
SYSTEM LEVEL FIXED-POINT DESIGN BASED ON AN INTERPOLATIVE

APPROACH

Markus Willems, Volker B�ursgens, Holger Keding, Thorsten Gr�otker, Heinrich Meyr

Institute for Integrated Systems in Signal Processing
Aachen University of Technology

Templergraben 55, 52056-Aachen, Germany
fwillems,buersgen,keding,groetker,meyrg@ert.rwth-aachen.de

ABSTRACT

The design process for �xed-point implementations either
in software or in hardware requires a bit-true speci�cation
of the algorithm in order to analyze quantization e�ects
on an algorithmical level, abstracting from implementatio-
nal details. On the other hand, system design starts from
a
oating-point description, so that a transformation of a

oating-point description into a �xed-point description be-
comes necessary. Within this paper we present a tool that
allows an automated, interactive transformation from
oa-
ting-point ANSI-C into a bit-true speci�cation based on
a new data type �xed that is introduced as an extension
to ANSI-C. The concept is rooted in a sophisticated data
dependency analysis that allows to handle control structu-
res as well as pointers. It is part of the �xed-point design
environment FRIDGE 1 which includes an advanced simu-
lator that covers the extended ANSI-C syntax as well as
target speci�c compilers which allow to generate e�cient
�xed-point implementations either for HW or for SW, star-
ting from the bit-true algorithm speci�cation.

I INTRODUCTION

Digital system design is characterized by ever increasing sy-
stem complexity that has to be implemented within reduced
time, resulting in minimum costs. These characteristics call
for a seamless design
ow that allows to perform the suita-
ble design steps on the highest level of abstraction.
Fixed-point implementations are preferred to
oating-

point implementations whenever the system is sensitive to
power consumption, chip size and device price. Fixed-point
system design requires a speci�c design
ow, as illustrated
by �g.1.
Algorithm design starts from a
oating-point descrip-

tion. This allows to ignore the e�ects of �nite word-
lengths and �xed exponents and to abstract from all im-
plementation details. The algorithm space can be eva-
luated in the most e�cient way, only concentrating on
whether the algorithm ful�lls the performance requirements
of the system, such as bit error rate or speech quality.
Performance analysis in general is based on simulation.

34th Design Automation Conference
Permission to make digital/hard copy of all or part of
this work for personal or classroom use is granted with-
out fee provided that copies are not made or distributed
for pro�t or commercial advantage, the copyright notice,
the title of the publication and its date appear, and no-
tice is given that copying is by permission of ACM, Inc.
To copy otherwise, to republish, to post on servers or
to redistribute to lists, requires prior speci�c permission
and/or a fee.

DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

1Fixed-point pRogrammIng DesiGn Environment

target system

Idea

 floating-point-
algorithm

quantization

fixed-point
algorithm

ok?
No

Yes

No

 architecture
spec. description

Yes

No

al
go

rit
hm

ic
al

 le
ve

l
im

pl
em

en
ta

tio
na

l l
ev

el

fix
ed

-p
oi

nt
flo

at
in

g-
po

in
t

ok?

code generation

ok?

Yes

OFDM receiver:
frequency sync. unit

5 weeks

3 weeks

design time

simulation

simulation

Figure 1. Fixed-point design process

The
oating-point description can be done using a block
diagram description [1,2,3,4,5,6] (which up to now is very
much limited to data
ow oriented applications), where the
functional blocks can be user de�ned (using a high level
language) or come from a library. As well, a high level
language such as ANSI-C can be used for the
oating-point
description of the algorithm.
On the bit-true level, a �xed wordlength and a �xed

exponent is assigned to every operand, while the control
structure and the operations of the
oating-point program
remain unchanged. This description is used to analyze
whether the �xed-point model ful�lls the algorithmic sy-
stem requirements. Again, this has to be done by means of
simulation, so that an e�cient �xed-point simulation envi-
ronment becomes necessary. As for the
oating-point level,
di�erent concepts exist for a speci�cation on the bit-true
level:

� block diagram based modeling, e.g. [3,4,5], where it is
possible to convert the
oating-point signals into �xed-
point signals. All these concepts lack the possibility
to look inside the block's functionality, therefore the
allowed functionality is restricted to simple operati-
ons (such as addition, multiplication) which simply are
overloaded.

