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Abstract elements allowed) and produces a scheduled CDFG which is op-

In this paper, we present a novel scheduling algorithm targetedt'm'zed for average execution time. It is assumed that the type of

towards minimizing the average execution time of control-flow in- IPrary element executing each operation is known.

tensive behavioral descriptions. Our algorithm uses a control-data, _Past research in scheduling of CFI behaviors has modeled the
flow graph (CDFG) model, which preserves the parallelism inher- INPut description as eontrol flow grapi(CFG), which is basically

ent in the application. It explores previously unexplored regions & graphical description of a sequential program based implemen-
of the solution space through its ability to overlap the schedules tation of the functionality. Scheduling techniques based on this

of independent iterative constructs, whose bodies share resourced0de! were presented in [4]-[7]. While the CFG model is well

It also incorporates well-known optimization techniques like loop Suited o capture execution of instructions on a general-purpose
unrolling in a natural fashion. This is made possible by a general UniProcessor, it has been shown to be inadequate in exploiting the
loop-handling technique, which we have devised. Application of parallelism inherent in typical CFI applications. CDFG models,

the algorithm to several common benchmarks demonstrates up tc€9UiPPed to handle control and data dependencies, without se-

; . ot tializing independent operations, and algorithms for schedul-
4.8-fold improvement in expected schedule length over existing 44N : . :
scheduling algorithms, without paying a price in terms of the best. "9 CDFGs, were presented in [8]-[10]. While these algorithms
and worst-case schedule lengths required to execute the behavEXPIOit parallelism within loop structures, they are incapable of

; e ; ) optimizing across loop boundaries, and do not support loop un-
Iggtﬁgﬁﬂgg Sgtzgﬁbfrrgﬂ;Jgrgtlgr,ittﬁri)l.)estlworst case schedule rolling. Methods such as those presented in [11,12] are capable of

exploiting loop unrolling and pipelining to enhance performance,
1 Introduction but are not capable of performing concurrent optimization of in-
dependent loops. A survey of various techniques targeted towards
achieving better schedules for very large instruction word proces-
sors, which is closely related to the problem of scheduling for
high-level synthesis, can be found in [13].
Our scheduler, calletVaveschedor its wave-like scheduling

ability, uses a CDFG model of the input behavioral description.

The scheduling problem arises in many different forms in di-
vergent fields of study. Scheduling of operations on functional
units and variables on registers in high-level synthesis, instruc-
tions on a processor during compilation, packets on communica-
tion links in networks, and tasks on processing elements in dis-

tributed computing are a few typical examples. It can parallelize the execution of independent loops whose bod-

__Inhigh-level synthesis, there are three different kinds of behav- jo ' spare resources. The scheduler is also capable of transcending
ioral descriptions: data-dominated, control-flow intensive (CFl), loop boundaries in its quest for a globally optimal solutiae,

and control-dominated. Data-dominated descriptions are characy g\ hsymes several well-known optimization techniques such as
terized by a predominance of arithmetic operations and the ab-

sence of control-flow constructs. CFI descriptions reflect a mix loop unrolling and functional pipelining. This is made possible by
h ; . > p a general technique we have developed to handle inter-iteration de-
of arithmetic and logical operations, and control flow structures

’ i’ ; h ; pendencies that arise as a result of loop unrolling. Our algorithm
like loops and conditional operations. Control-dominated applica- can support multi-cycled and pipelined functional units and per-

tions are characterized predominantly by control-flow operations. ¢, )" chaining to enhance cycle time utilization. A synergy of the
Problems in the digital signal and image processing domains, SUChabove techniques results in schedules which are optimized for av-

as filtering, convolution, and discrete cosine transform, translate erage execution time and have same or better best- and worst-case

into data-dominated descriptions. = Applications related to net- execution time characteristics as those produced by conventional
work protocol handling, and many other network-centric appli- < 2qilers

cations are characterized by CFI descriptions. Sequencers, which
generate sequences of signals to control events in a process, ar@  Background

control-dominated. The scheduling problem for each of these | i section, we discuss the basic concepts used in our work.

domains has its own unique flavor, and distinct classes of algo'First we describe our CDFG model with an example. Next, we

rithms are used to handle the problems in each domain. A survey ; P ; ;
of scheduling techniques for data-dominated applications can bedescrlbe state transition graphs (STGs), which help to describe

found in 111, Scheduling f trol-dominated licati schedules. This is followed by an introduction to the concept
ound in [1]. Scheduling for control-dominated applications was ¢ concurrent loop optimization and an example illustrating the
considered in [2] and [3].

