Sequential Optimisation without State Space Exploration

A Mehrotra& S Qadeer V Singhal R KBraytorr AAziz¢ AL Sangiovanni-Vincentelfi

Abstract @
n2

We propose an algorithm for area optimisation of sequential

circuits through redundancy removal. The algorithm finds)]))
compatibleredundancies by implying values over nets in the Figure 1: Example of incompatible redundancies
circuit. The potentially exponential cost of state space traver- . . .
sal is avoided and the redundancies found can all be removg{]esence of each other. For instance, the redundancy identi-

at once. The optimised circuit is a safe delayed replacement (S?at:i)ntallgozthn; Wlt” geclare b?thlth? 'nptL.mi. a':.d nz'{a's .
the original circuit. The algorithm computes a set of compati§ uck-at-1 redundant. However, Tor logic optimisation, 1t 1S in-
orrect to replacboththe nets by a constant 1.

ble sequential redundancies and simplifies the circuit by proﬁ h ahtt d licati f) hod d
agating them through the circuit. We demonstrate the effica(%?/T e straig tlgrwa'rd app ication 3 ch;ars mgt ?1 .to. re run-
of the algorithm even for large circuits through experimentaf@ncy removalis to identify one redundancy by their implica-
results on benchmark circuits. tion procedure, remove the redundancy and iterate until con-

vergence. Our goal is to learn abmpatibleimplications in

the circuit in one step and use the compatibility of these impli-
cations to remove all the redundancies simultaneously (in this
sense our method for finding compatible unobservabilities is
related to the work in [2, 3] for computing compatible ODC’s
B'bservability don’t cares)). This is our first contribution. Sec-
ndly, we generalise the implication procedure by combining

1 Introduction

Sequential optimisation seeks to replace a given sequential
cuit with another one optimised with respect to some criterio
— area, performance or power, in a way such that the environ

t of the circuit t detect th | ¢ Inthi ‘with recursive learning [4] to enhance the capability of the
ment of the circuit cannot detect the replacement. In this Worlfedundancy identification procedure. Recursive learning lets
we deal with the problem of optimising sequential circuits for

Wi ¢ laorith hich ; tial us perform case split on unjustified gates so that it is possible
area. e present an algorithm which computes sequential i e 4 more implications at the expense of computation time.
dundancies in the circuit by propagating implications over it

: S OVET & 5 nsider the circuit in Figure 2. Setting reeto 0 implies that
nets. The redundancies we compute are compatible in t

that thev f t that b d simult &t f is 0. If we seta to 1,al becomes 1, but the AND-gate
sense that they form a set that can be removeo SIMUan€ouzY, ,q ctaq t@l remains unjustified. If we perform recursive
Our algorithm works for large circuits and scales better th

h lqorithms that d d at lorati a1%arning for the two justificationsd = 0 andd = 1, then for
ose algorithms that depend on state space exploration. o ¢ mer case, ndtbecomes 0, and for the latter cagdye-

The starting point of our work is [1], in which a method was, eq unobservable becawsie 1. Thus, for all the possible

described to identify sequential redundancies without eXplo{:'ases, eithef is O or it is unobservable. Hendeis declared

ing the state space. The basic algorithm is that for any net, Qe _at.0 redundant. Recursive learning helps identify these
cases are considered: the net value is 0 and the net value i

. - %ihds of new redundancies. We present data which shows that
For each case, constants as well as unobservability conditi

| h h ‘s eith AN are able to gain significant optimisations on large bench-
are learnt on other nets. If some other net is either set o th, .« circuits using these two new improvements. In fact, for

same constant for both cases, or to a constant in one case it} e circuits, we find that recursive learning not only gives us

is unobservable in the other, it is identified as redundant. Fafq e ontimisation, it is even faster since a previous recursive
example, consider the trl\{lal circuit shown in Figure 1. Forlearning step makes the circuit simpler for a later stage.
the valuenl = 0 the nem2 is unobservable and for the value We do not assume designated initial states for circuits. For

rl-]|1 =1 thehnems 'Sdl' T_husf nend2b|s s;uck-ath—ldr(.adulndant. sequential optimisation, we use the notiorcafelay replace-
owever, the redundancies found by the method in [1] are n ent [1, 5]. This notion guarantees that every possible input-

compatible in the sense that they remain redundant even in ¢ ﬁtput behaviour that can be observed in the new circuit after

*University of California at Berkeley, Berkeley, CA 94720 ithas begn clocked.forc'ycles after power-up, mus,t have been
tCadence Berkeley Labs, Berkeley, CA 94704 present in the old circuit. In contrast to the work in [5, 6], the
*University of Texas at Austin, Austin, TX 78712 synthesis method presented here does not require state space

