Resource Sharing

The most important task during hierarchical synthesis is
the sharing of subcomponents across different hierarchical
levels of the design. This aims at reusing an already synthe-
sized design as a complex component at a higher hierarchi-
cal level with respect to the internal component structure
and the already determined component schedule. The com-
ponent schedule lists all used subcomponents per clock step.
In the case of sharing subcomponents, the component struc-
ture is needed in order to estimate the additional required
area and to extract the set of allocated subcomponents. All
unused subcomponents at one clock step can now be added
to the set of allocated and unused components of the overall
system.

Figure 3 clarifies the sharing of subcomponents of the
example given in figure 2, simplified to components without
separate controllers. The starting point is the data-flow
graph of the overall system and the schedule of the already
synthesized componentf3. Assuming that componentf3 is
used for the second part of the system data-flow graph (see
figure 2), just one complex componentf3, is needed to cover
the overall system. This is true, due to sharing the mult-add
subcomponent of componentf3 with the remaining multiply
and add operations of the overall system. Note that the allo-
cation of one complex componentf3 implies the allocation
of one mult-add and one add component, due to the visible
structure of componentf3. The allocation of one mult-add
component does not cause a resource conflict at clock step 3
of the system schedule because a pipelined component with
an initiation interval of one clock step is assumed.

In the following, we want to extend the hierarchical
resource sharing to autonomous, parallel working compo-
nents with separate controllers.

Figure 2. Identification of Complex Components
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3 Hierarchical Resource Sharing of Autono-
mous Components

Here we will concentrate on hierarchical resource shar-
ing, applicable to autonomous, parallel working compo-
nents. Especially, the additional needed calculations to
perform subcomponent sharing of autonomous components
are presented in this section.

3.1  Component Model

The underlying component model is not restricted to
specific synthesis limitations. It consists of a flowgraph, rep-
resenting the functional specification, a hierarchical sched-
ule, the generated RT structure, and the physical component
attributes.

Definition 1. A component of a design is denoted by the
tuple C := 〈FG, HS, FSMD, P〉, whereFG is an intermediate
flowgraph format, compiled from an algorithmic specifica-
tion, for instance written in VHDL,HS denotes the compo-
nent schedule, which will be defined next,FSMD represents
the synthesized RT structure as a finite state machine with
datapath, andP describes the common physical component
attributes, e.g. timing, area, and power consumption.

This data structure can be used for specifying both sys-
tem under synthesis and instantiated components. In con-
trast to conventional component models, our model is much
more detailed, in order to provide all necessary component
information for hierarchical resource sharing. Next, the for-
mal definition of a hierarchical schedule is given.

Definition 2. A hierarchical scheduleof a componentC is
denoted by the tupleHS(C) := 〈V, E, t, OP, IC, C〉, where

• V is a set of nodes representing clock steps, conditional
branches, or nested loops, respectively.

• E ⊂ L × V is a set of edges withL := {vl ∈ V : t(vl ) =
loop ∨ t(vl ) = branch}, where

• the functiont(vl ) ∈ {operation, loop, branch} denotes
the type of a nodevl ∈ V.

• The relationOP(vop), ∀ (vop ∈ V : t(vop) = operation)
refers to the scheduled operations of the clock stepvop.

• The functionIC(vl ), ∀ (vl ∈ V : t(vl ) = loop) returns the
minimal iteration counticmin and the maximal iteration
counticmax, whereiteration count denotes the number of
iterations of a loop, which may depends on outer loop
iterators.

• The functionC(op), ∀ op∈ OP(vop) refers to the instan-
tiated component or component type of an operationop.

The hierarchical scheduleHS(C) of a component repre-
sents a tree, with the property that only nodes of typeloop or
branch can have descendants. The children of one node rep-

resent the schedule of this loop, or branch path, respectively.
The root node represents the entire process and has an infi-
nite iteration count (icmax = ∞). An unbounded iteration
count, which can not be statically determined, is denoted by
icmax = u. In case of a statically determined iteration count,
the formulasicmin and icmax are equal. In order to be more
general and to avoid the distinction between system and
components, the term module is used as a genus.

