
0-89791-993-9/97 $10.00  1997 IEEE

Wavesched: A Novel Scheduling Technique For Control-flow Intensive
Behavioral Descriptions�

Ganesh Lakshminarayana, Kamal S. Khouri, and Niraj K. Jha
Department of Electrical Engineering,

Princeton University, Princeton, NJ 08544

Abstract

In this paper, we present a novel scheduling algorithm targeted
towards minimizing the average execution time of control-flow in-
tensive behavioral descriptions. Our algorithm uses a control-data
flow graph (CDFG) model, which preserves the parallelism inher-
ent in the application. It explores previously unexplored regions
of the solution space through its ability to overlap the schedules
of independent iterative constructs, whose bodies share resources.
It also incorporates well-known optimization techniques like loop
unrolling in a natural fashion. This is made possible by a general
loop-handling technique, which we have devised. Application of
the algorithm to several common benchmarks demonstrates up to
4.8-fold improvement in expected schedule length over existing
scheduling algorithms, without paying a price in terms of the best-
and worst-case schedule lengths required to execute the behav-
ioral description (in fact, frequently, the best/worst-case schedule
lengths are also better for our algorithm).

1 Introduction
The scheduling problem arises in many different forms in di-

vergent fields of study. Scheduling of operations on functional
units and variables on registers in high-level synthesis, instruc-
tions on a processor during compilation, packets on communica-
tion links in networks, and tasks on processing elements in dis-
tributed computing are a few typical examples.

In high-level synthesis, there are three different kinds of behav-
ioral descriptions: data-dominated, control-flow intensive (CFI),
and control-dominated. Data-dominated descriptions are charac-
terized by a predominance of arithmetic operations and the ab-
sence of control-flow constructs. CFI descriptions reflect a mix
of arithmetic and logical operations, and control flow structures
like loops and conditional operations. Control-dominated applica-
tions are characterized predominantly by control-flow operations.
Problems in the digital signal and image processing domains, such
as filtering, convolution, and discrete cosine transform, translate
into data-dominated descriptions. Applications related to net-
work protocol handling, and many other network-centric appli-
cations are characterized by CFI descriptions. Sequencers, which
generate sequences of signals to control events in a process, are
control-dominated. The scheduling problem for each of these
domains has its own unique flavor, and distinct classes of algo-
rithms are used to handle the problems in each domain. A survey
of scheduling techniques for data-dominated applications can be
found in [1]. Scheduling for control-dominated applications was
considered in [2] and [3].

In this paper, we deal with the scheduling problem for high-
level synthesis of CFI behavioral descriptions. The algorithm ac-
cepts as input, a CDFG, a target clock period, and an allocation
constraint (restrictions on the number and type of different library

�This work was supported in part by NSF under Grant No. MIP-
9319269 and in part by Alternative System Concepts, Inc. under an SBIR
contract from Air Force Rome Laboratories.

elements allowed) and produces a scheduled CDFG which is op-
timized for average execution time. It is assumed that the type of
library element executing each operation is known.

Past research in scheduling of CFI behaviors has modeled the
input description as acontrol flow graph(CFG), which is basically
a graphical description of a sequential program based implemen-
tation of the functionality. Scheduling techniques based on this
model were presented in [4]-[7]. While the CFG model is well
suited to capture execution of instructions on a general-purpose
uniprocessor, it has been shown to be inadequate in exploiting the
parallelism inherent in typical CFI applications. CDFG models,
equipped to handle control and data dependencies, without se-
quentializing independent operations, and algorithms for schedul-
ing CDFGs, were presented in [8]-[10]. While these algorithms
exploit parallelism within loop structures, they are incapable of
optimizing across loop boundaries, and do not support loop un-
rolling. Methods such as those presented in [11,12] are capable of
exploiting loop unrolling and pipelining to enhance performance,
but are not capable of performing concurrent optimization of in-
dependent loops. A survey of various techniques targeted towards
achieving better schedules for very large instruction word proces-
sors, which is closely related to the problem of scheduling for
high-level synthesis, can be found in [13].

Our scheduler, calledWaveschedfor its wave-like scheduling
ability, uses a CDFG model of the input behavioral description.
It can parallelize the execution of independent loops whose bod-
ies share resources. The scheduler is also capable of transcending
loop boundaries in its quest for a globally optimal solution,i.e.
it subsumes several well-known optimization techniques such as
loop unrolling and functional pipelining. This is made possible by
a general technique we have developed to handle inter-iteration de-
pendencies that arise as a result of loop unrolling. Our algorithm
can support multi-cycled and pipelined functional units and per-
form chaining to enhance cycle time utilization. A synergy of the
above techniques results in schedules which are optimized for av-
erage execution time and have same or better best- and worst-case
execution time characteristics as those produced by conventional
schedulers.