� textual modeling: the concepts of [3,7] allow to spe-
cify variables (not operands) in a bit-true way. While
[3] uses a special language (DFL) for describing the al-

gorithm, in [7] the speci�cation is done using a C++

program.

On the implementational level, the bit-true model of the
algorithm has to be transferred into the best suited target
description, either using a HDL or a programming language.

Design Automation Conference 
Copyright  1997 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Publications Dept,
ACM Inc., fax +1 (212) 869-0481, or permissions@acm.org.
0-89791-847-9/97/0006/$3.50 DAC 97 - 06/97 Anaheim, CA, USA

The transformation of the
oating-point speci�cation into
the bit-true speci�cation is not unique but a complex de-
sign space exists. Design criterion is a performance true
transformation, so that the bit-true speci�cation ful�lls the
system requirements. So far, the transformation has to be
done manually. This is a tedious, error prone and time con-
suming process even for a single transformation, for more
complex applications accounting for more than 50% of the
design time once the
oating-point algorithm is �xed [8], as
illustrated by the design times included in �g.1.
Although the transformation takes place on the algorith-

mical level, one can no longer abstract from the target ar-
chitecture [8]. E.g., for SW-implementations the machine
wordlength is �xed, and the minimization of shift operations
is a concern. For HW, wordlengths have to be minimized.
Therefore, for a typical design (and especially in HW/SW
codesign), multiple transformations from the
oating-point
level to the bit-true level are necessary. Keeping in mind the
increase in system complexities and time-to-market pres-
sure, there is a strong demand for an e�cient tool support
for the transformation.
Recently, Sung [9] presented an automated, simulation

based transformation concept. It assumes the
oating-point
algorithm to be described by a block diagram with all sig-
nals of type
oat, and converts it into a bit-true speci�cation
by assigning a speci�c wordlength and the information of
the location of binary point to each signal. The procedure
is as follows:
1) The range of each signal is analyzed by simulation, so
that the appropriate number of integer bits can be evalua-
ted.
2) For some signals the designer might specify the word-
length explicitly. Non-speci�ed wordlengths are determined
on a simulation based approach:

� for each signal si: set all signals but si to a maxi-
mum wordlength (64 bits) and determine the minimum
wordlength wi(min) (at least two simulations are ne-
cessary, for wordlength wi(min)� 1 and for wi(min))

� set all signals to their minimum lengths and simulate
the system. If the system performance is not reached,
sequentially increase the word lengths

This concept is the base for Alta Groups Fixed Point
Optimizer within the Hardware Design System (HDS)[10].
The optimization goal is to minimize the hardware costs of
the resulting design.
This concept su�ers from several limitations:

� The assumed block diagram description is not suited
for representing control functionalities.

� The block's functionality is limited to simple operati-
ons (addition, multiplication), since it is not possible
to modify speci�cations inside blocks.

� The bit-true speci�cation is limited to a single op-
timization goal, namely wordlength minimization for
HW-designs. It is not suitable for an optimum �xed-
point SW-design, and therefore lacks the capabilities
for an e�cient HW/SW-codesign.

� Most important, system response time which is deter-
mined by the number of simulation runs is only accep-
table for a small number of unspeci�ed signals. Rea-
listic designs often come with 500 blocks or more, ha-
ving 1000 signals [11], with each simulation running for
hours because of the number of samples that have to
be processed to achieve a su�cient statistics.