3.2  Sharing Interval

Resource sharing among different modules is only pos-
sible, if the state of the concerning modules can be deter-
mined statically. On the condition that some modules may
be autonomous in the entire system and using a separate
controller, the module state is determined, once the module
under synthesis communicates with the other modules. The
state of a module in which such a data transfer is initiated, is
called synchronization point (vsp ∈ V). The reset state is a
priori a synchronization point. During list scheduling, a
module state can be determined, as soon as the correspond-
ing synchronization point is reached. Resource sharing is
now possible until a loop, with an unbounded iteration count
(icmax = u) is reached and then only during the firsticmin

iteration of this loop, such a state is calleddesynchroniza-
tion point. Once the next synchronization point is reached,
resource sharing is possible again. Note that one module can
have multiple sharing intervals.

Definition 3. Thesharing interval of a moduleM regarding
statevt is given by the setSI(M, vt) and denotes the set of
states between a synchronization point and a desynchroniza-
tion point, such thatvt ∈ SI(M, vt) holds.

The size of a sharing interval depends on the underlying
module model. Modules without a separate controller (type
MT1) are always statically determined (see figure 3). Hence,
all further calculation in this section are not needed for this
module type. Modules with a separate controller and data-
independent timing (typeMT2) permit the static calculation
of their state. Only modules with a separate controller and
unbounded data-dependent delay (typeMT3) have a
restricted sharing interval, which can be calculated as men-
tioned above. Figure 4 illustrates sharing intervals for the
different module types. For the sake of clarity, the hierarchi-
cal schedule of modules with a separate controller is repre-
sented as a state transition graph of a FSM, and its datapath
is not shown. In this case a sharing interval ending at the
first transition of the FSM representation with unbounded
iteration count. The statesR andW represent read and write
communication to other modules and are the synchroniza-
tion points of the examples. Therefore, module typeMT3 of
figure 4 contains two sharing intervals, the first beginning at
stateR, and the second beginning at stateW.



3.3 Clock Cycle Space of a State

In the case of modules with separate controllers, all
clock cycles of a module state, depending on their iteration
space, have to be calculated, where theiteration space of a
module is defined by the iteration counts of all loops. Note
that loops with loop increment or loop decrement greater
than one can be handled similarly, because only the iteration
count has to be taken into account. Now, we will define the
clock cycle space of a module state.

Definition 4. The clock cycle spaceCCS(vt) denotes the set
of all clock cycles in which the considered moduleM is in
the given statevt, within the previous calculated sharing
intervalSI(M, vt).

The clock cycle space depends directly on its loop nest-
ing. A single loop with ten iterations, for instance, implies
that all states of the loop body are reached ten times.

Before the calculation of the clock cycle space is given,
three helpful functions are defined. First, the number of
clock cycles of a loop bodyvl  is given bycstepsLB(vl ) = |{vc :
vc ∈ children(vl) ∧ t(vc) = operation}|, wherechildren(vl)
denotes the set of direct succesors ofvl. Secondly, the set of
all subloops of a loopvl is defined bysubloops(vl) = {vs : vs

∈ children(vl) ∧ t(vs) = loop}. Thirdly, the setloopH(vsp, vt)
= {vs : vs ∈ descendant(vsp) ∧ vs ∈ ancestor(vt) ∧ t(vs) =
loop} specifies all subloops of the loop hierarchy〈vsp, vt〉,
where the setsdescendant(vt) andancestor(vt) represent the
transitive closure to the direct successors or predecessors of
vt, respectively. Next, we calculate theclock cycle space of a
given statevt:

,

subject to , ∀ vl ∈ loopH(vsp, vt),

where

.

The functioncstepsLH(vl) denotes the number of clock
cycles of a given loop hierarchyvl. Figure 5 illustrates the

calculation of the clock cycle space with a simple example.
The edge labels denote the iteration count of the correspond-
ing loop. The outermost loop represents the entire process.
Note that the innermost loop is specified with an iteration
count of three. The clock cycle space is shown for the states
1, 2, 3, 4, and 5.

3.4  Collision Set

The clock cycles spaces of all modules containing
shareable submodules have to be calculated and examined,
in order to determine whether submodules can be shared of
two or more modules.