2 Background
In this section, we discuss the basic concepts used in our work.

First, we describe our CDFG model with an example. Next, we
describe state transition graphs (STGs), which help to describe
schedules. This is followed by an introduction to the concept
of concurrent loop optimization and an example illustrating the
power of this technique. We then present a general technique for
keeping track of inter- and intra-loop dependencies, which allows
a unified treatment of loops and other conditional operations.
2.1 Preliminaries

High-level synthesis starts with the compilation of the input
behavioral description, usually written in a high-level hardware
description language like VHDL or Hardware C, into a CDFG. A
CDFG is a directed graph, whose nodes represent operations, and

edges represent dependencies between operations. In CFI descrip-
tions, the dependencies are of two types: data and control. An
edge represents a data dependency if the source node of the edge
produces data that the sink node consumes. Existence of a con-
trol dependency between nodes implies that the execution of the
sink node depends on the outcome of the execution of the source
node. Figures 1 and 2 show a behavioral description written in a

int TEST1 (int k1, int k2, int a, int b)f
int x1, x2, var1, var2, var3, var4, var5;
x1= 10;
x2= 0;
for (int count= 0; count� k1; count++) f
// <= 1 and++1

if (x1< 100)f // <1
var1= a+x1; // +1
var2= 5+var1; // +2
x1= var2�3; // �1

g elsef
var3= a+x1; // +3
x1= var3�7; //�2

g
g
for (int count1= 0; count1� k2; count1++) f
// <= 2 and++2

var5= b+x2; // +4
x2= 6�var5; // �3

g
return (x1+x2); // +5

g

Figure 1: A fragment of code, TEST1, written in a high-level
language
high-level language and the CDFG corresponding to the descrip-
tion, respectively. The comment at the end of each statement indi-
cates the operation in the CDFG it corresponds to. Variable dec-
larations and initializations do not correspond to operations in the
CDFG. Data dependencies in the CDFG are indicated by continu-
ous arcs, and control dependencies, by broken arcs. Thethen and
elsebranches of anif statement are represented by placing+ and
� symbols, respectively, adjacent to operations executed in these
cases. For example, operation+1, which is in thethen branch of
the if statement<1, has an incoming control dependency marked
by a+, and operation+3, which is in theelsebranch of the same
if statement, is fed by a control dependency marked by a� sym-
bol. Note that the value that gets assigned tox1 depends upon
whether operation<1 evaluates totrueor false. This is expressed
by means of aselectoperation, which assigns to its output, either
of two values, at itsl and r input ports, depending on the value
at s. Though, in general, an operation can execute only if all its
data dependencies are known, a select operation can execute if the
value at ports is known, and data are available at the selected input
port. For the CDFG shown in Figure 2, variablex1 is the output
of select operationSel1whose input portsl, r, ands are fed by
�1, �2, and<1, respectively. An edge is also annotated with the
initial value of the variable it corresponds to. Edges in a CDFG are
of two types: reverse and forward edges. Reverse edges are those
that represent data and control dependencies between operations
belonging to different iterations of the same loop body, and for-
ward edges represent dependencies within an iteration of a loop.
Conditional edges in the CDFG are annotated with their proba-
bility of occurrence. For example, operation<1 evaluates totrue
with a probability of 0:5, and operation<=1 evaluates totruewith
a probability of 0:98.

Variablesx1andx2 in the CDFG do not directly feed operation

+2

+1
+3

a

−
+

+4
+

+

k1

+++1 ++2

:=1

:=2

(0)

(10)
(0)

(0)

−

(p=0.5)

100 a

5

3

7

b

6

<=1 <=2

<1+

−

+5

out

x1

x2

s
l r
Sel1

count
count1

(p=0.98)

(p=0.02)

(p=0.98)

(p=0.02)

* 2
* 3

1*

k2

Figure 2:CDFG representation of TEST1

<=1, <1
<=2

+1, +2

++1, <=1
<1 <1

+4

+5

c

c

<=1, <1
<=2

+1, +2

+4

+5

c

+4

S0

S1 S2

S3S4

S5

S6

S7

S8

S0

S1 S2

S4
S3

S5

S6

S7

<=2, +4, +5

+3 +3

1*
2, ++1*

3, ++2*

2, ++1, <=1*

3, ++2, <=2*

c

c

c2

c2

c2 c2

c2c2

c

c2

c<=2,

* 1,++1,

c2

c1c1

c

S8

(a) (b)
Figure 3: (a) A schedule produced by PBS, and (b) a schedule
produced by LDS

+5, but feed operations := 1 and := 2 instead. These interme-
diate operations are control-dependent on operations<= 1 and
<= 2, respectively. They ensure that operation+5 can only exe-
cute when both loops have finished execution. In general, when an
operation outside a loop body (sink) is dependent on the result of
an operation inside the loop (source), the result of the source oper-
ation feeds an intermediate operation which is control-dependent
on the operation that performs the loop test. The sink operation is
sourced by the intermediate operation. These intermediate oper-
ations are referred to asendloopoperations. These operations do
not have a physical implementation, and are incorporated into the
CDFG for ease of representation and handling.

On completion, the scheduler outputs an STG describing the
schedule. The STG is a directed graph whose nodes represent
states and edges represent transitions between states. Nodes in
the STG have information about the operations executed in the
corresponding state, and edges capture the conditions under which
a state transition takes place.

2.2 Concurrent loop optimization
In this subsection, we describe concurrent loop optimization,

a technique which helps overlap the schedules of the independent
loop bodies which share resources. To motivate this technique, we
present schedules derived using some existing algorithms, without
the benefit of this technique and contrast them with the schedule
produced by our schedulerWavesched. We consider the schedul-
ing of the CDFG shown in Figure 2 under the following allocation
constraints: a multiplier of typemult1, two adders of typeadd1,
three comparators of typecomp1, and two incrementers. Each of

