Modular Design of Communication Node Prototypes

Sergio D’ Angelo (*), Lauro Mantoani (**), Riccardo P. G. Mazzei (***), Stefania Russo (***),
Giacomo R. Sechi (*)

(*)Istituto di Fisica Cosmica e Tecnologie Relative - Consiglio Nazionale delle Ricerche
via Bassini 15, 20133 Milan (Italy)
{sergio,giacomo} @ifctr.mi.cnr.it
phone: +39 - 2 - 23699 333/334
fax: +39 - 2 - 2362946

(**) Guest Researcher at IFCTR - CNR

(***) Universita' di Milano - Dip. di Fisica
via Celoria 16, 20133 Milan (Italy)

Abstract

A hardware rapid-prototyping system has been developed
in order to experiment different communication networks
for Massively Parallel Systems. Processing and
communication in such systems should be kept, in our
point, well separated both at abstract description and
implementation levels. This results in a distinct physical
implementation of Processing Elements (PE), relevant to
computing tasks, and nodes for internode and node-PE
communication. Rationales of this are briefly exposed.

Topic of this paper is the design of a macro library for
FPGA devices. A proper combination of library blocks
and some user-defined combinatory logic blocks makes it
possible to implement the chosen network topology. High
communication bandwidth can be achieved by subdividing
the node workload among concurrent blocks. As an
example, the design of a node for a (4,3)-WK recursive
network - issuing wormhole point-to-point and
broadcasting - is presented.

1. Separating communication and processing

Massively parallel computing systems gathered the
interest of many people from industry, academy and
research in the past years. Researchers and engineers paid
efforts to set up many computers working together on
problems of ever growing complexity to solve them faster
than a single computer allows. The objective was that of
building a powerful machine by connecting many

1066-1395/97 $10.00 © 1997 IEEE

170

computers, according to a prefixed topology, to obtain an
individual parallel computer.

Our research mainstream in the context of parallel
systems is concerned on the design of co-operating
adaptive systems for the solutions of scientific problems,
and in particular neural networks [1] and broadcast
automata [2]. Both systems include a collection of
identical processing elements (PE) each one using its own
status and that of neighboring PEs to yield a new state: in
the former case, PEs (the neurons) transform input values
into an output status according a specific neural law, while
broadcast automata are modelled as state automata. In this
case, the system evolves through three phases: state
observation involving communication, computation and
state transition. In both cases, a communication network
is to allow state exchange among PEs and should be
designed as to perform global communication, namely
broadcast and multicast.

It seems rather natural to conceive computation and
communication as separated at this level. Nevertheless, in
traditional parallel systems communication is handled by
the same ingredients performing computation task. In
other words, nodes of a parallel computer network are
programmable machines performing both processing and
communication tasks by means of adequate software. In
our point, this results in a low system efficiency due to
resource sharing at the node level; actually,
communication is often a computation-intensive process
even if techniques to access directly to memory are used.

Differently, the adoption of a communication network
composed by nodes only devoted to routing tasks (Figure
1.), allows processing to run independently of (and

concurrently with) communication, thus resulting in an
improved system efficiency. Moreover, a so structured
communication network could be, in principle, used with
different kinds of PE, just re-programming the node-PE
interface. Similarly, different communication network
topologies could be implemented basically by re-
arranging connections among nodes, thus reducing
development costs and time-to-market. All these features
can be obtained by an hardware FPGA-based prototype.
The necessity of a hardware prototype, rather than a
software simulation, must be also recognised in all the
cases in which it is difficult, if not impossible, to simulate
the operating environment, such as scientific experiments
and hard real time applications.

COMMUNICATION NETWORK

Figure 1. System Outline

Basic concepts on communication networks are
summarised in the next section. In section 3 the
architecture of a generic node is presented in order to
identify the building blocks functionality.

Section 4 presents the building blocks architecture and
the communication protocols defined. The design
philosophy for the definition of communication nodes is
also given. An example is shown in section 5.

2. General remarks on communication
networks

Communication networks are made by a set of
communication nodes (CN) connected according to a
specific topology. Each node has at least two
unidirectional channels with one PE. For the sake of
simplicity we consider only the case of one PE connected
to one node. A single communication can be point-to-
point (single CN to single CN), multicast (single CN to
some CNs) or broadcast (single CN to all the other CNs).
A situation in which all CNs communicate in broadcasting
is called gossiping.