In this paper, we deal with the scheduling problem for high- power of this technique. We then present a general technique for

X - o . keeping track of inter- and intra-loop dependencies, which allows
level synthesis of CFI behavioral descriptions. The algorithm ac- 5 ypjfied treatment of loops and other conditional operations.
cepts as input, a CDFG, a target clock period, and an allocation

constraint (restrictions on the number and type of different library 2.1 . Prel'mma”es_ . . .
High-level synthesis starts with the compilation of the input

“This work was supported in part by NSF under Grant No. Mip- Dehavioral description, usually written in a high-level hardware
9319269 and in part by Alternative System Concepts, Inc. under an SBIR description language like VHDL or Hardware C, into a CDFG. A
contract from Air Force Rome Laboratories. CDFG is a directed graph, whose nodes represent operations, and
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edges represent dependencies between operations. In CFI descrip-
tions, the dependencies are of two types: data and control. An ©
edge represents a data dependency if the source node of the edg
produces data that the sink node consumes. Existence of a con-
trol dependency between nodes implies that the execution of the
sink node depends on the outcome of the execution of the source
node. Figures 1 and 2 show a behavioral description written in a

int TESTL (int K1, int K2, int &, int b){
int x1, x2, varl, var2, var3, var4, vars;
x1=10;
x2=0;
for (int count= 0; count< k1; count+ +) {
I<=1land++1

if (x1<100){// <1
varl=a-+x1 // +1
var2=>5+varl; // +2
xl=var2x 3;// %1

} else{
var3=a+xL /[ +3
x1l=var3x 7; //x2

9
} ioul

for (int countl= 0; count1< k2; countl+ +) {
Il <=2and++2

varS5=b+x2 // +4

Xx2=6x var5; // 3

}
return (x1+x2); // +5

}

Figure 1: A fragment of code, EsTL, written in a high-level
language

high-level language and the CDFG corresponding to the descrip-
tion, respectively. The comment at the end of each statement indi- Figure 3: (a) A schedule produced by PBS, and (b) a schedule
cates the operation in the CDFG it corresponds to. Variable dec- produced by LDS

larations and initializations do not correspond to operations in the +5, but feed operations= 1 and = 2 instead. These interme-
CDFG. Data dependencies in the CDFG are indicated by continu- giate operationg are control-dependent on operationsl and

ous arcs, and control dependencies, by broken arcsthEmeand <= 2, respectively. They ensure that operatigh can only exe-
elsebranches of aif statement are represented by placingnd cute when both loops have finished execution. In general, when an
— symbols, respectively, adjacent to operations executed in thesegperation outside a loop body (sink) is dependent on the result of
cases. For example, operatieri, which is in thethen branch of an operation inside the loop (source), the result of the source oper-
theif statementc1, has an incoming control dependency marked aion feeds an intermediate operation which is control-dependent
by a+, and operationt3, which is in theelsebranch of the same o the operation that performs the loop test. The sink operation is
if statement, is fed by a control dependency marked bysgm- sourced by the intermediate operation. These intermediate oper-
bol. Note that the value that gets assigneckialepends upon  aiions are referred to andloopoperations. These operations do
whether operatiorc1 evaluates tarue or false This is expressed ot have a physical implementation, and are incorporated into the
by means of aelectoperation, which assigns to its output, either cpeg for ease of representation and handling.

of two values, at itd andr input ports, depending on the value On completion, the scheduler outputs an STG describing the
ats. Though, in general, an operation can execute only if all its schequle. The STG is a directed graph whose nodes represent
data dependencies are known, a select operation can execute if thgaies and edges represent transitions between states. Nodes in
value at porsis known, and data are available at the selected input (o STG have information about the operations executed in the

port. For the CDFG shown in Figure 2, variabigis the output 5 responding state, and edges capture the conditions under which
of select operatiorsell whose input portd, r, ands are fed by a state transition takes place.

x1, x2, and<1, respectively. An edge is also annotated with the L i
initial value of the variable it corresponds to. Edges ina CDFG are 2.2 Concurrent loop optimization

of two types: reverse and forward edges. Reverse edges are those In this subsection, we describe concurrent loop optimization,
that represent data and control dependencies between operations technique which helps overlap the schedules of the independent
belonging to different iterations of the same loop body, and for- loop bodies which share resources. To motivate this technique, we
ward edges represent dependencies within an iteration of a looppresent schedules derived using some existing algorithms, without
Conditional edges in the CDFG are annotated with their proba- the benefit of this technique and contrast them with the schedule

bility of occurrence. For example, operatieri evaluates tdrue produced by our schedul®aveschedWe consider the schedul-
with a probability of 05, and operatiorc=1 evaluates ttrue with ing of the CDFG shown in Figure 2 under the following allocation
a probability of 098. constraints: a multiplier of typenult, two adders of typadd?,

Variablesx1 andx2in the CDFG do not directly feed operation  three comparators of typgompl and two incrementers. Each of



restricted to reordering of operations within basic blocks.