<1, +4

S6:=1, :=2
+5

+5

+4

:=2, +5

S0

S1

S2

S4

<=1, <=2

++2

++1, ++2

:=2, <1
++1

+4 ++2
:=1

* 2

*3

* 1

, <=2

c1.c2

c1.c2

c1.c2

c1.c2
c1.c2

c1.c2

c1.c2

c1

c2

c2

* 2* 1, ++1,* 2* 1, ++2,

:=2,
,:=1

c1.c2

* 1, <1, * 2
 ++1, ++2, +4

+1, +2,*3
<=1, <=2, +3

* 1, <1, * 2

+1, +2,
<=1, +3

++1

* 1 * 2, :=1,

c1

S3 S5

S7

S8

S9

S10

S11

S12

S13

S14

S15

S16

 <1, :=2 +4, :=1

Figure 4: A schedule produced by Wavesched
these functional units is assumed to take one cycle. Suppose that
the following chains of operations can be performed in one cycle:
(a) two additions, (b) a multiplication followed by a comparison,
(c) a comparison followed by an increment, (d) a comparison fol-
lowed by an addition, (e) an addition followed by a comparison, (f)
two comparisons, (g) a comparison followed by a multiplication,
and (h) an increment followed by a comparison.

Figures 3(a), 3(b) and 4 represent the STGs obtained by path-
based scheduling (PBS) [4], loop-directed scheduling (LDS) [5]
and Wavesched, respectively, under the above constraints. Start
states are represented by double ellipses, and terminal states, by
bold ellipses. The method given in [5] for deriving the expected
number of cycles for schedules, which is applicable to CFGs, was
modified to make it applicable to CDFGs [14]. The expected
number of cycles for the schedules produced by PBS, LDS, and
Wavesched, respectively, computed using this modified method,
are 248cycles, 199:94cycles, and 120:09cycles.

The reason for the above difference is that the two loops in
CDFG TEST1, which are actually independent, and can be exe-
cuted in parallel, are sequentialized in the CFG. As a result, for the
STGs shown in Figures 3(a) and 3(b), the execution of the second
loop can begin only after the execution of the first is terminated.
However, in the schedule produced by our algorithm, the execu-
tion of these parallel loops is overlapped in time. With both loops
executing in parallel, our schedule would complete one iteration of
each loop in two cycles by appropriately skewing the execution of
the operations in the loops to ensure that resource constraints are
satisfied. The bold edges in Figure 4 represent transitions between
states where both loops execute concurrently. The schedules pro-
duced by PBS and LDS, however, cannot take advantage of this
effect. Therefore, one iteration of each loop still takes two clock
cycles, but these iterations are sequential as opposed to parallel,
resulting in a 1:7-fold slowdown in performance for LDS, relative
to our method.

The above example illustrates that the performance of sched-
ulers based on the CFG model is heavily dependent on the struc-
ture of the CFG. If a CFG, which parallelized the execution of
loops, were used as input to the LDS or PBS algorithms, the sched-
ule produced would have been similar to the one produced by our
algorithm. However, we are not aware of any algorithm that de-
rives the “best” CFG for a given behavioral description, under a
given set of allocation constraints. Therefore, a scheduling tech-
nique that can effectively use the flexibility afforded by the CDFG
representation is essential in exploiting parallelism in the input de-
scription. Details of our scheduling algorithm, which satisfies the
above criterion, can be found in Section 3. Note that, in this case,
the algorithm described in [6], while partially addressing the limi-
tations of CFG-based scheduling, would not significantly improve
the performance of the schedule over that of LDS because it is

restricted to reordering of operations within basic blocks.
At this stage, we would like to point out that some synthesis

systems do not allow control-dependency chaining,i.e. an op-
eration cannot be scheduled in the same state that generates the
condition necessary for its execution. If specified, our scheduling
algorithm can either enforce this restriction, or benefit from the
flexibility that results from its absence. For the ease of exposition,
this restriction is assumed to be in effect for schedules produced
by Wavesched. However, this restriction is not enforced for the
schedules shown in Figures 3(a) and (b).

Our algorithm supportsimplicit unrolling of loops. The user
can specify a bound on the number of times,U , a loop can be un-
rolled. This implies that the scheduler has the option of unrolling
the loop up toU times during the course of its execution. If the
CDFG contains nested loops, different loops in the nest can be
unrolled as deemed appropriate. A state could, therefore, poten-
tially contain operations belonging to several different loops and
to different iterations of the same loop body. Hence, we need a
mechanism to keep track of the position of an operation in the
loop hierarchy and handle inter-iteration dependencies induced by
loop unrolling. Section 2.3 presents a technique we have devised
for this purpose.
2.3 Handling loop-induced dependencies

From the example presented in the previous section, it is clear
that the ability to perform inter- and intra-loop optimizations is a
desirable feature for a CFI scheduler. Incorporating these tech-
niques into a scheduling algorithm requires a general technique
to keep track of loop-induced dependencies. The techniques pre-
sented here are geared towards simplifying loop handling by mak-
ing loops appear “just like” other conditional dependencies.

In this subsection, we present (a) a numbering convention to
keep track of different iterations of an operation (presented in
Section 2.3.1), and (b) a means of deriving fanin-fanout relation-
ships between operations augmented with the derived loop itera-
tion numbers (presented in Section 2.3.2).

To motivate the analysis in this subsection, we consider the
following problem, which is common to most scheduling algo-
rithms: that of identifying the schedulable successors of an op-
eration which has just been scheduled. If loop unrolling is not
allowed, this procedure can be carried out through structural anal-
ysis of the CDFG. First, we derive the set,Succset, of fanouts
of the scheduled operation. If all fanins of an operation,succ
2 Succset, have been scheduled,succis considered schedulable.
If loop unrolling is allowed, structural analysis of the CDFG is not
sufficient to perform this task. This is because different iterations
of the same operation can co-exist, and in order to schedule a spe-
cific iteration of an operation, we need to ensure that the correct
iterations of its fanins have been scheduled. For example, for the
CDFG shown in Figure 5, operation�1, which occurs in the third
iteration of the outer loop and the second iteration of the inner
loop is schedulable only if the third iteration of operation+1, and
the second inner loop iteration of the third outer loop iteration of
operation> 3 have been scheduled.