For the sake of brevity we will assume all these
concepts to be known, and we will only recall the most
important keywords.

Several communication mechanisms can be devised;
they can be subdivided into three main classes: packet-
switching, circuit-switching, and cut-through. A special
case of cut-through is wormhole.

Virtual channels can also be used, meaning that a
physical link is shared among simultaneous messages.
Deadlock avoidance techniques can be developed by the

171

use of virtual channels [3]; they are based on link
augmentation, so that resulting network has an acyclic
dependency graph. With the use of FPGA virtual channels
can be physically implemented (even more than 30 serial
channels per chip), this yielding more performant
communication nodes.

For a given topology, different routing algorithms can
exist. Any communication mechanism can be adopted
independently of the particular routing chosen, affecting
only how messages are moved among and stored into
nodes.

3. Communication nodes

Nodes for any kind of communication network are to
implement some general features, independently of the
particular topology adopted. Internal layout of a generic
communication node with four inter-node links plus a link
with a PE is sketched in Figure 2.

| From PE
P

Figure 2. Generic node architecture

Input channels A, B, C, D from other nodes are
internally routed through the shaded blocks 1, 3, 4, and
blocks 2 and 5. P and P’ are input/output channels from/to
PE respectively. Note that, for any channel i, it does not
exist a route to the corresponding i', meaning that it is not
allowed a message to be returned back to the sender.

Two basic activities are implemented: path selection,
performed by some Arbiter Blocks (AB), and path
decoding, which is relevant to Router Blocks (RB). In
addition, Interface Blocks (IB) may be necessary to
manage internode communication protocol.

If distributed routing algorithms are developed, RBs
are to select one of the possible output channels only on
the basis of message header and node address. Thus, in
principle, any communication node based on a distributed
routing algorithm can be rapidly implemented by
endowing each RB of the generic node with an
appropriate logic function. This particular implementation
would not be the optimal solution for any node
architecture, since simplification could be introduced in
some cases thus reducing complexity and improving

performances. Anyhow, and this is the substance of the
present work, by the use of the mentioned basic blocks the
designer should be able to implement any particular node
layout. Particular communication mechanisms can be
devised by designing single blocks in an appropriate way.

4. The prototyping system

According to the concepts exposed in the previous
section, a communication node can be viewed as being
constituted by a certain number of basic blocks, such as
ABs, RBs and IBs, connected together according to a
particular scheme. The designer has therefore to define
this interconnection scheme and to assign blocks
activities. This can be done quite easily in our prototyping
system. Each block is defined according to an
architectural scheme, in which a number of sub-blocks is
shown. Some of these represent fixed parts that are always
used, independently of the node characteristics. Others
have a pre-defined behavior and must be dimensioned
(number of bits, number of links, etc.) depending on the
particular application. A block layout is generally
completed by some totally application-specific elements,
which are simply combinatorial logic functions. However,
most part of the design is developed simply by picking up
a set of properly dimensioned sub-blocks from the library,
whether at VHDL or schematic level. A macro library for
FPGA design synthesis has been developed for the use
with Powerview® and Workview® CAE environments
[4,5].

Basic ABs, RBs and IBs has been modelled as
sequential circuits communicating by a handshaking
protocol; they are intended to work concurrently, allowing
to extract potential parallelism from independent data
paths.

Communication protocols and architectural
descriptions of basic blocks are described in the following
sections.

4.1 Communication protocols

In order to match different transmission requirements two
communication protocols have been developed: an
asynchronous protocol, that allows, in principle,
communicating objects to run at different clock rates, and
a synchronised protocol, in which the sender handles data
transmission timing.

Asynchronous protocol waveforms are given in Figure
3a. The sender drives SEND, DAV (DAta Valid) and
DATA lines, while the receiver acknowledges with FREE
signal. As soon as the sender has available data, SEND
first and then DAYV are go high. A low-to-high transition
on FREE indicates the receiver availability to acquire
data. FREE goes low again when data are acquired; as

172

long as FREE is low, data are forwarded through the
receiver. When FREE goes low the sender releases DAV
which remains low until new data are ready to be
transmitted. The communication terminates when SEND
is set to low by the sender. DATA width can be set by the
designer, depending on the application.