The demand for an automation of the transfer process
from a
oating-point to a �xed-point description and the
limitations of existing concepts and tools have been the
motivation for FRIDGE, a design environment for �xed-
point systems. Within this paper we present the concepts

implemented in FRIDGE for an automated and interac-
tive transformation of a
oating point program written in
ANSI-C into a bit-true �xed-point program, based on an in-
terpolative approach. The bit-true speci�cation makes use
of a �xed-C, an extension to ANSI-C (sec.2). The new �xed
data type is instantiated by a number of parameters that
have to be uniquely de�ned for all operands. Sec.3 descri-
bes the principles how to achieve these parameters. The
data dependency analysis that is necessary for the parame-
ter determination is subject of sec.4, with a special focus
on control and loop structures as well as pointers. Finally,
target speci�c transformations are brie
y described in sec.5.

II FIXED-C

To describe a bit-true algorithm, ANSI-C is not suited since
the �xed-point data types are restricted to two machine de-
pendent wordlengths (short, long) and no explicit expo-
nent can be assigned to an operand (for a detailed discussion
see e.g. [9]).
Therefore, we de�ned �xed-C extending ANSI-C by two

generic, parameterizable �xed-point data types named �xed
and Fixed.
According to Louden [12], a data type is a set of values,

together with a set of operations on that values having cer-
tain properties.

2.1. Operand Speci�cation

A �xed-point operand is speci�ed by a 3-parameter tuple:
wl wordlength, number of bits
iwl integer wordlength, number of bits left of the binary point
sign u/s, unsigned or signed (2's complement) representation

(S)

iwl
wl

(sign) fwl

Figure 2. Fixed-point data type speci�cation

fwl indicates the number of fractional bits: fwl = wl -
iwl.

2.2. Operator Speci�cation

For both �xed-point data types, �xed and Fixed, all
oat
operators are de�ned. This is motivated by the fact that
�xed-point variables are used within expressions that have
been
oat expressions prior to transformation.

2.3. Casting operations

The transformation of one data type instantiation into a
di�erent instantiation is possible using casting operations:

(wl1; iwl1; sign1)
casting rule

�!

(wl2; iwl2; sign2)
The casting rule has to specify how to handle over
ow (re-
duction of the integer wordlength and/or change of the sign)
and the reduction of the fractional wordlength.
�xed and Fixed o�er two modes for over
ow handling:

saturation (s) and wrap around (w).
For the reduction of the fractional wordlength two modes
exist, too: rounding (r) and truncation (t).
Therefore, four casting rules exist: cast 2 fsr; st;wr;wtg.
The e�ects of the di�erent casting rules are illustrated by
�g.3. Notice that the fractional wordlength reduction is
performed prior to over
ow handling.

2.4. Assignment time instantiation vs. declaration
time instantiation

All existing concepts require the �xed-point speci�cation
of a variable at declaration time [7,3]. As a consequence,
whenever a speci�c variable is used in the program, it is
of the �xed-point data type that has been assigned to it
at declaration time. This concept is by no way suited for

0 1 0 0 0 1

(6,4,s) (4,3,s)

4.25

1 0 0 0wt -2.0

1 0 0 1wr -1.5

0 1 1 1st 3.5

0 1 1 1sr 3.5

Figure 3. Di�erent casting options

the transition of a
oating-point speci�cation to a �xed-
point speci�cation: when the designer starts
oating-point
programming, he does so to abstract from all quantization
e�ects. Especially, he does not care whether di�erent assig-
nments to the same variable would have to match the same
�xed-point data type.
In order not to exchange the program structure and to

result in maximum
exibility, the �xed data type is based
on the concept of assignment time instantiation. This is
best illustrated by an example:

float a,*b,c[8]; fixed a,*b,c[8];

......

a = *b; a = fixed(5,4,s,wt, *b);

......

a = c[0]; a = fixed(6,3,s,sr, c[0]);