2.3.1 Keeping track of loop iterations
Loops can be viewed as inducing a hierarchical structure on the
CDFG. Operations which are not part of any loop have a hierar-
chical level of 0, operations which are embedded in exactly one
loop have a hierarchical level of 1, and so on. This hierarchical
structure can be represented as a tree.
Definition 1 The loop numberof an operation is defined as an
ordered set consisting of the numbers assigned to different loops
that this operation is a part of. The set is ordered by increasing
hierarchical level.
For instance, the loop number of operation++3 in Figure 5,
which is a part of loopL3, numbered 0, at hierarchical level 1,
and loopL1, numbered 0, at hierarchical level 0, is< 0;0>. The
number of elements in an operation’s loop number is the same as

L1

L3
L2

>1

++1 +1

>3

++3

:=3

:=1

:=2

+

+

+

+

−

−

+ +

>2

++2
+2

−

<0>

<0>

<0>

<0,0>

<0,0>
<0,0>

<0>

<1>

<1>

<1>

<>
<>

<>

a b

c d

1*

2*

(0)

Figure 5:A CDFG with a hierarchy of nested loops
its hierarchical level. Every operation in Figure 5 is annotated with
its loop number.

The hierarchical level of an endloop operation is one less than
that of the loop it helps terminate. For example, operation := 3,
which serves to transfer the result of operation�1 outside loopL3,
takes on loop number< 0>. This represents a hierarchical level
of 0, while operations in the body of loopL3 have a hierarchical
level of 1.

Each loop that contains an operation, can be unrolled an arbi-
trary number of times (bounded by a user-specified constant). Op-
erations in different iterations of the same loop are distinguished
by their loop counts.
Definition 2 If an operation embedded in n loops, numbered a1,
a2, : : :, an in increasing hierarchical order, represents the bith
iteration of the loop numbered ai , its loop count is given by
< b1;b2; : : : ;bn >.

2.3.2 Identifying operation fanin-fanout relationships
Section 2.3.1 introduced a means of representing different itera-
tions of the same operation. In this subsection, we seek to in-
fer inter- and intra-iteration dependencies among operations. The
most natural way to represent such relationships is through a di-
rected graph, called thecomposite CDFG, whose nodes are re-
ferred to ascomposite operations.A composite operation pos-
sesses information about the operation it represents, its loop num-
ber, and its loop count. It is represented asfop; ln; lcg whereop
identifies the operation, andln and lc its loop number and loop
count, respectively. FunctionOP(Cop) returns the operation that
composite operationCop corresponds to.

We now present a method to construct the edges of the compos-
ite graph. First, we formally state the problem we wish to solve.
We then relate the loop number of a composite operation to that of
its fanins. This result is utilized to establish a relationship between
the loop count of a composite operation and that of its fanins.
Problem statement: Given composite operationsCop1 andCop2,
find the conditions under whichCop1 is a fanin ofCop2, given that
OP(Cop1) is a fanin ofOP(Cop2).
Lemma 1 If Cop1 = fop1; ln1; lc1g sources Cop2 =

fop2; ln2; lc2g, then either (a) ln1 is a prefix1 of ln2, or
(b) ln2 is a prefix of ln1 and Cop2 has a hierarchical level one less
than Cop1.
Lemma 2 If Cop1 sources Cop2 and the hierarchical level of Cop1
is n, then (a) the first n� 1 elements of the loop counts of Cop1
and Cop2 are identical, and (b) the nth element of the loop count of
Cop2 exceeds by one (is equal to) the nth element of the loop count
of Cop1, if the edge connecting OP(Cop1) to OP(Cop2) is a reverse
(forward) edge.
Proofs of these lemmas are available in [14].

1lni is a prefix oflnj if the hierarchical level oflni � hierarchical level
of lnj and the firstp elements oflni are identical to the firstp elements of
lnj , wherep is the hierarchical level oflni .

Table 1:Table of successors
loop number(Y) N.I. loop count(Y)

1 < a1;a2; : : : ;an > no < b1;b2; : : : ;bn >

2 < a1;a2; : : : ;an > yes < b1;b2; : : : ;bn+1>
3 < a1;a2; : : : ;am > yes < b1;b2; : : : ;bn�1;

where(m> n) bn+1;b0n+1; : : : ;b
0

m>

4 < a1;a2; : : : ;am > no < b1;b2; : : : ;bn�1;