At this stage, we would like to point out that some synthesis
systems do not allow control-dependency chainirg, an op-
eration cannot be scheduled in the same state that generates the
condition necessary for its execution. If specified, our scheduling
algorithm can either enforce this restriction, or benefit from the
flexibility that results from its absence. For the ease of exposition,
this restriction is assumed to be in effect for schedules produced
by Wavesched However, this restriction is not enforced for the
schedules shown in Figures 3(a) and (b).

Our algorithm supportgmplicit unrolling of loops. The user
can specify a bound on the number of timds,a loop can be un-
rolled. This implies that the scheduler has the option of unrolling
the loop up tdJ times during the course of its execution. If the
CDFG contains nested loops, different loops in the nest can be
unrolled as deemed appropriate. A state could, therefore, poten-
tially contain operations belonging to several different loops and
to different iterations of the same loop body. Hence, we need a
mechanism to keep track of the position of an operation in the

Figure 4: A schedule produced by Wavesched

these functional units is assumed to take one cycle. Suppose thajoop hierarchy and handle inter-iteration dependencies induced by
the following chains of operations can be performed in one cycle: |oop unrolling. Section 2.3 presents a technique we have devised
(a) two additions, (b) a multiplication followed by a comparison, - for this purpose.

(c) a comparison followed by an increment, (d) a comparison fol- 2 3 Handling loop-induced dependencies

lowed by an addition, (e) an addition followed by a comparison, (f)
two comparisons, (g) a comparison followed by a multiplication
and (h) an increment followed by a comparison.

From the example presented in the previous section, it is clear
' that the ability to perform inter- and intra-loop optimizations is a
) . desirable feature for a CFl scheduler. Incorporating these tech-
Figures 3(a), 3(b) and 4 represent the STGs obtained by path-yiq,es into a scheduling algorithm requires a general technique
based scheduling (PBS) [4], loop-directed scheduling (LDS) [S] {q keep track of loop-induced dependencies. The techniques pre-
and Waveschedrespectively, under the above constraints. Start sented here are geared towards simplifying loop handling by mak-
states are represented by double ellipses, and terminal states, by, |oops appear “just like” other conditional dependencies.
bold ellipses. The method given in [5] for deriving the expected =, this subsection, we present (a) a numbering convention to
number of cycles for schedules, which is applicable to CFGS, wasqen track of different iterations of an operation (presented in
modified to make it applicable to CDFGs [14]. The expected geciion 2.3.1), and (b) a means of deriving fanin-fanout relation-
number of cycles for the schedules produced by PBS, LDS, andgping hetween operations augmented with the derived loop itera-
Waveschedrespectively, computed using this modified method, o0 numbers (presented in Section 2.3.2).
are 248cycles 19994 cycles and 12009 cycles _ To motivate the analysis in this subsection, we consider the
The reason for the above difference is that the two loops in following problem, which is common to most scheduling algo-
CDFG TesTl, which are actually independent, and can be exe- yithms: that of identifying the schedulable successors of an op-
cuted in parallel, are sequentialized in the CFG. As aresult, for the gration which has just been scheduled. If loop unrolling is not
STGs shown in Figures 3(a) and 3(b), the execution of the secondy|jowed, this procedure can be carried out through structural anal-
loop can begin only after the execution of the first is terminated. ysjs of the CDFG. First, we derive the s&uiccset of fanouts
However, in the schedule produced by our algorithm, the execu- of the scheduled operation. If all fanins of an operatisagc
tion of these parallel loops is overlapped in time. With both 100ps ¢ Syccset have been schedulesticcis considered schedulable.
executing in parallel, our schedule would complete one iteration of |t |oop unrolling is allowed, structural analysis of the CDFG is not
each loop in two cycles by appropriately skewing the execution of gfficient to perform this task. This is because different iterations
the operations in the loops to ensure that resource constraints argf the same operation can co-exist, and in order to schedule a spe-
satisfied. The bold edges in Figure 4 represent transitions betweerific iteration of an operation, we need to ensure that the correct
states where both loops execute concurrently. The schedules projterations of its fanins have been scheduled. For example, for the
duced by PBS and LDS, however, cannot take advantage of thisScpFG shown in Figure 5, operatior, which occurs in the third
effect. Therefore, one iteration of each loop still takes two clock teration of the outer loop and the second iteration of the inner
cycles, but these iterations are sequential as opposed to parallelggp is schedulable only if the third iteration of operatiefi, and
resulting in a 17-fold slowdown in performance for LDS, relative  the second inner loop iteration of the third outer loop iteration of
to our method. operation> 3 have been scheduled.
The above example illustrates that the performance of sched- . . .
ulers based on the CFG model is heavily dependent on the struc2-3-1  Keeping track of loop iterations
ture of the CFG. If a CFG, which parallelized the execution of Loops can be viewed as inducing a hierarchical structure on the
loops, were used as input to the LDS or PBS algorithms, the sched-CDFG. Operations which are not part of any loop have a hierar-
ule produced would have been similar to the one produced by ourchical level of 0, operations which are embedded in exactly one
algorithm. However, we are not aware of any algorithm that de- loop have a hierarchical level of 1, and so on. This hierarchical
rives the “best” CFG for a given behavioral description, under a structure can be represented as a tree.
given set of allocation constraints. Therefore, a scheduling tech- Definition 1 Theloop numberof an operation is defined as an
nique that can effectively use the flexibility afforded by the CDFG ordered set consisting of the numbers assigned to different loops
representation is essential in exploiting parallelism in the input de- that this operation is a part of. The set is ordered by increasing
scription. Details of our scheduling algorithm, which satisfies the hierarchical level.
above criterion, can be found in Section 3. Note that, in this case, For instance, the loop number of operatient 3 in Figure 5,
the algorithm described in [6], while partially addressing the limi- which is a part of loop.3, nhumbered 0, at hierarchical level 1,
tations of CFG-based scheduling, would not significantly improve and loopL1, numbered 0, at hierarchical level 0<490,0 >. The
the performance of the schedule over that of LDS because it isnumber of elements in an operation’s loop number is the same as