In synchronised protocol (Fig. 3b), data transmission is
made synchronous with the SYNC signal which is driven
by the sender and serves as a sort of communication
clock. DATA is set by the sender at each SYNC rising
edge and is latched by the receiver at each falling edge.
EOM (End Of Message) and RTS (Ready To Send)
signals have the same meaning of SEND and DAYV in the
previous case.

I |

SEND |
DAV . | | .
FREE | 17
paTa (XX DO X D1

(a)
SYNﬂlU.U.'_!WWWIUL
EOM N T T T T e
RTS J A O lﬁi{
R/B T N A S

DATA

(b)

Figure 3. (a) Asynchronous protocol
(b) Synchronised protocol

The R/B (Ready/Busy) signal, driven by the receiver,
goes high when the receiver is ready to accept data and is
held high during the whole data burst transmission. At the
end of transmission of a burst, RTS is set to low. This
cause the receiver to set R/B low and hold this value until
data are routed. EOM allows to send multiple data bursts.

4.2 Communication basic blocks
4.2.1 Interface Blocks

Interface among internal node blocks, as well as node-to-
node and node-PE interfaces, are implemented by
dedicated interface blocks. Implementing a node by real
devices requires, in general, the adoption of a serial
internode an node-PE communication, due to relatively
limited number of /O pins with respect to the number of
links desired. To face with such a general case, some I/O
IBs have been defined to adapt serial data stream to

internal parallel stream which can be easily implemented
inside FPGA s thanks to the amount of resources available.
IBs also store message header. They are constituted by
an interface manager, devoted to perform protocol
conversion, and a memory block, which is driven by the
manager according to the particular protocol conversion.
In order to implement pipelined communication, such as
cut-through, addition of external FIFOs can be envisioned,
while internal storage can be dimensioned as to hold
either the only message header (wormhole routing) or
entire message (store-and-forward).
IB latency [for a single flit is expressed by the relation:

= Zout (+1 for header flit)
Rip

where ngy is output data width and ny, is input data width.

4.2.2 Arbiter Blocks

Profogst
signals Controller

Enable E

Manager I '
'
‘

+
ENABLE
BLOCK

Figure 4. AB internal structure

Arbiter blocks are to generate control signals for both
routing blocks and interface blocks, according to
communication requests from either PEs or other nodes.
The controller sub-block (see Figure 4.) polls on the n
input request. As soon as a request is detected, the
controller terminates his search and keeps the relevant
paths selected during the whole communication. Data
move along such selected paths towards the subsequent
block, whether routing block or interface block depending
on the case. The number of polling steps (AB latency), as
well as mux/demux size, depends on the number n of
inputs.

The part within the dashed lines is used only to
connect the AB to an IB. In this case message header
“propagation through the node is delayed by one more
clock step.

4.2.3 Routing Blocks

Routing blocks select the right data paths inside the node,
depending on the node address and message header. The

main sub-block is a set of application-specific logic
functions (Logic Block in Figure 5.) that control
mux/demux selection. Logic Block operates upon
completion of message header acquisition, then selected
paths are held for the whole communication, that is, as
long as SEND (EOM) is high.

A Broadcast Manager and a Broadcast Mux (BMux)
are used when a message must be forwarded to multiple
output lines (typically in the case of broadcasting). In the
case of synchronised protocol the R/B signal exiting from
BMux must be interpreted as the availability of all lines to
receive data. This enables data to be simultaneously sent
through the involved channels. In the case of
asynchronous protocol, the signal generated by the BMux
reports whether all receiving blocks have been served and
is used as FREE signal.

ENABLE |-+
MANAG_E_d

EMU
T
ENABL
BLOCK

7 EMux

ENABLE
BLOCK

BROADCAST MANAGER

ENABLE
BLOCK

Logic
BLOCK

¥ g
NODE L
ADDHESS

Figure 5. RB internal structure

Multiple replication patterns can be specified simply
by adding more Broadcast Managers, each controlled by
mutually exclusive broadcast signals.