where(m> n) bn;b0n+1; : : : ;b
0

m >

5 < a1;a2; : : : ;an�1 > n/a < b1;b2; : : : ;bn�1 >

Table 1 gives the loop count of a fanout operationY of opera-
tion X. X is assumed to have a loop number of< a1;a2; : : : ;an >
and a loop count of< b1;b2; : : : ;bn >. N.I. stands for next itera-
tion, and ayes(no) in this column indicates thatY is connected to
X by means of a reverse (forward) edge. In rows 1 and 2 of the
table,X andY belong to the same loops and, therefore, have the
same loop numbers. The loop count ofY is either the same as the
loop count ofX (row 1) or exceeds the loop count ofX by one
in thenth position (row 2), wheren is the hierarchical level ofX,
depending upon whetherX andY belong to the same loop itera-
tion, or are one iteration apart. Rows 3 and 4 correspond to a case
where the loop number ofX is a prefix of the loop number ofY,
i.e. Y belongs to every loop thatX is a part of, but the converse is
not true. In this case, the lastm�n elements of the loop count of
Y cannot be inferred from the loop count ofX and thenth element
of the loop count ofY either equals or is one greater than thenth
element of the loop count ofX, depending upon whether or notX
andY belong to the same iteration of the deepest loop to which
both belong. In the last row,Y represents an endloop operation of
the deepest loopX belongs to. By Lemma 2, the firstn�1 ele-
ments of the loop counts ofX andY are equal, thus completely
specifying the loop count ofY.

3 The Algorithm
In this section, we describe our scheduling algorithm in de-

tail. We first outline the algorithm and illustrate its application to
a CDFG. We then describe its constituent parts.
3.1 Outline

Figure 6 shows our scheduling algorithm. The algorithm ac-
cepts as input, a CDFG, an allocation constraint, a clock cycle
time, and a bound on the number of times a loop can be unrolled.
Control dependency edges in the CDFG are annotated with their
probabilities of occurrence. The allocation constraint specifies the
numbers and types of functional units available to the scheduler.
Module selection (assignment of a functional unit type to each op-
eration in the CDFG) is assumed to have been performed prior to
scheduling. The scheduler returns an STG which represents the
schedule.

We illustrate the scheduling process using the CDFG shown in
Figure 2. The allocation, clock cycle, and chaining constraints are
the same as those used for the example in Section 2.2. We assume
for this example that a loop can be unrolled no more than once.
Definition 3 The frontier of a state is the set of all composite
operations which are immediately schedulable upon leaving the
state.
Our basic approach is constructive: we construct an STG from a
CDFG by packing operations from the CDFG into states in the
STG, beginning with the first level of operations in the CDFG.
A state receives a set of operations to schedule; these operations
constitute a subset of any one of its immediate predecessor’s fron-
tier. The frontier grows as operations are scheduled in the state
(statements11 to 16 in the pseudocode), because the schedul-
ing of operations renders more operations schedulable. When a
state is fully packed, the operations in its frontier are stored in
the arrayUnscheduledimmediatesuccessors, which is indexed by
state. States whose immediate successors have not been identified

are stored in a queue,Stateq. Statement3 illustrates the forma-
tion of the queue. States are successively dequeued (24). When
a state,s, is dequeued, the operations on its frontier are packed
into states which represent the immediate successors ofs. If the
fully grown state is not identical to any known state, then it is en-
queued (22) and the composite operations on its frontier are stored
in the arrayUnscheduledimmediatesuccessors(21). This state
will be dequeued in turn. When the queue is empty (23), we have
a complete STG which describes the schedule.

The first step, during scheduling, is the identification of the set
of operations,initial , that can be scheduled initially. The elements
of this set are operations whose first iteration depends only upon
primary inputs. In our example (see Figure 2), operations<= 1
and<= 2 fall into this category. Keeping track of the iteration
number of every operation embedded in a loop is accomplished
by working with composite operations (defined in Section 2.3.2).
Statement5 handles the conversion of the operations ininitial into
composite operations. Since we are dealing with the first iteration
of operation<= 1(<= 2), whose loop number is< 0> (< 1>),
the corresponding loop count is< 0>(< 0>).

At this stage, we capture the conditions under which differ-
ent subsets ofinitial compositeexecute, and create states which
are responsible for scheduling the corresponding subsets. This
is done by first identifying the control dependency edges feed-
ing the composite operations ininitial composite(7). Each of
these control edges can evaluate either totrue or false. Differ-
ent combinations of truth values on the control dependency edges
result in activation of different subsets ofinitial composite. State-
ment8 identifies different combinations of truth values on the con-
trol dependency edges and statement9 extracts the subset ofini-
tial compositethat is activated on this combination of truth values.
Suppose that, in this case, whencondition inputsis an empty set,
the statement “foreachcombination of conditions (condition, con-
dition inputs)” allows exactly one iteration through the following
loop. ThenS conditionevaluates toinitial compositebecause no
composite operation ininitial compositehas any incoming con-
trol dependency edges. Once a subset of composite operations has
been identified, we form a state,newst, which shares with its suc-
cessors, the responsibility of scheduling the composite operations
in S condition(10). The state grows with the scheduling of com-
posite operations present inS conditionand their successors. This
expansion continues until no more composite operations can be
added to a state. The expansion of a state (statements11 through
16) can be halted by allocation, clock cycle, and loop unrolling
constraints. A three-stage process controls the scheduling of com-
posite operations to a state:

1. Selection of a composite operation,new C, from
S condition: the selection process should identify the
“best” composite operation whose inclusion innewst
respects allocation, clock cycle, and loop unrolling
constraints (12). In our example, composite operation
s0= f<= 1;< 0>;< 0>g is selected.

2. Addition of the schedulable successors ofnewC to
S condition: when an operation is scheduled, imme-
diate successors of this operation, whose predecessors
have been scheduled, become eligible for scheduling.
In our example, completion of the composite opera-
tion f<= 1;< 0 >;< 0 >g implies that its immedi-
ate successors,s1 = f+ + 1;< 0 >;< 0 >g, s2 =
f:=1,<>, <>g, and s3 = f<1;< 0 >;< 0 >g, can be
scheduled. S condition is augmented by the addition of
s1, s2, ands3(15). Therefore,S conditionconstitutes a fron-
tier of composite operations which sweeps over the surface
of the CDFG as scheduling progresses.