The declaration part declares a to be a �xed variable. As
long as no assignment is made to a, the �xed-point instan-
tiation of a is unde�ned and a behaves like a
oat variable.
The �rst assignment instantiates a with data type <5,4,s>,
casting the contents of �b to the speci�ed format. With
the next assignment, a receives data type <6,3,s>, with no
need to exchange the variable's name.
Assignment time instantiation not only allows to keep the

oating-point code structures untouched but allows to ex-
press �xed-point information within loops and conditional
structures in an optimum way. This is explained in more
detail in [13]
The second �xed-point data type, Fixed (Forced fixed)

has been introduced to allow an e�cient interface speci�ca-
tion:

fixed *b,c[8];

Fixed<5,4,s> a;

...

a = fixed(5,4,s,wt,*b);

...

a = fixed(6,3,s,sr,c[0]);

For every assignment to a Fixed variable, FRIDGE analyses
whether the assigned parameter triple matches the speci�-
cation as annotated in the declaration. For the example,
the �rst assignment would be excepted, while the second
assignment would result in an information about the data
type mismatch. This concept allows to guarantee a unique
interface speci�cation throughout the complete transforma-
tion process.
Notice that for both data types, �xed and Fixed, pointers

as well as arrays are de�ned as for the build in data type

oat.

2.5. Data type conversions

�xed-C extends ANSI-C by two �xed-point data types. The-
refore it is possible to have hybrid expressions where one
operand is of type �xed, while the other operand is of an
ANSI-C data type.

For operations having a �xed and a
oat operand, the
�xed operand is transferred to a
oat operand �rst, and a

oat operation is performed. A
oat operand can be casted
to a �xed operand using the casting rules as described above.
The existing ANSI-C �xed-point data types (short, int,

long) can be seen as subtypes of �xed with regard to their
arithmetic behavior with the exception of over
ow handling:
according to ANSI-C [14], the over
ow mode is machine de-
pendent. This is not acceptable for a bit-true speci�cation,
therefore it has been �xed to wrap around. Notice that the
logic operators are still restricted to integer-type operands.
Since �xed-C covers ANSI-C and because of the new

assignment time instantiation concept, the complete con-
trol structure of the initial (
oating-point) program might
remain unchanged. Therefore, the transformation of a

oating-point program written in ANSI-C into a bit-true
program written in �xed-C can be identi�ed to assign a pa-
rameter triple <wl,iwl,sign> to every operand and to spe-
cify the casting rules for the explicit instantiations.
Notice that �xed-C is pure C++, making FRIDGE a fra-

mework that is entirely based on standard language inter-
faces.

III THE INTERPOLATIVE APPROACH

As pointed out above, the manual annotation of all ope-
rands as required by the existing concepts is hardly accep-
table even for a single transformation. It is even more of
a design bottleneck for HW/SW-codesign where iterative
transformations become necessary.
Therefore, we propose an alternative design
ow, denoted

the interpolative approach which is illustrated by �g.4.

floating-point.c

 "hybrid"
simulation+

hybrid.fc

interpolation

 bittrue
simulation

fixed-point.fc

global-annotation.file

local
annotations

Figure 4. Design
ow based on interpolation

1. Local annotations:
The design starts from the
oating-point description.
In addition, the designer assigns �xed-point informa-
tion to some �xed-point operands that are critical to
his design or already known with their �xed-point spe-
ci�cation (e.g. the interface format of a system). This
results in a hybrid speci�cation, where some operands
are already �xed-point, while others remain
oating-
point.

Local annotations are not restricted to complete
�xed-point speci�cations specifying all 3 parameters
(wl,iwl,sign) explicitly, but it is possible to inform ab-
out:

� the operand's range

� the operand's mean and variance

� the maximum absolute error that is acceptable due
to quantization

� the maximum relative error (relative to the maxi-
mum value the operand can take) that is acceptable
due to quantization

These informations can be utilized by the interpolator.