LOGIC BLOCK

FREE
w8

Figure 6. Broadcast manager description

Output lines are enabled, according to adopted
protocol, with a clock pulse delay starting from the raising
edge of SEND (EOM) signal; this ensures the correct path

selection stability when the communication starts and
represents actually the block latency affecting only the
header flit.

Broadcast Manager layout is given in Figure 6. Filters
(Figure 7a and 7b) allow some lines to be disabled or
simultaneously activated during broadcasting.

The Logic Block generates the FREE (R/B) signal
which is handled by the server according to the
communication protocol adopted. In broadcasting, FREE
(R/B) of all the involved lines are checked at the same
time.

Broadcasting

Data to be replicated) Biroadcasﬁng

Normal data o

(b)

Normal data

(©
Figure 7. (a) Activating Filter (b) Inhibiting Filter

In the case of synchronised protocol the simultaneous
activation of R/B signals tells the sender that receivers are
ready to acquire a further data packet; if asynchronous
protocol is chosen, simultancous FREE signals indicate
that the current message flit has been acquired by all the
receivers.

5. An example: (4,3)-WKr communication
node

This communication network model was presented in
[6], and it was favourably accepted, thanks to its
simplicity and attractive regularity properties.
Nevertheless, no remarkable application has been
developed, although a WK recursive multiprocessor
system has been implemented [7] by using transputers. A
convenient internal node architecture has been presented
[8], referring to an enhanced version of the network itself.
In this paragraph we will refer to this literature and,
therefore, only a brief introduction to network
characteristics is given.

A sample (4,2)-WKr network is represented in Figure
8. In a WKr network with amplitude W each node is of
degree W, that is it has W bi-directional channel with its
neighbours, independently of the network expansion level.

Each node is also connected to a PE, through a bi-
directional channel. W nodes connected as a complete
connected graph form a virtual node of first level.
Recursively, W virtual nodes of level n form a virtual
node of level n+/. Each virtual node has W free links
which can be connected to other nodes, thus giving to the
network full scalability. Node names are assigned in a
recursive fashion: chosen an "orientation”, for each node a
sequence of L W-ary digits ny_j...ng is used, where ng

shows the position of the virtual node of level k the node
belongs to, within the virtual node of level k+/. Here
virtual nodes of level zero are identified with physical
nodes. Identification numbers are also given to links:
taken two nodes ay_;...ap and by _;...by , the first digit by of
the second node name, starting from the most significant
position, which differs from the correspondent digit in the
first name, is the link name for the node ay j...ap . The
correspondent digit a;, is the link name for the node b
]...bo .

Figure 8. (4,2)-WKr Network

The basic routing of such a network derives simply
from previous naming structures and it is done using only
local information: if a message coming from a given node
must be routed through node aj_; ...qp towards the
destination node dy__;...dp , the link chosen for hopping is
link dj, where this digit represents the leftmost digit of
the destination node name different from the
corresponding digit in the actual node name.

Internal node structure, according to [8] is shown in
Figure 9 (bold lines). It allows point-to-point
communication according to the described routing. The
communication paths shown allow any data path
described by the basic routing and, moreover, messages
can be forwarded through the node simultaneously in
many cases.

Broadcasting is also possible; a distributed broadcast
algorithm was presented in [9], but no reference is made
to the node internal layout. Our node implementation
performs broadcasting according to an equivalent
algorithm [10], based on the transmission of a header
containing source node address and a broadcasting flag.

- The routing algorithm is completely distributed, and has

174

been implemented by adding two more RBs and paths
(shaded blocks and lines).

Wormhole routing has been adopted, with one byte
flits (header length). In order to reduce pinout, the node
has synchronised serial interfaces to other nodes and a PE.
Since each serial channel consists of 5 lines (SYNC,
EOM, RTS, R/B, DATA) including one data bit and
interface controls, the 18 channels of the node require a
total of 90 pins. Internal paths are 8 bit wide and blocks
communicate by an asynchronous protocol, yielding faster
internal communication. Parallel In Serial Out (PISO) and
Serial In Parallel Out (SIPO) IBs convert external serial

(synchronised) data into internal parallel (asynchronous)
streams. Some ABs and RBs have been directly linked
(A/RB blocks) as to implement fast crossbar switches,
thus reducing memory requirements (number of FPGA
flip-flops).