3. Removal ofnew C from S condition(16).
One more iteration through the innermost loop schedules com-
posite operationf<= 2;< 0>;< 0>g in newst and addsf++

Wavesched(CDFGG, ALLOCATION CONSTRAINTC,
CLOCK PERIODclk, UNROLL BOUND U , STGS)f

0 SET<OPERATION> initial = get level 1 operations(G);
//level 1 operations are defined as those operations which,
//when all loop edges (reverse edges) inG are removed,
//depend only on primary inputs

1 STATE S0; //create a start state
2 STATE parent state= S0;
3 QUEUE<STATE>Stateq; //create a queue of states
4 ARRAY<SET<COMPOSITEOPERATION>> Unscheduled-

immediatesuccessors;//An array, indexed by state, which
// stores the composite operations which are immediately
// schedulable upon leaving the state

5 SET<COMPOSITE OPERATION> initial composite= Make -
composite(initial);//construct composite operations from
//the operations ininitial with loop counts initialized to 0.

6 loop forever() f
7 SET<COMPOSITE OPERATION> condition inputs=

composite operations whose outputs are control
dependency edges feeding operations ininitial composite;

8 foreachcombination of conditions (condition,
condition inputs) f//conditioncorresponds to the

//assignment of a specific set of truth values to the
//results of the composite operations incondition inputs

9 SET<COMPOSITE OPERATION> S condition=
undercondition(condition, initial composite);

//Extracts all operations ininitial conditionthat will
//execute undercondition

10 STATE newst;
11 loop forever() f
12 COMPOSITE OPERATIONnewC =

Selectcompositeoperation(S condition, C, clk, U);
13 if (newC == NULL) break; //no more operations

can be scheduled in this state
elsef

14 add compositeoperationto state(newC, newst);
15 add schedulablesuccessors(new C, S condition);
16 removecompositeoperation(S condition, newC);

gg
17 S successors= S condition;
18 if (newst is identical to an existing state,P)
19 add an arc inS, labeledcondition,

from parent stateto P;
elsef

20 add an arc inS, labeledcondition,
from parent stateto newst;

21 Unscheduledimmediatesuccessors[newst]
= S condition;

22 append(new st, Stateq);
gg

23 if (is empty(Stateq) == 1) break;//STG complete, exit
24 STATE s = dequeuetop(Stateq);
25 Initial composite= Unscheduledimmediatesuccessors[s];
gg

Figure 6:Our scheduling algorithm
2;< 0 >;< 0 >g, f+4;< 1 >;< 0 >g, andf:= 2;<>;<>g to
S condition. At this point, no additional composite operations
can be scheduled innewst because of the assumption related to
control-dependency chaining. Therefore, thebreak statement at
line 13 is executed, transferring flow of control outside to loop. We
check to see ifnewst is identical to any existing state (18). The
process of inferring equality between states is described in [14].
Since this is not the case, we add an arc from the parent state,
S0, to new st, labeled 1, which implies that there is an uncondi-
tional transition fromS0 to new st (20). The immediate succes-

sors ofnewst are invested with the responsibility of scheduling
the composite operations remaining inS condition. newst is then
appended toStateq and immediately dequeued. Its frontier con-
stitutesinitial compositewhich is handled in the manner described
above.
3.2 Selecting the best composite operation

Since the process of selecting the “best” composite operation
can be computationally intensive, we use a heuristic. Our method
is based on the fact that operations in the CDFG which feed pri-
mary outputs through long paths are more critical (i.e. less mobile)
than operations which feed primary outputs through short paths
and, therefore, the former need to be scheduled earlier. The length
of a path is measured as the sum of the delays of its constituent
operations.

In data-dominated descriptions, with no loops and conditional
operations, the longest path between any pair of operations is
fixed. In CFI descriptions, some paths could be input-dependent.
Therefore, the longest path between a pair of operations must be
defined with respect to a given input. For example, the longest
path between operations<1 and+5 in Figure 2 depends on the
number of iterations of the loop containing<1, which depends
on the value ofk1. Since our scheduling algorithm is geared to-
wards minimizing the average execution time, we use the expected
length of the longest path from a composite operation to a primary
output as a metric to rank different composite operations. We next
outline a procedure to compute the expected length of the longest
path and illustrate its application to a CDFG.

−
:=1

<=1+ +

a

(2)

+1

+2

−3

b c

+4

+3

p = 0.9

p = 0.1

out

10

10

10

10

10

0

47

7

<0>

<0>

<0>

<0>

< >

< >

< >

< >

1*

(true)

Figure 7:Illustration of composite operation selection
Example 1: Consider the CDFG shown in Figure 7. Control de-
pendency edges are annotated with their probabilities of occur-
rence, and operations with the corresponding functional unit de-
lays and loop numbers. For example, operation+1 is assigned to
an adder type which takes 10ns to execute and has a loop number
< 0>. Suppose we are faced with the question of selecting a com-
posite operation from the setff+1;< 0>;< 3>g;f+3;<>; <>
gg. We first evaluate the expected length of the longest path as-
suming that no loop unrolling is performed and then incorporate
the effect of unrolling. Assuming that no unrolling is performed:

E(λ(+1;out)) = 10+E(λ(+2;out))
= 20+E(λ(�3;out))
= 30+0:9�E(λ(+1;out))+0:1�47

) E(λ(+1;out)) = 347ns (1)

whereE(λ(op1;op2)) is the expected length of the longest path
connecting operationsop1 and op2. Note that this delay corre-
sponds to the length of the longest path connecting thezeroth iter-
ation of operation+1 to out. Since we are dealing with the third
iteration of operation+1, we need to subtract, from our estimate,
the time taken to perform three iterations of the loop, which turns
out to be 30�3 = 90ns. This yields an expected maximum path
length of 257ns for the composite operationf+1;< 0>;< 3>g.
Adopting a similar procedure for operationf+3;<>;<>g results
in an expected longest path length of 57ns. Therefore, operation

f+1;< 0>;< 3 >g is chosen to be scheduled in the state under
consideration. We can see that this would be a good choice be-
cause operation+1 is on the critical path while operation+3 is
not.

3.3 Synthesizing compact STGs
The techniques presented in this section help keep the size of

the STG small, without significantly compromising the average
execution time of the schedule. These techniques are based on
identifying probable and improbable threads of execution and op-
timizing the probable threads for speed and the improbable threads
for STG compactness.

Consider statement8 in Figure 6. This statement extracts all
possible assignments of truth values for the composite operations
that feed the operations ofinitial compositethrough control de-
pendency edges. Statement9 packs all operations which are ac-
tivated under a given combination of conditions intoS condition,
which is passed on to a newly created state for scheduling. Not
all combinations of conditions are equi-probable. We identify all
combinations of conditions whose probability falls below a cer-
tain user-specified threshold,tp. The subsets ofinitial composite
which are activated under any one of these combinations are fused
into a single setS improbable, which is considered for schedul-
ing. The state created for scheduling these composite operations
is tagged as acompact state. Note that, in doing so, we have
traded the option of separately optimizing the threads of execu-
tion represented by the combinations of conditions represented in
S improbablefor STG compactness. The children of a compact
state are tagged compact. For the frontiers of compact states, the
algorithm presented in Figure 6 is modified by replacing state-
ments7 and8 by the corresponding statements in Figure 8. The
techniques presented in this example can reduce the size of the
controller by a significant amount without much compromise in
the average schedule length of the design. For the example TEST1
presented in Section 2, the STG shown in Figure 4 is synthesized
assumingtp = 1, which represents a schedule optimized for com-
pactness. The number of states in the schedule is 17, eight less
than the number of states that would be obtained if the CDFG
were synthesized withtp = 0. In this case, both schedules have
the same average length; in general, however, a large value oftp
would result in a longer schedule.

7 SET<COMPOSITE OPERATION> loop tests= loop test of
operations whose outputs feed operations of
initial compositethrough control dependency edges

8 foreachcombination of conditions (condition, loop tests) f
//conditioncorresponds to the assignment of a specific
//set of truth values to the results of the composite
//operations inloop tests

Figure 8: Optimizing for compactness
4 Experimental results

The techniques described in this paper were implemented in a
program calledWavesched, written in C++. We evaluated this pro-
gram by using it to produce schedules for several commonly avail-
able benchmarks. These schedules were compared against those
produced by LDS [5] and PBS [4], with respect to the following
metrics: (a) expected number of cycles, (b) number of states in the
STG produced, and (c) the smallest and largest number of cycles
taken to execute the behavioral description. In general, finding the
largest number of cycles taken to execute a behavioral description
is a hard problem. However, for the examples considered in this
paper, static analysis of the description was sufficient to find the
number. ForWavesched, a value of 0:2 was used fortp (defined in
Section 3.3).

Table 2 summarizes the results obtained. The columns labeled
E.N.C., #states, best-case, andworst-caserepresent, respectively,

Table 2:Expected number of cycles, number of states, best- and worst-case number of cycles results

CDFG Clk E.N.C. #states best-case worst-case
ws LDS PBS ws LDS PBS ws LDS PBS ws LDS PBS

GCD 13 13.9 14.4 18.2 6 5 5 1 1 1 386 386 513
Maha 13 3.3 6.0 6.0 12 10 10 3 5 5 4 7 7
Cordic 13 41.0 60.0 79.0 9 8 8 3 3 3 515 771 1026
Test1 13 178.6 301.7 349.8 24 12 12 1 1 1 766 1538 1791
Saxpy 13 104.0 501.0 501.0 8 6 6 104 501 501 104 501 501
Paulin 13 7.0 11.0 11.0 7 11 11 7 11 11 7 11 11

the expected number of cycles, number of states in the STG pro-
duced, smallest number of cycles, and largest number of cycles
taken to execute the STG. Minor columnsws, LDS, and PBS rep-
resent schedules produced byWavesched, LDS, and PBS, respec-
tively. We used a library of functional units (their delays given in
brackets) which consists of (a) an adderad1 (10ns), (b) a subtrac-
tor sb1 (10ns), (c) a multipliermlt1 (23ns), (d) a less-than com-
paratorcmp1(10ns), (e) an equality comparatoreq1(5ns), (f) an
incrementerinc1 (5ns), (g) a multi-bit OR gateor1 (3ns), and (h)
a shifters1 (10ns). We allowed all schedulers to take advantage
of multicycling and data chaining, and allowed control chaining.
The following chains of operations were assumed to execute in
one cycle: (a) two additions, (b) two subtractions, (c) a compari-
son followed by either an increment or an addition or a subtraction
or a shift, and (d) two comparisons. The following chains of op-
erations were assumed to execute in two cycles: (a) a comparison
followed by a multiplication, and (b) a multiplication followed by
a comparison. The cycle time was fixed at 13ns for all examples.
Note that the chain of two operations frequently executes in much
less time than the addition of their execution times. The allocation
constraints for an example can be found by looking up the entries
in Table 3. For example, the allocation constraint forGCD is one
subtractor, one less-than comparator, three equality comparators,
and one multi-bit OR gate.