Definition 5. Assuming that moduleM1 is in statevt and a
submodules2 contained in moduleM2 should also be usedin
M1, then thecollision setCOL(M1, vt, M2, s2) is given by

, where

used(M2, s2) denotes all states of moduleM2, in which sub-
modules2 is in use, within the given sharing intervalSI(M2,
vt), so thatSI(M1, vt) ⊆ SI(M2, vt) holds.

The collision set describes, whether resource conflicts
arises by applying resource sharing across different levels of
hierarchy of autonomous modules.

Definition 6. A collision setCOL(M1, vt, M2, s2) is called
collision-free, if and only ifCOL(M1, vt, M2, s2) = ∅ holds.

Generally, a submodulesj of moduleMj can be used in
statevt of moduleMi, or can be shared with moduleMi, if
COL(Mi , vt, Mj, sj ) is collision-free. In this case, the clock
cycle space ofMi covers the clock cycle spaces ofMj in
which the submodulesj is not being used. This is the com-
plementary set of the above defined union of used submod-
ules. It should be noted, that checking, whether a module
contains submodules which are able to perform a chosen
operationop ∈ OP(vt) should be done before calculating the
collision set. This is the remaining step of conventional
resource sharing techniques.

Figure 6 shows the collision set of state 3 of the module
M1 with an assumed demand of one adder. The moduleM2

Figure 4. Sharing Intervals of Different Examples
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contains one allocated add component, which is used in the
state set {2, 4, 5}. Because the determined collision set is
collision-free, the moduleM1 may use the add submodule of
the moduleM2.

3.5  Collision Set Intersection Problem

For the case of loops with a small iteration count, the
collision set can be determined by simple set operations.
However, this results in an exhaustive enumeration, with an
intractable complexity. For example, if two nested loops
have been specified, both with an iteration count of 1000,
the corresponding clock cycle space consists of one million
members. Therefore, we will use the following integer prob-
lem solving technique.

The collision setCOL(Mi , vt, Mj, sj ) can be decomposed
into |SI(Mj, vt) ∩ used(Mj, sj)| subproblems which can be
solved independently as follows:

, ∀ vj ∈ SI(Mj, vt) ∩ used(Mj, sj).

Now we are able to formulate thecollision set intersec-
tion problem.

Definition 7. The collision set intersection problem is
defined by ,∀ vj ∈ SI(Mj, vt) ∩
used(Mj, sj), subject to ,∀ vl ∈ loopH(vsp,vt).
Due to the linearity ofCCS, the equation has the structure:

,

subject to x < icmax(vl), x ∈ INd, with d= |loopH(vsp, vt)|.
Now, we are interested in the question, whether an inte-

ger solution of the equation exists, which satisfies the con-
straints 0≤ x < icmax(vl). This problem can be solved in four
steps. First, an unimodular matrixU and an echelon matrix
D are to be found, such thatA ⋅ U = D holds [16], where

. The matrixU describes the matrix transfor-
mations being applied to generate integer solutions. Second,
the existence of an integer solution of the unrestricted equa-
tion can be determined by applying the gcd test toD ⋅ s = b,
where  [16]. Thirdly, if the gcd test is success-
ful, the equationx = U ⋅ s describes all integer solutions and
can be inserted in the constraint system: 0≤ U ⋅ s < icmax(vl),
x ∈ INd. Finally, the existence of a feasible integer solution

in the remaining polyhedron can be tested by applying the
extended integer Fourier-Motzkin projection [15], [17],
which is recommendable due to the simple constraint sys-
tem. Consequently, if no integer solution is found, the colli-
sion setCCS is collision-free and thus, resource sharing is
possible.

In general, the extended Fourier-Motzkin projection has
an exponential worst-case complexity depending on the
number of variables. Nevertheless, the computation time for
synthesis can be kept low, because the number of variables
is limited by the maximum levels of nested loops. For real
problems, the nesting loop level is smaller than five. Fur-
thermore, the algorithm can stop once a collision is detected.
Most of the collisions can already be detected by the very
efficient gcd test. Due to the very simple constraint system,
the average complexity of the algorithm can be further
reduced. Their influence on the entire synthesis time is less
than one percent in all tested cases.