Table 1:Table of successors
loop number(Y) | N.I loop count(Y)

1 <ap,ap,...,an > no <bg,by,...,bh >
2| <ag,a,...,an> yes | <bg,bp,....bh+1>
3 <ag,az,...,am> yes <by,by,...,bo_1,
where(m> n) bn+ 1,0, 4,..., 00>
4 < ag,az,...,am> no <by,by,...,bo1,
. where(m > n) bn,bpy1, .- b >

<@&,8,...,8-1> | nfa | <bg,bp,...,byh 1>

Table 1 gives the loop count of a fanout operatibnf opera-
tion X. X is assumed to have a loop numberoty,ay,...,an >
and a loop count ok by, by, ...,by >. N.I. stands for next itera-

___Figure 5:A CDFG with a hierarchy of nested loops . tion, and ayes(no) in this column indicates that is connected to
its hierarchical level. Every operation in Figure 5 is annotated with x 1,y means of a reverse (forward) edge. In rows 1 and 2 of the
its loop number. table,X andY belong to the same loops and, therefore, have the

The hierarchical level of an endloop operation is one less than ¢;me loop numbers. The loop countois either the same as the
that of the loop it helps terminate. For example, operatio®,: loop count ofX (row 1) or exceeds the loop count ¥fby one
which serves to transfer the result of operatidroutside loof.3, in the nth position (row 2), whera is the hierarchical level oX,
takes on loop number 0>. This represents a hierarchical level  yenending upon whethet andY belong to the same loop itera-
of 0, while operations in the body of lodf have a hierarchical  {jon “or are one iteration apart. Rows 3 and 4 correspond to a case
level of 1. . . . where the loop number of is a prefix of the loop number of,

Each loop that contains an operation, can be unrolled an arbi-j o "y helongs to every loop that is a part of, but the converse is
trary number of times (bounded by a user-specified constant). Op-p trye. In this case, the last— n elements of the loop count of
erations in different iterations of the same loop are distinguished v -3not be inferred 1l‘rom the loop countXfand thenth element
by theirloop counts . of the loop count of either equals or is one greater than tiie
Definition 2 If an operation embedded in n loops, numbered &  gjement of the loop count o, depending upon whether or mét
8, ..., @ In increasing hierarchical order, represents thetth andY belong to the same iteration of the deepest loop to which
iteration of the loop numbered;aits loop count is given by  poth belong. In the last row, represents an endloop operation of
<by,bp,...bp > the deepest loo belongs to. By Lemma 2, the first— 1 ele-
2.3.2 ldentifying operation fanin-fanout relationships ments of the loop counts of andY are equal, thus completely