0-89791-993-9/97 $10.00 J 1997 IEEE

bl
d b—=b

EDED! " Dn -

g b b
b2 e C1 Cc2 C3
1 I‘\ o)
Figure 2: Example of recursive learning lj}o j} 1 Q< I
0O—];_/ o(1)

C4 C5 C6

Figure 4: Rules for implying constants

ment it represents (e.g. two-input gates, inverters or latches).
We refer to an edge in the circuit graph ased Figure 3 shows
Figure 3: A circuit and its graph an example of a circuit graph.

traversal, and can therefore be applied to large sequential cir-
cuits. Recursive learning has been used earlier for optim2.1 Combinational redundancies
sation, as described in [7], but their method is applied only
to combinational circuits and they do not use unobservabilitye explain our algorithm and prove its correctness for combi-
conditions. Another procedure to do redundancy removal Rational circuits and later extend it to sequential circuits. Con-
described in [8], but as [9] shows, their notion of replacemergider a circuit grapls = (V,E) of a circuit, whereV is the
is not compositional and may also identify redundancies whicget of vertices and is the set of nets. Aassumption Aon
destroy the initialisability of the circuit. We have thereforethe subseP C E is a labelling of the nets iR by values from
chosen to use the notion of safe delayed replacement whithe set{0,1}. Letnec P be a net. We writéd: n— v if A
preserves responses to all initialising sequences. We are labels the net with the valuev. An assumption is denoted by
terested in compositionality because we would like a notiogn ordered tuple. The set of all possible assumptions on the
of replacement that is valid without making any assumptionsetP of nets is denoted bAp. Consider the se® = {m,n}.
about the environment of the circuit. This is why our replaceThe assumption labellingy with 0 andn with 1 is denoted
ment notion is safer than that used in [10] which identifies sédy (m+ 0,n— 1) andAp = {(m~ 0,n — 0),(m— 0,n
quential redundancies by preserving weak synchronising s&- (M~ 1,n+ 0),(m~ 1,n+ 1)}. An assumptiorA € Ap
quences. Their work implicitly assumes that the environmeri inconsistentf it is not satisfiable for any assignments to the
of the circuit has total control so that it can supply the arbitrarprimary inputs of the circuits. For instance, an assumption of 0
sequence that the redundancy identification tool has in mindt the input and 1 at the output of an AND gate is inconsistent.
Our approach does not pose any such restrictions. In the algorithm, values are implied at netHR P from an
The rest of the paper is organised as follows. In Section 2ssumption o®. We imply either constants amobservabil-
we present our algorithm to compute compatible redundancidéyg indicators at nets. We indicate unobservability at a net by
on combinational and sequential circuits. In Section 3, winplying a symbolic valuep at it. LetR={0,1,®} be the set
present experimental results on some large circuits from thed all possible value that can be implied at any net. idupli-
ISCAS benchmark set. In Section 4, we conclude with someationis a label(n; = r) wheren; is a net and € R. Figure 4
directions for future work. illustrates the rules for implying constants. Rules C1, C2, C3
and C5 are self-explanatory. Rule C4 states that for an AND
gate, 0 at the output and 1 at an input implies 0 at the other
2 Redundancy Removal input. Rule C6 states that a constant at some fanout net of a
gate implies the same constant at all other fanout nets. Fig-
We present an algorithm for sequential circuits that have beeme 5 illustrates the rules for implying’s. Rule O1 states that
mapped using edge-triggered latches, inverters and 2-ingliat an input of an AND gate implies@ at the other input.
gates; note that any combinational implementation can Heule O2 states that @ at every fanout net of a gate implies
mapped to a circuit containing only inverters and 2-input gates. ® at every fanin net of that gate. Note that constants can
We use the notion of circuit graph for explaining our algorithmbe implied in both directions across a gate whil@ropagates
A circuit graphis a labelled directed graph whose vertices corenly backwards. We have shown rules only for inverters and
respond to primary inputs, primary outputs, logic gates andND gates but similar rules can be easily formulated for other
latches, and edges correspond to wires between the elemegdates as well. We use these rules to label the edges of the
of the circuit. The label of a vertex identifies the type of ele<circuit graph. A constant (0 or 1) label on a net indicates that

redundancy_remove(G = (V,E))
/* find and remove redundancies from the circuit graph */
while (there is an unvisited netin the circuit graph)
S:= learnimplications G, (n — 1))
T={(l=Vv)|(I=v)eSV(=r)eS}
S:=learnimplications G, (n — 0))
T={l=v)|(I=v)eSv(l=1)€eS}
R:=TAT
for every implication(n =v) € Rset nento constant/
propagate constants and simplify

learn_implications (G = (V,E),A)
[* propagate implications on the circuit graph given an assignment */

forall nsuchthalA:n— v {

Figure 6: Overwriting constants with unobservability indica-) labein v
tors while (some rule can be invoked)
let (n = b) be the new implication
the net assumes the respective constant value under the current if (b=®)
assumption. A» label indicates that the net is not observable _labelneb
at any primary output. Hence, it can be freely assigned to ei- i S:tjr? fl":“fjjjtfew E? acurrentlabel)
ther O or 1 under the current assumption. Suppose for every else
assumption ilAp, some nehis labelled either with constamt labeln b
or with ®, then we can safely replacewith constant. This wrnset of all current labels
is because we have shown that under every possible assump-
tion, either the net takes the valuer its value does not affect
the output. We can therefore conclude thatmét stuck-at-v
redundant. Figure 7: Combinational redundancy removal algorithm