Implemented on a Xilinx 4010 [11] device, a single (4,
3)-WKr node occupied 80% of CLBs and 98 I/OBs (18
serial channels, global clock, master reset and node
address). Using a 5 ns speed grade device, messages may
run up to 30 Mbit/s on independent channels (single byte
flit at no load).

| Input from PE

5o
WK-Output
section Re!
fPrsolte- £
L1 E ~ L
Frd] A8 | frs}—— s
L
] {
sl -
oy O Ua;: :I"“_I
S ilid | I_z E
I —
L RB2 [PISO [t E?ﬂ* \’E- b 1
‘ oM
WK-Input o PErol--
section v vy r
AB2
o]

| output to PE

Figure 9. (4, 3)-WKr Internal node architecture

6. Conclusions

This paper was concerned on a particular subject of
our research on parallel computational systems.
Separating communication from processing came out as
the most appropriate way of achieving high computation
performances. A rapid prototyping system for
communication nodes, making use of Xilinx FPGAs, was
developed for the use with Powerview® and Workview®
CAE tools. It is based on the subdivision of node design in
concurrent blocks performing basic communication
activities; the blocks are easily built and adapted to
specific designs and needs, by the use of components from
a dedicated macro library. By means of the CAE
environment it should be also possible to retarget the
design to other ASIC technologies, although this might
require a further optimisation.

175

The application developed emphasised a high level of
parallelism and a high channel bandwidth thanks to the
internal blocks concurrence. The development system
allows to exploit intrinsic parallelism due to the presence
of independent paths in the node layout.

The future development of the prototyping system will
include the definition of macro libraries for other Xilinx
families besides X4000. New building blocks will be
designed in order to endow communication nodes with
dynamic reconfiguration capabilities. Fault tolerance
techniques (An codes, spatial redundancy, etc.) will also
be included at the level of macro definition.

Applications will be concerned on the design of
communication networks for broadcast automata and
neural computers.

References

M. Alderighi, S. D'Angelo, F.D'Ovidio, E. Gummati,
G.R. Sechi "An Advanced Neural Model for Optimising
the SIREN Network Architecture”, Proc. of ICA3PP '96,
IEEE 2nd International Conference on Algorithms and
Architectures for Parallel Processing, Singapore, June
11-13 1996 pp. 194-200

M. Alderighi, R.P.G. Mazzei, G.R. Sechi, F. Tisato
“Broadcast Automata: a Parallel Scalable Architecture
for Prototypal Embedded Processors for Space
Applications”, to be published in Proc. of HICSS 30, 7-
10 Jan 1997

W.J. Dally and C.L. Sietz "Deadlock-Free Message
Routing in Multiprocessor Interconnection Networks",
IEEE Trans. Computers, Vol. C-36, No. 5, May 1987,
pp.547-553

Powerview Reference Manual, VIEW/ogic

Workview Reference Manual, VIEWlogic

G. Della Vecchia and C. Sanges, “Recursively Scalable
Networks for Message Passing Architectures”, Proc. Int.
Conf. Parallel Processing and Applications (Sept. 23-25),
L’ Aquila, Italy.

G. Della Vecchia and C. Sanges, “A Recursively
Scalable Network VLSI Implementation”, Future
Generations Computer Systems, Vol. 4, No. 3, October
1988.

A. lazzetta, C. Sanges, U. Scafuri "A Routing Strategy
for WK-Networks" Proc. of MPCS '94, The Ist
International Conference on Massively Parallel
Computing Systems, May 2-6 1994, Ischia, Italy, pp.
576-582

G. Della Vecchia and C. Sanges, “An Optimised
Broadcasting Technique for WK-Recursive Topologies”,
Future Generations Computer Systems, Vol. 5 No. 4
January, 1990.

R.P.G Mazzei, S. Russo, G.R. Sechi "A Fully Distributed
Broadcasting Algorithm for WK-Networks", Technical
Report of IFRCTR-CNR, No. T-001/96, 1996

"The Programmable Logic Data Book", Xilinx, 1995

1y

(2]

3]

(4]
[5]
(6]

(7]

(8]

(9]

[10]

(1]

	Main Page
	GLSVLSI97
	Front Matter
	Table of Contents
	Author Index