Section 2.3.1 introduced a means of representing different itera-Spec'fy'ng the loop count of .

tions of the same operation. In this subsection, we seek to in-3 The Algorithm

fer inter- and intra-iteration dependencies among operations. The | this section, we describe our scheduling algorithm in de-
most natural way to represent such relationships is through a di- (5|, e first outline the algorithm and illustrate its application to
rected graph, called theomposite CDFGwhose nodes are re- 5 CDFG. We then describe its constituent parts.

ferred to ascomposite operationsA composite operation pos- 3.1 Outline

sesses information about the operation it represents, its loop hum-="
ber, and its loop count. It is represented{ap, In, Ic} whereop
identifies the operation, ard andlc its loop number and loop
count, respectively. FunctioDP(Cop) returns the operation that
composite operatioBop corresponds to.

We now present a method to construct the edges of the compos
ite graph. First, we formally state the problem we wish to solve.
We then relate the loop number of a composite operation to that of
its fanins. This result is utilized to establish a relationship between
the loop count of a composite operation and that of its fanins.
Problem statement: Given composite operatior,; andCopy,
find the conditions under whidBop1 is a fanin ofCqpy, given that
OP(Copy) is a fanin ofOP(Cqp2).

Figure 6 shows our scheduling algorithm. The algorithm ac-
cepts as input, a CDFG, an allocation constraint, a clock cycle
time, and a bound on the number of times a loop can be unrolled.
Control dependency edges in the CDFG are annotated with their
probabilities of occurrence. The allocation constraint specifies the
numbers and types of functional units available to the scheduler.
Module selection (assignment of a functional unit type to each op-
eration in the CDFG) is assumed to have been performed prior to
scheduling. The scheduler returns an STG which represents the
schedule.

We illustrate the scheduling process using the CDFG shown in
Figure 2. The allocation, clock cycle, and chaining constraints are
the same as those used for the example in Section 2.2. We assume

Lemmallf Cop1 = {oplinllcl} sources Gpo = for this example that a loop can be unrolled no more than once.
{op2In2,Ic2}, then either (a) In1l is a prefil of In2, or Definition 3 The frontier of a state is the set of all composite
(b) In2 is a prefix of In1 and &> has a hierarchical level one less  operations which are immediately schedulable upon leaving the
than Gp1. state.

Lemma 2 If Cqp1 Sources Gpo and the hierarchical level of &1 Our basic approach is constructive: we construct an STG from a
is n, then (a) tFne first n- 1 elements of the loop counts offz CDFG by packing operations from the CDFG into states in the

and Gp2 are identical, and (b) the nth element of the loop count of STG, beginning with the first level of operations in the CDFG.
Cop2 exceeds by one (is equal to) the nth element of the loop countA state receives a set of operations to schedule; these operations
of Copy, if the edge connecting @Byp1) to OP(Copy) is a reverse constitute a subset of any one of its immediate predecessor’s fron-
(forward) edge. tier. The frontier grows as operations are scheduled in the state
Proofs of these lemmas are available in [14] (statementsl1 to 16 in the pseudocode), because the schedul-
' ing of operations renders more operations schedulable. When a

L is a prefix ofln; if the hierarchical level ofn; < hierarchical level state is fully packed, the operations in its frontier are stored in
of Inj and the firstp elements ofn; are identical to the firsp elements of ~ the arrayunscheduledmmediatesuccessorsvhichisindexed by
Inj, wherep is the hierarchical level dfy;. state. States whose immediate successors have not been identified




are stored in a queu&tateq. Statemen8 illustrates the forma-
tion of the queue. States are successively dequez#d YWhen
a statess, is dequeued, the operations on its frontier are packed | WaveschedCDFGG, ALLOCATION_CONSTRAINTC,

into states which represent the immediate successass lbthe cLock_PERIODClk, UNROLL_BOUND U, STGS){
fully grown state is not identical to any known state, then itis en- | 0 SET<OPERATION> initial = getlevel1_operationsG);
queued 22) and the composite operations on its frontier are stored |  //level 1 operations are defined as those operations which,

in the arrayUnscheduledmmediatesuccessorg21). This state /lwhen all loop edges (reverse edgessiare removed,
will be dequeued in turn. When the queue is ema),(we have //depend only on primary inputs
a complete STG which describes the schedule. 1 STATE SQ //create a start state