We are concerned about the compatibility of all labellings ropagate implications from assumptions on the mefThe

because otherwise we run the danger of marking nets with la- "." = ")
: Implications from(a +— 0) are written below and those from
bels so that all labels are not consistent. For example, con-

sider the circuit in Figure 1. For the purpose of identifying<a ~ L are written above the wires. Note tha}t .V\.’h'le brop
redundancies, [1] would infer the implicatiofisl = 1) and agating implications froma - 1), a2 andd are initially la-
' . plicatic belled with 1 but after labelling with 0, the labels atl and
(n2 = 1) from the assumptioiin — 1). Additionally, the as- . . . :
. S AT a2 are successively overwritten with's. Hence a2 is found
sumption{n — 0) implies thatn1 = 0) and(n2 = x); similarly
S . to bestuck-at-Oredundant. As a result, the OR gate can be re-
(n+— 0) implies that(n2 = 0) and(n1 =) (notice that [1] use L . ; "
. . moved. We prove later in this section that this overwriting does
the symbok to denote unobservability while we useto de-

rtecompasbisrobsenvabity) So (] woudrigntycam [T LY empIceions Ik e mpar
that bothnl andn2 arestuck-at-Iredundant in isolation; how- Y P ' y 9

L is allowed is that of constants with unobservability indicators.
ever, for redundancy removal it is easy to see that we cannot

set bothnl andn2 to 1 simultaneously. This is why we want Qur algorithm for removing combinational redundancies is
to make all labellings compatible. given in Figure 7. The functiolearn.implicationstakes as in-

A sufficient condition for the redundancies to be compatibl@ut an assumptioA on an arbitrary subset of nets and labels
is to ensure that the procedure for computing implications fromets with values from{0,1,®} learnt through implications.
an assumption returm@mpatiblemplications, i.e., every im- Initially all netsn such thatA: n— vis an assumption, are la-
plication is valid in the presence of all other implications. It isbelled. Then we derive new labels by invoking the rules C1-C6
easy to see that if the labelling of edges in the circuit graph snd O1-02 and similar rules for other kinds of two input gates.
done by invoking the rules described above and no label is evidote that at all times each net has a unique label and constants
overwritten, then the set of learnt implications will be compatean be overwritten wittw’s but not vice-versa. It returns the
ible. For instance, in the circuit of Figure 1, ontkis labelled set of all final labels. The functioredundancyemovetakes
with ®, a® cannot be inferred at2 becausénl = ®) cannot as input a circuit grapls and callslearn.implicationssuc-
be overwritten with(nl = 0). But this approach is conserva- cessively with assumptior(s; — 0) and{n; — 1) on the sin-
tive and will miss some redundancies. In Figure 6, we shogleton subse{n;}. The two sets of labels are used to com-
an example where overwriting a constant wittpayields a pute all pairsn andv such than is stuck-at-wedundant. We
redundancy which could not have been found otherwise. Water show that our labelling procedure for learning implica-

and is needed for all current labels to be simultaneously valid.
Note that overwriting a 0 with a 1 (or vice-versa) implies an
inconsistent assumption and the procedure exits.

U‘ ‘m

Lemma 2.1 Let A be a consistent assumption. If a lafal=

@ @ a) is overwritten by the labe{fm = ®) in the current set of
labels, then for all labelgn; = bj), there is an implication
@ @ @ @ @ @ @ graph such thatm = a) is not a label of any vertex in the

graph.