The results obtained indicate thatWaveschedproduced an av-
erage expected schedule length speedup of 2:1 over schedules ob-
tained using LDS, and 2:2 over schedules obtained using PBS.
The average price paid in terms of the number of states was a 26%
increase forWaveschedcompared to LDS and PBS. Note that an
increase in the number of states need not be reflected in a similar
increase in circuit area. We believe that the improvement in perfor-
mance will be worth paying the small price in area, if any. For the
exampleTest1, the schedule produced byWavesched, upon syn-
thesis with an in-house system, resulted in a controller-datapath
circuit whose layout area was only 1.7% more than that produced
using LDS, thoughWaveschedincurred a 100% overhead in the
number of states in the schedule. We also note that, forWavesched,
the number of cycles in the shortest and longest paths is smaller
than or equal to the corresponding numbers for LDS and PBS. The
CPU times, measured on an SGI Indy workstation, with a MIPS
R4400 CPU running at 175MHz, were under 30 seconds for all
the examples.

Table 3:Allocation constraints for the examples in Table 2

Circuit ad1 sb1 mlt1 cmp1 eq1 inc1 or1 s1
GCD - 1 - 1 3 - 1 -
Maha 2 2 - 2 - - - -
Cordic 2 2 1 1 1 2 - 2
Test1 2 - 2 3 - 2 - -
Saxpy 2 - 2 - 2 2 - -
Paulin 2 2 2 - - - - -

5 Conclusions
In this paper, we presented a novel scheduling technique which

is geared towards minimizing the expected execution time for CFI
behavioral descriptions. It uses a CDFG model which preserves

the parallelism inherent in the application. It can perform opti-
mizations within and across loop boundaries and implicitly unroll
loops to improve the average schedule length. This is made possi-
ble through a general loop representation technique which we have
devised. It also performs concurrent loop optimzation. Experi-
ments performed on several benchmarks show expected schedule
length speedups of upto 4.8 over schedules produced by existing
schedulers.

References
[1] D. D. Gajski, N. Dutt, A. Wu, and S. Lin,High-Level Synthe-

sis: Introduction to Chip and System Design. Kluwer Aca-
demic Publishers, Boston, 1992.

[2] W. Wolf, A. Takach, C. Huang, and R. Mano, “The Prince-
ton university behavioral synthesis system,” inProc. Design
Automation Conf., pp. 182–187, June 1992.

[3] D. Ku and G. D. Micheli, “Relative scheduling under timing
constraints,”IEEE Trans. Computer-Aided Design, vol. 11,
pp. 696–718, June 1992.

[4] R. Camposano, “Path-based scheduling for synthesis,”IEEE
Trans. Computer-Aided Design, vol. 10, pp. 85–93, Jan. 1991.

[5] S. Bhattacharya, S. Dey, and F. Brglez, “Performance anal-
ysis and optimization of schedules for conditional and loop-
intensive specifications,” inProc. Design Automation Conf.,
pp. 491–496, June 1994.

[6] R. Bergamaschi, S. Raje, I. Nair, and L. Trevillyan, “Control-
flow versus data-flow scheduling: Combining both ap-
proaches in an adaptive scheduling system,”IEEE Trans. VLSI
Systems, vol. 5, pp. 82–100, Mar. 1997.

[7] Y. Fann, M. Rim, and R. Jain, “Global scheduling for high-
level synthesis applications,” inProc. Design Automation
Conf., pp. 542–546, June 1994.

[8] S. Amellal and B. Kaminska, “Functional synthesis of digi-
tal systems withTASS,” IEEE Trans. Computer-Aided Design,
vol. 13, pp. 537–552, May 1994.

[9] T. Kim, N. Yonezawa, J. W. S. Liu, and C. L. Liu, “A schedul-
ing algorithm for conditional resource sharing- a hierarchical
reduction approach,”IEEE Trans. Computer-Aided Design,
vol. 13, pp. 425–438, Apr. 1994.

[10] K. Wakabayashi and T. Yoshimura, “A resource sharing and
control synthesis method for conditional branches,” inProc.
Int. Conf. Computer-Aided Design, pp. 62–65, Nov. 1989.

[11] A. Aiken, A. Nikolau, and S. Novack, “Resource-
constrained software pipelining,”IEEE Trans. Parallel and
Distributed Systems, vol. 6, pp. 1248–1269, Dec. 1995.

[12] D. M. Lavery and W. W. Hwu, “Modulo scheduling of loops
in control-flow intensive non-numeric programs,” inProc. Int.
Symp. Microarchitecture, pp. 126–137, Dec. 1996.

[13] B. R. Rau and J. A. Fisher, “Instruction-level parallel pro-
cessing: History, overview, and perspective,”J. Supercomput-
ing, vol. 7, pp. 9–50, July 1993.

[14] G. Lakshminarayana, K. S. Khouri, and N. K. Jha,
“Wavesched: A novel scheduling technique for control-flow
intensive behavioral descriptions,” Tech. Rep CE-J97-001, EE
Dept., Princeton Univ.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