2. Simulation:
Simulation serves for two purposes:
�rst it allows the designer to check check whether the
locally annotated speci�cation still meets the design
criteria. If not, a modi�cation of the local annotations
or even the
oating-point algorithm becomes necessary.
Second, by simulation it is possible to collect additional
information that can serve as local annotations. This
can be monitoring of range, mean or variance for some
or all operands (what has to be traded with simulation
time increases), displaying histograms for user speci�ed
operands or over
ow detection.

Using the simulation environment HYBRIS 2 which is
an integral part of FRIDGE, it is possible to automa-
tically back-annotate the collected information so that
it becomes the base for interpolation.

3. Interpolation:
Once the annotated program matches the design crite-
ria, the remaining
oating-point operands are transfer-
red to �xed-point operands by interpolation. 'Interpo-
lation' expresses the determination of the �xed-point
parameters of the non-speci�ed operands from the in-
formation that is inherent to the annotated operands.
The interpolation concept is based on three key ideas:

(a) Worst case estimation:
The principle might be illustrated by an example:
a = b + c

For a, sign and su�cient integer wordlength iwl de-
pend on the range that a can take. A worst case
range estimation is possible, given the range infor-
mation for b and c: minfag = minfbg + minfcg,
maxfag = maxfbg + maxfcg. For the fractio-
nal wordlength, no information is lost if fwl(a) =
maxffwl(b), fwl(c)g.
Obviously, information about ranges and fractional
wordlengths can be determined by the various local
annotations as described above.

(b) Global annotations:
While local annotations express �xed-point infor-
mation for single operands, global annotations de-
scribe restrictions that have to be matched throug-
hout the complete design.
Examples for global annotations include:
global cast(cast): if no local annotation about the
casting mode is available, take mode cast.
global wl max(max, default): whenever worst
case estimation leads to a wordlength exceeding
max, reduce it to default.
For more information about global annotation op-
tions, refer to [15]. Global annotations are the ena-
bling feature for an e�cient HW/SW-codesign. As
already pointed out above, although starting from
the same
oating-point algorithm, in general di�e-
rent �xed-point speci�cations are necessary. If it
is not known which parts of the design to realize
in HW and which parts in SW, global annotations
allow to generate the di�erent �xed-point speci�-
cations by exchanging a single �le.

(c) Designer support:
If an interpolation is not possible for the complete
design since the annotated information is not suf-
�cient, the interpolator can inform about the loca-
tion where it is impossible to continue and can ask
for additional information.

The interpolation supplies a fully annotated program,
where a unique �xed-point data type is assigned to
each operand. Therefore, the e�ects of local and global
annotations become completely visible to the designer.

2
HYBRId Simulator

4. Simulation:
Since the global annotations might have changed the
algorithmic performance of the speci�cation, the (now
completely de�ned) �xed-point program has to be si-
mulated again. If it is found that the system does not
ful�ll the design criteria, the initial description might
be modi�ed by adding annotations.

The interpolative design
ow comes with several advan-
tages compared to existing approaches:

� design time reduction: the designer can concentrate
on the speci�cations which are important to his design
while the e�ects to the remaining parts are evaluated
in an optimum way by the interpolator.

� designer's control: the designer fully controls the trans-
formation process since he can assign all information
(either locally or globally) that is crucial for his de-
sign. The interpolation makes visible the e�ects on
those parts of the design that have not been speci�ed
explicitly by local annotations. This simpli�es iterative
modi�cations by the designer when he wants to assign
additional annotations.

� Design space evaluation: the evaluation of di�erent
�xed-point speci�cations becomes very easy since only
some annotations have to be exchanged while the re-
maining speci�cations are automatically derived from
this information. This is extremely useful especially
for HW/SW-codesign, where di�erent targets must be
addressed within short time.

The interpolative approach relies on a unique compile
time identi�cation of the information that is available for
each operand. Therefore, a powerful data
ow analysis be-
comes necessary.