Figure 8: An implication graph Proof: We call netma parent of net if there is a node of the
circuit graph such thanis an incoming arc and an outgoing
tions guarantees that all such redundancies can be remowad ofv. We also say thatis a child ofm. We saymis a sibling
simultaneously. These redundancies are used to simplify tly n if there is a nodev such that bottm andn are outgoing
network. The process is repeated until all nets have been casdges ofy.
sidered. Note that the functioedundancyemoveconsiders We prove the claim by contradiction. Suppose it is false.
assumptions on only a single net but in general any number pét the replacement ofm = a) by (m = ®) be the first in-
nets could be used to generate assumptions. We later showsgance that makes it false. Therefore, there was an implication
sults for the case when we considered assumptions on two nejgaph for each current implication before this happened. Let
the second one corresponding to the unjustified node closest({§) = b;) be an implication that does not have a valid implica-
ni. This is an instance of recursive learning. tion graph now. Consider any path in the old implication graph
We now formalise the notion of a valid label as one forfor a netn;j, (n; = by) — --- — (nj = bj), such thafm = a)
which animplication graphexists. We will use the notion s theith implication on the path. We consider the case where
of implication graph for proving the compatibility of the setb; is a constant. Hence, d@lk’s in the path are constants since
of labels generated by the algorithm. L&be an assumption a® at a net can only imply & at another. The case in which
on a sefP of nets. Animplication graphfor the labelln=r) b, = ® is considered later. We show that if the assump#ids
from assumptior is a directed acyclic grapB = (Vi,E,Li), consistent then it is possible to replage= b; in the implica-
whereL, is a set of labels of the forrfm = a) for some netm tion graph fom;. There are three cases on the relation between
and soma € {0,1,®} labelling every vertex € i, such that n;_; andn;.
Case 1 The circuit edgen;_; is a child ofn;. ® can be
inferred atn; only if eithernj_; = ® is a current implication
or ny = 0 is a current implication and; andn; are inputs to
o There is exactly one ledfvertexv € V| which is labelled @0 AND gate. In the first case, the fact that an implication
(n=r) graph existed in whictn;_; was labelled with a constant is
contradicted. In the second casg,; is the output of an AND
e For any vertexy € V, if v is not a root node the impli- gate, whose two inputs arg andn;. Since(n—1 = bji_1) —
cation labelling it can be obtained from the implications(n; = by) is a valid inference, eithar,_; = 1 (to implyn; = 1
labelling its parents by invoking an inference rule. andny = 1) ornj_1 = 0 andny = 1 (to implyn; = 0). In either
casen;y = 1 which contradicts; = 0.
Case 2 ni_1 andn; are siblings andni_1 = bi_1) — (nj =
) is an application of Rule C6. Hi1 is either the parent or a
i R sibling of nj thenn; = b; can be removed from the implication
labelC € C there exists an implication gra@t = (Vc, Ec, Lc) graph fom; =b;, i.e.,(n_1=bi_1) = (N1 =bi 1) is avalid
ofCfromAsuchthatccC. implication. If i1 is a child ofn;, then® can be inferred at
We now prove the compatibility of |mpI|cat|ons_ returned byni only if eitherni.1 = @ is a current implication ony = 0
our labelling procedure. At each step, the labelling procedutg , ¢,rrent implication and, andn; are inputs to an AND
either labels a node for the first time or overwrites a constaibie | the first case, the fact that an implication graph existed
with a®. We prove the invariant that at any time, the curreng, \hich n;, ; was labelled with a constant is contradicted. In
it i o el v v o e SSCOTG 3. clats s abled w0, v =G
is ov i Wi W , BV u : A . -
have an implication graph which does not gepend on the Ovegthermse the assumptidhis inconsistent, and the pafh =
A ’ S ; ’ i) — (ni+1 = bi+1) can be replaced by the pathy = 0) —
written label. This claim is proved in the following Iemma(niJrl = 0). Note that to get a new implication graph foy =

1A vertex with no incoming edges bj, we need the implication graph foy = 0 but that exists
2A vertex with no outgoing edges and is not affected by the overwriting of the previous label of

e Every root! vertex is labelled withm = a) whereA :
m— a

An example of an implication graph for the lalfeP = 1)
from the assumption8— 1) is shown in Figure 8. Asetofla-
belsC derived from an assumptighis compatiblef for every :

Ty v
: T; EHETEIAED

e C

Figure 10: A sequential implication graph from assumption
al = 0 for the circuitC

Figure 9: Sequential circu@@
g CHEHFO
Case 3 nj_; is a parent ofyj. The reasoning is same as in

Case 2.
Thus we have shown that if the assumption was consisteiftigure 11: An incorrect sequential implication graph from as-
each vertex labelled witfn; = b;) in the implication graph ofa sumptionat = 1 for the circuitC
current implication'n; = bj) can be replaced with some other
current implication. This shows that the replacememt;efb; that redundancy.
by ni = ® does not falsify the claim which is a contradiction. The notion of a label in the implication graph is modified
Now we consider the case in whidh) = ®. Then, there so that it also contains an integer time offset with respect to
is a greatesk such thathy is a constanth, is constant for all a global symbolic time step The rules for learning implica-
1 <1 <k, andb =® forall k < | < j. From the proof before, tions are exactly the same as before with the addition of a new
we know there exists an implication graph fir= by in which rule which allows us to propagate implications across latches:
ni = bj is not used. This yields an implication graphfgr=b; when we go across a latch we modify the time offset accord-
in whichn; = by; is not used. m ingly, e.g. if the output of a latch is labelled with 1 and offset
? the input of the latch can be labelled with 1 and offset -3.
%\n example of an implication graph for the circditin Fig-
ure 9 is shown in Figure 10.
Proof: At each step in the algorithm, either a value is implied This example also shows a potential problem with learning
at a net for the first time or a constant is overwritten by.a sequential implications. Consider the circ@Gitin Figure 9.
The proof of this lemma follows by induction on the numbersgr the two assumption&! — 0) (ais 0 att andt denotes
of steps of the algorithm and by using Lemma 2.1 to prove thge global symbolic time) angh' — 1) we get two implication
induction step. ® graphs (in Figures 10 and 11) which both imghj+2 = 0).