3.6  Conditional Branches

If the specification contains conditional branches (∃ vl

∈ V : t(vl ) = branch), occurring when usingif or case con-
structs, the calculation of the collision set must be extended.
In this context, two cases have to be distinguished. First, if
the branch condition depends on outer loops and can be pre-
dicted, then disjunctive clock cycle spaces has to be calcu-
lated independently for each alternative path. Accordingly,
the collision set intersection problem has to be solved for all
disjunctive clock cycle spaces. Second, in case of data
dependent unbounded conditions, a submodule may be
shared in a given state, only if the submodule are unused in
all alternative paths. Hence, the set of used submodules,
needed to determine the collision setCOL, is calculated by
the union of theused sets of all alternative paths.

4 Implementation into CADDY-II

This section outlines the integration of hierarchical
resource sharing into the high-level synthesis system
CADDY-II. The underlying synthesis algorithms are only
summarized here. A more detailed description can be found
in [18], [19], [20] and [21]. The main synthesis steps per-
formed in the CADDY-II system aredata-flow analysis, allo-
cation, scheduling, binding, data-path generation and
controller generation. During allocation a suitable compo-
nent set is selected. Tasks of scheduling are the assignment
of operations to clock steps and to component types under
resource constraints. The mapping of operations to compo-
nent instances and the allocation of registers are the tasks of
the binding. The presented hierarchical resource sharing
approach has been integrated within scheduling and binding.

List-scheduling is used as scheduling algorithm, driven

Figure 6. Collision SetCOL(M1, 3, M2, +) of an Example
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by a global estimation function, which is based on the prob-
abilities of scheduling DFG operations to control steps. In
each step of the list-scheduling algorithm, all ready opera-
tions are mapped to unused components, which are able to
execute the corresponding operation. If an already allocated
autonomous module contains a subcomponent, which can
perform an operation out of the ready set, the collision set
with respect to the currently scheduled state is calculated.
Since the current loop is not necessarily completely sched-
uled, the remaining delay is expressed by additional parame-
ters, therefore the collision set has to be calculated with
respect to this parameters. The determined parametric solu-
tions are used as scheduling constraints of the outer loops.
During scheduling of the outer loops the algorithm decides,
whether the constraints for sharing subcomponents of auton-
omous modules can be fulfilled, suitably. During binding,
the collision set is calculated again, but with fully deter-
mined variables in order to perform the mapping of an oper-
ation to a specific component or subcomponent instance.

5 Experimental Results

Experimental results of our approach on several
designs, including some benchmark circuits, are given in
this section. First, just for reasons of comparability the
results for the fifth order elliptic wave filter benchmark are
given. This benchmark demonstrates two essential features
of our hierarchical synthesis approach: First, recognition of
complex component structures in the system data-flow
graph, and second, the possibility of sharing subcompo-
nents. Table 1 shows some results for different allocations
with and without subcomponent sharing, and compares this
with the traditional component model. In this table, a com-
ponent with a data initiation interval of one clock cycle and
an execution time of two clock cycles is specified by the
notation ‘1 : 2’, for instance.

As a result, we get the performance improvements
listed in column entitled “gain”. In this example the, speed-
up of the design is up to 5 clock cycles with equal hardware
costs. This is because the multiply-accumulate component
may share the internal adder, if an additional adder is
needed. In contrast, if subcomponent sharing is not sup-

ported, a resource conflict can only be solved by adding a
further clock step. The CPU time for the filter on a Sun
SPARC 20 was less than 2 seconds for a fixed set of allo-
cated components and less than 12 seconds for an enlarged
design space exploration by synthesizing different sets of
automatically allocated components.

Second, we will present the results of the FDCT bench-
mark, shown in table  2. The given component costs are
taken from [11] and amount 10 units for using an adder, 20
units for using an multiplier, and 25 units for using a multi-
ply-accumulate unit. The column entitled “costs” is filled
with the area-time product as cost function. Applying sub-
component sharing, a speedup of up to 8 clock cycles can be
achieved. In comparison to non-encapsulated components,
the performance results of the synthesized circuits are equal
in most of the determined cases, while the area costs can be
reduced. Particularly, the optimal circuit in relation to the
area delay ratio is synthesized using two multiply-accumu-
late units and two adders. The CPU time for the FDCT
benchmark was less than 4 seconds for a fixed set of allo-
cated components and less than 16 seconds for an enlarged
design space exploration.