IV DATA DEPENDENCY ANALYSIS

4.1. Control-Data
ow Graph

Unless the functionality that has to be transferred into a
bit-true speci�cation is a main function, it is assumed to be
a function that is called within a loop of unknown size.
The interpolative approach depends on the possibility to

identify the information to be propagated (range informa-
tion or parameter information) at compile time. Therefore,
it is necessary to analyze the data dependencies by a pro-
gram interpretation. For the representation of data depen-
dencies a modi�ed control-data
ow graph (CDFG) [16] is
introduced. Fig.5 shows the CDFG for a simple example.

+

*

c 5.2

b

a

e

g

a = b + c*5.2;
e = a + b;
f = a * g;

f

*+

Figure 5. Data
ow representation

A CDFG consists of nodes which represent the operators,
boxes identifying variables or constants. Arrows either re-
present assignments to variables and usages of variables as
an operand or the usage of an operation result as an ope-
rand for the next operation (e.g. the result of c � 5:2 is not
assigned to a temporary variable but becomes an operand
of the addition). Each variable corresponds to a storage
location in a virtual memory model. A variable is suppo-
sed to keep the assigned value as long as the last operation
using it as an operand has been executed (in the example,

a is supposed to keep its value until both operations are
executed). Prior to this, no new assignment to a storage
location is allowed
So far, this representation does not include parameter

and casting information. Therefore, the CDFG notation
has to be extended, as it is expressed by �g.6

default

generation

usage 1 usage 2

+ *

a = fixed(6,4,s,sr,(b+c*5.2));

e = fixed(5,4,s,wt,a) + b;

f = fixed(6,4,s,wr,a) * g;
7,4,s

6,4,s

sr

5,4,s 6,4,s

wt wr

b c*5.2
+

b g

Figure 6. Extended CDFG

Default denotes the data type instantiation resulting from
worst case estimation. This instance might be forced to a
new instantiation when the result is assigned to a. The
transformation is done according to the casting rules of a,
here sr. Only the generated format is written to the storage
location and is available for further processing.
When a is used as an operand, di�erent parameter tuples

can be assigned for each usage, resulting from di�erent data
type instantiations: when a is used as an operand of the
addition, a wordlength of 5 is su�cient, but when used in
the multiplication a wordlength of 6 is required.

4.2. Conditional structures

For a conditional structure, at compile time in general it is
not possible to decide which branch is to be executed. As
a consequence, depending on the executed branch di�erent
parameter triples might be assigned to a variable. This is
contrary to the requirement of a unique information assig-
ned to each operand. For the interpolative approach, which
is based on worst case estimations, a uni�cation of the in-
formation is necessary prior to the �rst access to the storage
location outside the conditional structure. Fig.7 illustrates
the extension to the CDFG.

b

a

0

a

merge d

c

if <condition>
 a = b;
else
 a = 0;

c = a + d;

+

Figure 7. Data
ow representation for a conditional state-
ment

The merge node combines the information of both ope-
rands:
fwla = maxffwla1; fwla2g
min(a) = minfmin(a1); min(a2)g
max(a) = maxfmax(a1); max(a2)g
The merge node guarantees that independent from the

execution of any of the branches no information gets lost.

4.3. Loop structures

3 classes of loops can be identi�ed:

1. loops of �xed length

2. loops of data dependent length, with Nmax the maxi-
mum number of iterations known

3. loops of data dependent length with no information
about the number of executions

The type of loop is identi�ed by FRIDGE during the pro-
gram interpretation, independent of its description by a for,
while or do-while construct.

Fixed length The loop body can be unfolded, resulting
in sequential code.

Data dependent length, Nmax is known The loop can
be unfolded, too. Fig.8 shows the CDFG for this constel-
lation. Di�erent to the loop of �xed length, now it is not

a

+

a

merge

*b

+

a

for (i=0; i<N; i++)
 a = a + *b++;

Nmax = 2

*b

executed
conditionally

Figure 8. CDFG for a loop of maximum, data dependent
length

possible to identify the �nal assignment to a storage loca-
tion before leaving the loop. Therefore, prior to reading
from a storage locations that might has been written to in-
side the loop, all possible information has to be combined
using a merge node.