Theorem 2.1 Let n stuck-at-y redundant, for all1 < i < n, This might lead us to believe that tlee= 0 is a (2-cycle) re-

be the set of redundant faults reported by the algorithm. Thefindancy. However, the new circuit obtained by replaang
the circuit obtained by setting B= v for all 1 < i < nis com- With O, ifitpowers upin state 11 (each latch at 1), remains for-
binationally equivalent to the original. everin 11 with the circuit OL!tput: 1. However, thelorlglnal
circuit producex = 0 for all timet > 1, no matter which state

. . it powers up in. Thus we do not havekalelay replacement
2.2 Sequential redundancies for any k. The reason for this incorrect redundancy identifi-

Now we extend the algorithm for combinational circuits de<ation is that in order to infefc"t? = 0) from the assumption
scribed in the previous section to find sequential redundancié® — 1), we neededc* = 1). However, if we replace net
by propagating implications across latches. The implicatior¥ith O (i.e., for all times)¢ could not have been 1 &#- 1.
may not be valid on the first clock cycle since the latches One way of solving the above problem is to ensure that no
power-up nondeterministically and have a random booledret is labelled with different labels for different times. We will
value initially. Nevertheless, we can use the notionkef label a net with at most one label, and if a net is labelled we
delayed replacement which requires that the modified circuitill associate a list of integers with this label which denotes
produce the same behaviour as the original only &ftelock the time offset when this label is valid. Thus, for the above
cycles have elapsed. Thus, for example, if implying constagxample, during the implication propagation phase for the as-
v at a latch output from constamtat its input yields a redun- sumption(a’ — 1) we will never infer(al** = 0) and we will
dancy, a 1-delay replacemétis guaranteed on the removal of hot get the second implication graph in Figure 10. Labeling
3)) one net with at most one label also obviates the need for the
If we have latches where a reset value is guaranteed on the first cycle

i atda ; Llidation step described in [1]
operation, it is sufficient to ensure that the consteaatequal to the reset value;) " .
in this case the replacement is a 0-delay replacement. The algorithm replaces a netvith the constant if for some

Lemma 2.2 Let A be a consistent assumption. Then the set
labels returned by the algorithm is compatible.

time offsett’, it is either labelled wittv or is unobservable for Circuit | Redundancy Removal| With Recursive Learning
all assumptions. With each such replacement, we associate 4_N2me | red [LR[Al [% [red [LR][A2 [%
time k as follows [1]. To validate a redundanaystuck-at-v Zggg 8 8 2‘3“; 8 g g ig? g
at timet’z we havc—;- a set pf im,plication graphs, oneforeach | a6 ' 0| 0| 251 1l 0ol o | ol 251 | o
assumption, that imply eithet =v or nt = ®. Lett” be s499 | o |l ol 605 | o | o | o] 605 | O
the least time offset on any label in these implication graphs | s526 | 1 | 0 | 472 | 04| 1 | O | 472 | 0.4
such that for some net, ni" is labelled with a constant. Then s820 | O | O | 499 | O | 1 | O | 492 | 14
k=0if t” > t' otherwisek = t' —t". We say thah is k-cycle Sggg 8 8 328 8 ; 8 i"l‘g 222'86
stuck-at—\{redyndan.t. We use the.followir.]g theorem tQ claim :1238 ol o 9|0l 3| 0l 890 | 54
that the circuit obtained by replacing netith constanw is a 512691 o0 | o | 1140l o | 20| o | 1100 | 35
k-delayed safe replacement. s1488| O | O | 1034 | 0O | O | O | 1034 | ©
s1512| 0 | 0 | 1337| 0 | O | O | 1337 | ©
s3271| O | 0 | 2828| 0 | O | O | 2828 | O
Lemma 2.3 ([1]) Let a net n be k-cycle stuck-at-v redundant. | s3384| o | o | 3775 o | 1 | o | 3767 | 0.2
Then the circuit obtained by setting netnv results in a k- s4863| O | 0 | 3368| O | O | O | 3368 | O
delayed safe replacement of the original circuit. s5378 | 29 | 3 | 3538 | 21| 30 | 4 | 3504 | 3.0
$9234| O | 0 | 2854 | O | 2 | O | 2795 | 2.1
s13207| 11 | 3 | 7590 | 0.4| 22 | 5 | 7509 | 1.4
As in the combinational case, we allow overwriting of con- | s15850| 103| 0 | 10571| 1.3 | 113 | 0 | 10495| 2.0
stants with unobservability indicators. We make sure that the | s35932| 64 | 0 | 32006| 0.3 | 64 | 0 | 32006 0.3
label at nen at timet + a is overwritten only if the new label zgggéz iii g gsggg 8-3 ﬁi ‘Bl géiels; g-g
is ® and net is not labelled at any other time offset (this is to cordic | 80 | o | 10636l 05| 81 | o | 16360! 0.5