Finally, the results of the simulated annealing processor
taken from [22] are presented. At first, the needed floating-
point components and then the overall simulated annealing
algorithm have been specified. The high-level synthesis sys-
tem CADDY-II maps all floating-point operations to the pre-
vious designed components and synthesizes the entire
system hierarchically with respect to the used floating-point
components. All instantiated subcomponents of the floating-
point components are now ready to be used as shared com-
ponents within the entire simulated annealing design. The
floating-point multiplier for instance, consists of an integer
multiplier, an integer adder, and a barrel shifter. These com-
ponents can be used additionally for other integer arithmetic
operations of the whole design. As a result, all specified
arithmetic operations could be covered by the subcompo-
nents of the floating-point units. Table  3 lists the synthe-

Table 1.5th Order Elliptical Wave Filter

with complex components without complex components

resources clock steps (cs) resources clock
steps
(cs)

+ MAC MAC with
sharing

without
sharing

gain
+ * *

1 : 1 1 : 2 1 : 3 1 : 1 1 : 1 1 : 2

1 1 0 16 20 4 2 1 0 16

2 1 0 15 15 1 3 1 0 15

1 2 0 14 19 5 3 2 0 14

1 0 1 18 21 3 2 0 1 19

1 0 2 17 21 4 3 0 2 17

Table 2.Fast Discrete Cosine Transformation

with complex components without complex components

resources clock steps (cs) resources clock
steps
(cs)

+ / – * MAC with
sharing

without
sharing

gain
+ / – *

10 20 25 costs 10 20 costs

1 0 3 765 9 14 5 4 3 900 9

1 0 2 720 12 18 6 3 2 770 11

1 1 2 990 11 19 8 3 3 810 9

2 0 2 700 11 16 5 4 2 880 11

2 1 2 900 10 13 3 4 3 900 9

2 0 3 855 9 13 4 5 3 990 9

2 0 1 810 18 20 2 3 1 900 18

1 1 1 715 13 21 8 2 2 780 13

2 2 1 850 10 13 3 3 3 810 9

2 1 1 715 11 13 2 3 2 770 11



sized results for a hierarchical and a inline-expanded
description. By using encapsulated components, the control-
ler size of the simulated annealing processor could be
reduced to 46% of the controller size of the inline-expanded
description by an equal performance. The CLB count is
related to the Xilinx XC4000 family and is given to get more
detailed information. The CPU time could be reduced from
20 to 7 seconds when using the hierarchical description.

In summary, the presented results show several advan-
tages of the hierarchical synthesis method regarding com-
plex component structures. When using subcomponent
sharing, the synthesized circuits need less clock cycles
under resource constraints, and are less area consuming
under timing constraints. Furthermore, the run-time of the
synthesis algorithm could be decreased compared to non-
hierarchical approaches.

6 Summary and Conclusion

This paper presented a new approach for hierarchical
high-level synthesis regarding complex component struc-
tures. The presented experimental results encourage further
investigations in this area. The advantages of the presented
approach are:

• The concept of complex components offers the basis for
a hierarchical synthesis methodology with respect to
specific component structures, in order to increase the
degree of optimization.

• Resource sharing can be performed across different lev-
els of hierarchy of parallel working components, with a
separate controller.

• The modification of the components can be done after
binding, such that the synthesis time can be kept low.

• Each synthesized submodule can be reused in the same
design as a complex register-transfer component.

• Multiple instances of one component have to be synthe-
sized only once.
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Table 3.Simulated Annealing Processor

Components
Hierarchical
Description

Inline-Expanded
Description

Area
Reduction

Datapath: Multiplier 1 1 0 %

Add/Sub 2 2 0 %

Barrelshifter 1 1 0 %

Leading_Zero 1 1 0 %

Comparator 2 3 33 %

Multiplexer 19 27 30 %

Register 11 12  8 %

Controller: Gate Equivalents 158 307 49 %

CLBs 56 104 46 %

States 11 26 58 %
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