The first step, during scheduling, is the identification of the set | 2 State parentstate= SQ
of operationsinitial, that can be scheduled initially. The elements | 3 QUEUE<STATE> Stateq; //create a queue of states
of this set are operations whose first iteration depends only upon| 4 ARRAY < SET< COMPOSITEOPERATION>> Unscheduled
primary inputs. In our example (see Figure 2), operatians1 immediatesuccessorgAn array, indexed by state, which
and <= 2 fall into this category. Keeping track of the iteration /I stores the composite operations which are immediately]
number of every operation embedded in a loop is accomplished| // schedulable upon leaving the state

by working with composite operations (defined in Section 2.3.2). | 5 SET<CoMPOSITEOPERATION> initial _composite= Make -

Statemenb handles the conversion of the operationaitial into compositeifitial );//construct composite operations from
composite operations. Since we are dealing with the firstiteration|  //the operations immitial with loop counts initialized to 0.
of operation<= 1(<= 2), whose loop number i 0 > (< 1 >), 6 loop._forever() {
the corresponding loop countis0 >(< 0 >). o 7  SET<COMPOSITEOPERATION> conditioninputs=
At this stage, we capture the conditions under which differ- composite operations whose outputs are control
ent subsets oihitial_compositeexecute, and create states which dependency edges feeding operationisitial_composite
are responsible for scheduling the corresponding subsets. Thigg  foreachcombination of conditionscpndition
is done by first identifying the control dependency edges feed- conditioninputs {//conditioncorresponds to the
ing the composite operations initial_composite(7). Each of Ilassignment of a specific set of truth values to the
these control edges can evaluate eithetrte or false Differ- /Iresults of the composite operationscionditioninputs
ent combinations of truth values on the control dependency edges g SET<COMPOSITEOPERATION> S condition=
result in activation of different subsetsioftial_composite State- undetconditiongondition initial_compositg
ment8 identifies different combinations of truth values on the con- I/Extracts all operations iimitial _conditionthat will
trol dependency edges and staten@ektracts the subset afi- /lexecute undecondition
tial_compositehat is activated on this combination of truth values. | 10 STATE newst
Suppose that, in this case, whesnditioninputsis an empty set, 11 loop.forever() {
the statementfbreach combination of conditionscondition con- 12 COMPOSITEOPERATIONNeWC =
dition_inputg” allows exactly one iteration through the following Selectcompositeoperation§_condition C, clk, U);
loop. ThenS_conditionevaluates tanitial_compositebecause no 13 if (newC == NULL) break; //no more operations
composite operation imitial_compositehas any incoming con- can be scheduled in this state
trol dependency edges. Once a subset of composite operations has else]
been identified, we form a stategw.st, which shares with its suc- 14 add.compositeoperationto_stateiew.C, newst);
cessors, the responsibility of scheduling the composite operationg 15 add schedulablesuccessorsgew.C, S.conditior);
posite operations present®conditionand their successors. This 1}
expansion continues until no more composite operations can bel 17 5 syccessors- S condition
added to a state. The expansion of a state (staterh@ibsough 18 if (newst s identical to an existing statg)
16) can be halted by allocation, clock cycle, and loop unrolling | 19 add an arc ir§, labeledcondition
constraints. A three-stage process controls the scheduling of com from parentstateto P;
posite operations to a state: else{
1. Selection of a composite operationnewC, from 20 add an arc ir5, labeledcondition
Scondition the selection process should identify the from parent stateto newst;
“best” composite operation whose inclusion imewst 21 Unscheduledmmediatesuccessofsiew st
respects allocation, clock cycle, and loop unrolling = Scondition
constraints 12). In our example, composite operation |22 append(ew.st, Stateq);
s0={<=1,<0>,< 0>} is selected. 1}
2. Addition of the schedulable successors méwC to 23 if (is_emptyStateq) == 1) break;//STG complete, exit