prevent the problem shown in Figure 11). This may make our
algorithm dependent on the order of application of rules, buror legend see Table 2.
we have not explored the various options. The proof of the folfable 1. Experimental results for combinational redundancies

lowing two lemmas follows by easy extensions of Lemmas 2.1)
and 2.2. 3 Experimental Results

,) We present some experimental results for this algorithm. We
Lemma 2.4 Let A be a consistent assumption. If a lab&km o monsirate that our approach of identifying sequential redun-
a is replaced with fn=® in the current set of labels, then 4, cies yields significant reduction in area and is better than
for all labels ny = bj, there is an implication graph such that ¢ 455r6ach which removes only combinational redundancies.
mt = ais nota label in the graph. We also show that for most examples, recursive learning gives
better results then the simple implication propagation scheme.
Lemma 2.5 Let A be a consistent assumption. Then the set &f fact for many circuits, recursive learning could identify re-
labels returned by the algorithm is compatible. dundancies where the simple implication propagation scheme
is unable to find any.

Hence, the redundancies reported by the algorithm are com-1his algorithm was implemented in SIS [11]. The circuit

patible with each other and all redundancies can be removi¥@S first optimised usingcript.rugged which performs
simultaneously to get a delayed safe replacement. combinational optimisation on the network. The optimised cir-

cuit was mapped with a library consisting of 2-input gates and
inverters. The sequential redundancy removal algorithm was
Theorem 2.2 Letn ki-cycle stuck-atiwedundant, forall < vy on the mapped circuit. The propagation of implications
i <n, be the set of redundant faults reported by the algorithmyas allowed to propagate 15 time steps forward and 15 time-
Let K = Z1<i<nki. Then, the circuit obtained by setting netsteps packward from the global symbolic time. Table 2 shows
ni = forall 1 <i < n, is a K-delay safe replacement of thethe mapped (to MCNCO1 library) area of the circuits obtained
original. by runningscript . rugged and that obtained by starting from
that result and applying redundancy removal algorithm. For
Proof: From Lemma 2.5, we know from that for allli <n, very large circuits (s15850 and larger), BDD operations dur-
n; is ki-cycle stuck-ats redundant in the circuit obtained by ing thefull_simplify Step inscript.ruggedwere not per-
settingn; = v; for all j #i. It has been shown in [5] that formed. We report results for those circuits on which our algo-
for any circuitsC, D andE, if C is ana-delay replacement rithm was able to find redundancies.
for D andD is ab-delay replacement fdE thenC is (a+ b)- As mentioned earlier, our algorithm starts with an assump-
delay replacement fdE. The desired result follows easily by tion on the nets and implies values on other nets of the circuit.
induction onn from this property of delay replacements. m We implemented two flavors of selection of assumptions. In

Circuit Attributes Redundancy Removal With Recursive Learning
Name [PITPO] L [A red] C [LR[Al | % | time red [C JLR] A2 | % | time |
s349 [9] 11| 15 345 0 0 0 345 0 0.5 9 105 | O 330 | 4.3 1.0
s382 | 3| 6 21 436 0 0 0 437 0 0.9 2 5 0 434 | 0.7 2.1
s386 7 7 6 251 1 1 0 245 25 0.5 1 2 0 245 2.5 0.9
s499 | 1 | 22 | 22 605 | 19 | 32 | O 583 | 3.6 5.1 16 30 | O 581 | 4.0 9.9
s526 3 6 21 480 1 1 0 472 0.4 0.8 1 0 0 472 0.4 2.3
s820 | 18| 19 5 499 0 0 0 499 0 1.7 1 0 0 492 | 1.4 2.9
s832 | 18| 19 5 456 0 0 0 456 0 1.6 2 0 0 431 | 55 2.6
s953 | 16 | 23 29 920 0 0 0 920 0 3.7 3 0 10 632 | 31.3 6.3
s1238 | 14| 14 | 18 998 0 0 0 998 0 35 3 0 0 890 | 10.1| 54
s1269 | 18 | 10 37 1140 0 0 0 1140 0 2.9 21 8 0 1094 4 3.8
s1488 | 8 | 19 6 1034 | O 0 0 1034 0 5.0 154 | 149 | O 863 | 16.5 8.7
s1512 | 29| 21 57 1337 2 2 0 1333 | 0.3 3.3 147 | 146 | 9 1092 | 18.3 5.6
s3271 | 26| 14 | 116 | 2828 0 0 0 2828 0 12.9 6 5 0 2801 | 1.0 25.5
s3384 | 43| 26 | 183 | 3775 | O 0 0 | 3775| 0 15.8 4 1 1 | 3745 | 0.8 | 187
s4863 | 49 | 16 83 3386 | 80 | 160 | O 3319 | 1.9 23.1 82 164 | O 3313 | 2.2 33.4
s5378 | 35| 49 | 163 | 3616 | 574 | 1995| 25 | 2959 | 19.6| 22.0 | 1145| 6992| 58 | 2261 | 37.5| 19.9
s9234 | 19| 22 | 138 | 2854 | 102 | 1414| O 2752 | 3.8 22.8 102 | 1414| O 2752 | 3.8 22.4
s13207 | 31| 121 | 453 | 7681 | 49 | 518 | 28 | 7035 | 8.4 | 66.9 92 | 733 | 70 | 6317 | 17.8| 32.1
s15850*| 14 | 87 | 540 | 10704 | 199 | 1841 | 6 | 10415| 2.7 | 272.4 | 163 | 1650 | 43 | 9380 | 10.0| 493.7
s35932*| 35| 320 | 1728 | 32092 64 0 0 | 32006| 0.3 | 1339.4| 64 0 0 | 32006| 0.3 | 5010.3
s38417*| 28 | 106 | 1464 | 33055| 591 | 887 | 42 | 31943| 3.4 | 1139.4| 1129 | 9245| 97 | 29718| 10.1| 1763.7
s38584*| 12 | 278 | 1285| 29252| 102 | 168 | O | 29016| 0.8 | 1193.5| 114 | 400 | 5 | 28656| 2.9 | 2157.4
cordic* | 35| 9 | 271 | 10688 81 | 73 | O | 10636| 0.5 | 251.8 | 66 56 | 8 | 8939 | 16 | 242.6

* full_simplify notrun.
All times reported on an Alpha 21164 300MHz dual processor with 2G of memory.

PI number of primary inputs PO number of primary outputs

L number of latches A Mapped area afterript . rugged

Al Mapped area after redundancy removal A2 Mapped area after redundancy removal with recursive learning
red number of redundancies removed LR Number of latches removed

C Upper bound o, where the new circuit is edelay replacement time CPU time
% Percentage area reduction
Table 2: Experimental results for sequential redundancies

the first case a conflicting assignment was assumed on one Bgteption where we did not obtain any more reduction in area.
and values were implied on other nets. The second case wascept for this circuit the CPU time for recursive learning was
similar to the first except that once the implications could ndess than twice the CPU time for redundancy removal with-
propagate for an assumption on a net, we performedwenaout it. This suggests that more sophisticated recursive learning
version of case splitting only on the net which was closest thased techniques could yield larger area reduction without pro-
the original net from which the implications were propagatedibitive overhead in terms of CPU time.
and implications common in the two cases were also added inSince our algorithm also identified combinational redundan-
the set of implications learnt for the original rfetThis en- cies, we wanted to quantify how many of the redundancies
abled us to propagate implications over a larger set of nets jlere purely combinational. To verify this we ran our algo-
the network and hence to discover more redundancies at thghm on the circuits for combinational redundancy removal
expense of CPU time. Table 2 indicates the area reducti@yhly. Table 1 shows the area reduction due to combinational re-
obtained both by simple propagation and by performing thigundancies only with and without recursive learning. In most
recursive learning. We find that even for thisveafecursive cases, the number of redundancies identified in Table 2 is sig-
learning we get reduction in area in most of the circuits ovesiificantly larger than the set of combinational redundancies
that obtained without case split. For instance, for S5378 wiglentified by our algorithm. Only for S35952 and S953 did the
were able to obtain 37.5% area reduction with recursive lear@gombinational redundancy removal result in approximately the
ing as against 19.6% without it. For most of the medium sizegame area reduction as the sequential redundancy case.
circuits we were not able to obtain any reduction in area with- £ the example circuits presented here we were able to
out recursive learning. For large circuits also we were able chieve 0-37% area reduction. In a number of cases the al-
obtain approximately 5-10% area reduction. S35952 was @fyrithm was able to remove a significant number of latches. In
all cases, the new circuit isGdelay safe replacement of the
4If a node is unjustified during forward propagation of implications thengriginal circuit. TheC reported in Table 2 is actually an up-
case-split is performed by setting the output net to 0 and 1. If the node |l}:?er bound. For most of the delay replaced circGits 10000.
unjustified _durlng backV_/ard propaga_tlon case split is achieved by setting o |_?
of the two inputs to the input controlling value (0 for (N)AND gate and 1 for HOWEVEr most practical circuits operate at speeds exceeding
(N)OR gate) at a time and propagating the implications backward. 100 MHz in present technologg. < 10000 for a circuit would

require the user to wait for at most 108 before useful opera-
tion can begin. This is not a severe restriction.