Scondition when an operation is scheduled, imme- |24 STATE s=dequeugop(Stateq); _
diate successors of this operation, whose predecessorg 25 Initial_composite= Unscheduledmmediatesuccessors;
have been scheduled, become eligible for scheduling. H
In our example, completion 01‘I the hcomposite ogera- Figure 6:0ur scheduling algorithm
tion {<= 1,< 0 >,< 0 >} implies that its immedi- .
ate éuccessors,sl = {+ JE 1, <p0 >< 0>}, s2= 2,<0>,<0>} {+4,<1>,<0>}, and{:=2,<>,<>} to
(=1, <>, <>}, ands3= {<I,< 0>,< 0 >}, can be Scondition At this point, no additional composite operations
scheduled. S.condition is augmented by the addition of can be scheduled inewst because of the assumption related to
s, 2 ands3(15). ThereforeS conditionconstitutes a fron-  control-dependency chaining. Therefore, tieak statement at
tier of composite operations which sweeps over the surface IN€ 13is executed, transferring flow of control outside to loop. We
of the CDFG as scheduling progresses check to see ihewstis identical to any existing staté§. The
. ’ process of inferring equality between states is described in [14].

3. Removal ohew.C from S.condition(16). Since this is not the case, we add an arc from the parent state,
One more iteration through the innermost loop schedules com- SQ to newst, labeled 1, which implies that there is an uncondi-
posite operatio{<=2,< 0>,< 0>} in newstand adds{+ + tional transition fromS0to newst (20). The immediate succes-




sors ofnewst are invested with the responsibility of scheduling {+1,< 0>,< 3>} is chosen to be scheduled in the state under

the composite operations remaining3rcondition newstis then consideration. We can see that this would be a good choice be-
appended t&tateq and immediately dequeued. Its frontier con- cause operation-1 is on the critical path while operation3 is
stitutegnitial_compositevhich is handled in the manner described not. [ |
above.

. . . 3.3 Synthesizing compact STGs

3.2 . Selecting the best c_omposulte qperatlon ) The techniques presented in this section help keep the size of
Since the process of selecting the “best” composite operation the STG small, without significantly compromising the average

can be computationally intensive, we use a heuristic. Our method execution time of the schedule. These techniques are based on

is based on the fact that operations in the CDFG which feed pri- jdentifying probable and improbable threads of execution and op-

mary outputs through long paths are more critical (ess mobile)  timizing the probable threads for speed and the improbable threads
than operations which feed primary outputs through short paths for STG compactness.

and, therefore, the former need to be scheduled earlier. The length  Consjder statemer& in Figure 6. This statement extracts all

of a path is measured as the sum of the delays of its constituentyossible assignments of truth values for the composite operations
operations. ) o ) -~ that feed the operations aiitial_compositethrough control de-

In data-dominated descriptions, with no loops and conditional pendency edges. Stateménpacks all operations which are ac-
operations, the longest path between any pair of operations istyated under a given combination of conditions igaondition
fixed. In CFI descriptions, some paths could be input-dependent.\hich is passed on to a newly created state for scheduling. Not
Therefore, the longest path between a pair of operations must beg|| combinations of conditions are equi-probable. We identify all
defined with respect to a given input. For example, the longest compinations of conditions whose probability falls below a cer-
path between operationsl and+5 in Figure 2 depends on the  tain user-specified thresholty, The subsets dhitial_composite
number of iterations of the loop containingl, which depends  which are activated under any one of these combinations are fused
on the value okl. Since our scheduling algorithm is geared to- jnto a single seG.improbable which is considered for schedul-
wards minimizing the average execution time, we use the expecteding. The state created for scheduling these composite operations
length of the longest path from a composite operation to a primary js tagged as @ompact state Note that, in doing so, we have
Out[_)ut as a metric to rank different COmpOSlte Operat|0ns. We next traded the Op’[ion of separately 0p’[|m|z|ng the threads of execu-
outline a procedure to compute the expected length of the longestjon represented by the combinations of conditions represented in
path and illustrate its application to a CDFG. Simprobablefor STG compactness. The children of a compact
state are tagged compact. For the frontiers of compact states, the
algorithm presented in Figure 6 is modified by replacing state-
ments?7 and8 by the corresponding statements in Figure 8. The
techniques presented in this example can reduce the size of the
controller by a significant amount without much compromise in
the average schedule length of the design. For the exangselT
presented in Section 2, the STG shown in Figure 4 is synthesized
assumingp = 1, which represents a schedule optimized for com-
pactness. The number of states in the schedule is 17, eight less
than the number of states that would be obtained if the CDFG
were synthesized witl, = 0. In this case, both schedules have
the same average length; in general, however, a large valige of
would result in a longer schedule.

Figure 7:lllustration of composite operation selection

Example 1: Consider the CDFG shown in Figure 7. Control de-
pendency edges are annotated with their probabilities of occur-|7  SET<CoOMPOSITEOPERATION> loop_tests= loop test of
rence, and operations with the corresponding functional unit de- operations whose outputs feed operations of
lays and loop numbers. For example, operatidnis assigned to initial_compositehrough control dependency edges
an adder type which takes i$to execute and has a loop number |8  foreachcombination of conditionscpndition loop._test$ {
< 0>. Suppose we are faced with the question of selecting a com- //conditioncorresponds to the assignment of a specific
posite operation from the s¢f+1,< 0>, < 3>}, {+3,<>, <> /Iset of truth values to the results of the composite
}}. We first evaluate the expected length of the longest path as- /loperations iloop_tests
suming that no loop unrolling is performed and then incorporate
the effect of unrolling. Assuming that no unrolling is performed: Figure 8: Optimizing for compactness
E(A\(+1,0ut) = 10+E(A(+2 0ut)) 4 Experimental results _ _
— 20+ E(A\(-3,0ut)) The techniques described in this paper were implemented in a
’ program calledVaveschedwritten in C++. We evaluated this pro-
= 30+0.9xE(A(+1,0ut)) +0.1x 47 gram by using it to produce schedules for several commonly avail-
= E(A(+10ut)) = 34"Ms (1) able benchmarks. These schedules were compared against those

produced by LDS [5] and PBS [4], with respect to the following
whereE(A(opl,0p2)) is the expected length of the longest path metrics: (a) expected number of cycles, (b) number of states in the
connecting operationspl and op2 Note that this delay corre-  STG produced, and (c) the smallest and largest number of cycles
sponds to the length of the longest path connectingéneh iter- taken to execute the behavioral description. In general, finding the
ation of operationt-1 to out. Since we are dealing with the third  largest number of cycles taken to execute a behavioral description
iteration of operationt-1, we need to subtract, from our estimate, is a hard problem. However, for the examples considered in this
the time taken to perform three iterations of the loop, which turns paper, static analysis of the description was sufficient to find the
out to be 30« 3 =90ns This yields an expected maximum path number. FoWavescheda value of (2 was used fotp, (defined in
length of 25nsfor the composite operatioft-1,< 0 >, < 3 >}. Section 3.3).
Adopting a similar procedure for operati¢a-3, <>, <>} results Table 2 summarizes the results obtained. The columns labeled
in an expected longest path length oh§7 Therefore, operation  E.N.C, #statesbest-caseandworst-casaepresent, respectively,



Table 2:Expected number of cycles, number of states, best- and worst-case number of cycles results

CDFG | CIk E.N.C. #states best-case worst-case

WS [LDS | PBS [ws| LDS [ PBS| ws [ LDS | PBS| ws | LDS | PBS
GCD | 13| 139 | 144 | 182 | 6 5 5 1 1 1 386 | 386 | 513
Maha | 13 3.3 6.0 6.0 | 12| 10 10 3 5 5 4 7 7
Cordic| 13 | 41.0| 60.0 | 79.0 | 9 8 8 3 3 3 515| 771 | 1026
Testl | 13 | 178.6| 301.7| 349.8| 24 | 12 12 1 1 1 766 | 1538 | 1791
Saxpy| 13 | 104.0| 501.0| 501.0| 8 6 6 104 | 501 | 501 | 104 | 501 | 501
Paulin | 13 7.0 11.0 | 110 | 7 11 11 7 11 11 7 11 11

the expected number of cycles, number of states in the STG pro-the parallelism inherent in the application. It can perform opti-
duced, smallest number of cycles, and largest number of cyclesmizations within and across loop boundaries and implicitly unroll
taken to execute the STG. Minor columnis LDS, and PBS rep-  loops to improve the average schedule length. This is made possi-
resent schedules produced Wavesched DS, and PBS, respec-  ble through a general loop representation technique which we have
tively. We used a library of functional units (their delays given in devised. It also performs concurrent loop optimzation. Experi-
brackets) which consists of (a) an addell (10ns), (b) a subtrac- ments performed on several benchmarks show expected schedule
tor sb1(10ns), (c) a multipliermitl (23n9), (d) a less-than com-  length speedups of upto 4.8 over schedules produced by existing
paratorcmp1(10ns), (e) an equality comparat@ql (5ns), (f) an schedulers.

incrementeiincl (5ns), (g) a multi-bit OR gaterl (3ng), and (h) References
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