We are unable to compare sequential redundancy remov?l2
results with the previous work of Entrena and Cheng [8] be-]
cause as we noted earlier, their notion of sequential replace-
ment, which is based on the conservative 0,1,X-valued simula-
tion, is not compositional (unlike the notion of delay replace-
ment that we use). 3]

4 Future Work

Our redundancy removal algorithm does not find the complete
set of redundancies. We can extend this scheme in sever]
ways to identify larger sets. For instance, instead of analyzing
two assumptions due to a case split on a single net we could
case split on multiple nets and intersect the implications learnt
on this larger set of assumptions. One such method is to in-5]
crementally select those which are at the frontier where thé
first phase of implications died out. Additionally, if we split

on multiple nets it is possible to detect pairs of nets such that
if one is replaced with another the circuit functionality does
not change. With our current approach, because we split ofg]
a single net, one of the nets in this pair is always a 1 or a 0,
which means that we are only identifying stuck-at-constant re-
dundancies.

For this algorithm we map a given circuit using a library of
two input gates and inverters. A different approach would bel7]
to use the original circuit and propagate the implications for-
ward and backward by building the BDD'’s for the node func-
tion in terms of it's immediate fanins. We intend to compare
the running times and area reduction numbers of our approach
with such a BDD based approach. In addition, BDD based[8]
approaches may allow us to do redundancy removal for multi-
valued logic circuits as well in a relatively inexpensive way.
We can extend the notion of redundancy for multi-valued cir-
cuits to identify cases where a net can take only a subset of its
allowed values. Then latches of this kind can be encoded usin{p]
fewer bits.

5 Acknowledgements [10]

We had useful discussions with Mahesh lyer during the course
of this work. Miron Abramovici gave us the example of Fig-
ure 1. The comments by the referees also helped to improvm]
the paper.

References

[1] M. A. lyer, D. E. Long, and M. Abramovici, “ldentifying
Sequential Redundancies Without SearchPiiac. of the

Design Automation Conf(Las Vegas, NV), pp. 457-462,
June 1996.

S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney,
“The Transduction Method - Design of Logic Networks
Based on Permissible Functions,” lBEE Trans. Com-
puters Oct. 1989.

H. Savoj,Don’t Cares in Multi-Level Network Optimiza-
tion. PhD thesis, University of California Berkeley,
Electronics Research Laboratory, College of Engineer-
ing, University of California, Berkeley, CA 94720, May
1992.

W. Kunz and D. K. Pradhan, “Recursive Learning: A
New Implication Technique for Efficient Solution to
CAD Problems - Test, Verification and Optimization,”
IEEE Trans. Computer-Aided Desigiept. 1994.

V. Singhal, C. Pixley, A. Aziz, and R. K. Brayton, “Ex-
ploiting Power-up Delay for Sequential Optimization,”
in Proc. European Design Automation Caqr{Brighton,
Great Britain), pp. 54-59, Sept. 1995.

S. Qadeer, V. Singhal, R. K. Brayton, and C. Pixley,
“Latch Redundancy Removal without Global Reset,” in
Proc. Intl. Conf. on Computer Desigr(Austin, TX),
pp. 432—-439, Oct. 1996.

M. Chatterjee, D. K. Pradhan, and W. Kunz, “LOT:
Logic Optimization with Testability - New Transforma-
tions using Recursive Learning,” iroc. Intl. Conf. on
Computer-Aided Desigr(San Jose, CA), pp. 318-325,
Nov. 1995.

L. Entrena and K.-T. Cheng, “Sequential Logic Op-
timization by Redundancy Addition and Removal,” in
Proc. Intl. Conf. on Computer-Aided DesigiiSanta
Clara, CA), pp. 310-315, Nov. 1993.

M. A. lyer, On Redundancy and Untestability in Sequen-
tial Circuits. PhD thesis, lllinois Institute on Technology,
1995.

I. Pomeranz and S. M. Reddy, “On Removing Redun-
dancies from Synchronous Sequential Circuits with Syn-
chronizing SequencedEEE Trans. Computersol. 45,

pp. 20-32, Jan. 1996.

E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A

System for Sequential Circuit Synthesis,” Tech. Rep.
UCB/ERL M92/41, Electronics Research Lab, Univ. of
California, Berkeley, CA 94720, May 1992.

	CD-ROM Home Page
	ICCAD97
	Front Matter
	Table of Contents
	Session Index
	Author Index