Data dependent length, no information For this con-
stellation, no loop unfolding is possible. Again, it has to be
guaranteed that independent from the number of iterati-
ons no information can get lost and a unique information is
propagated. As a consequence, in the bit-true speci�cation
independent from the iteration a unique parameter triple
is assigned to each operand. Therefore, in the CDFG only
one loop iteration has to be represented, as illustrated by
�g.9.

a

+

a

*b for (i=0; i<N; i++)
 a = a + *b++;
 a = a * d;

*
a

d no information
on N

merge

Figure 9. CDFG for a loop of data dependent length, no
information on N

The dashed arrow (in the following called static arrow)
indicates that for the next iteration the last instantiation
of a within the loop becomes the instantiation of a at the
beginning of the loop. The merge node indicates that either
one of the instantiations becomes the input for the next loop
iteration, and that both informations have to be combined.

4.3.1. Static Variables

Static variables provide private, permanent storage wit-
hin a single function. Since it is assumed that the function is
called within a loop of unknown size, static variables have to
be treated as variables in a loop. This as well is represented
by a static arrow (actually, the static variables motivated
this notation) if the static variable is used as an operand
prior to its �rst assignment. In the sequel, all variables re-
sulting in static arrows in the CDFG shall be denoted static
variables.

4.3.2. Pointer

Within ANSI-C, indirect addressing using pointers is a
powerful mechanism for an e�cient algorithm description.
This concept is fully supported by FRIDGE, data types
�xed,Fixed can handle pointers in the same way as the nu-
meric data types already de�ned in ANSI-C.
For data type analysis, pointer analysis is a major chal-

lenge. During code interpretation, all possible storage loca-
tions a pointer might read from and might write to have to
be identi�ed.
For a reading pointer, the information inherent to all pos-

sible storage locations the pointer might read from have to
be combined, using a merge node. If it is not possible to
identify the referenced storage location, the designer is in-
formed that he has to assign explicit information to the
operand referenced by the pointer so that the operand is
forced to a unique representation.
For a writing pointer, there might be di�erent storage

locations the result is assigned to. In case the storage loca-
tion is not unique, at compile time it can not be guaranteed
whether the potential storage location keeps its information
or is overwritten by the pointer information. Therefore,
both informations (those previously assigned to the stor-
age location and those of the pointer) have to be combined
using amerge node prior to using the contents of the storage
location as an operand.

V ADDITIONAL FEATURES OF FRIDGE

Starting from the presented bit-true speci�cation, FRIDGE
includes target speci�c compilers that accept �xed-C as its
input speci�cation.
In [15], a compiler for generating bit-true or performance-

true �xed-point ANSI-C code is presented. This compiler is
intended for generating code that existing C-compilers can
handle. In combination with the presented approach it al-
lows a comfortable transition from a
oating-point program
written in ANSI-C to a performance-true �xed-point pro-
gram in ANSI-C. This concept proved to be very e�cient
as is illustrated by the example of a Wiener �lter:
The initial
oat format comes with 135 lines of C-Code, re-
sulting in more than 2000 operations due to nested loops
and conditional structures. The intended target platform
has been a Motorola DSP coming with a word length of
24 bit which should be utilized in the best way to reduce
quantization noise. Interpolation has been possible sim-
ply by specifying the input variables and the upper bound
for the wordlength. Within less than 8 seconds an integer
ANSI-C code has been achieved, including 500 shift opera-
tions, resulting in a performance degradation of less than
0.3dB compared to the initial
oating point algorithm.

A compiler for generating behavioral VHDL suitable as
an input speci�cation for a behavioral synthesis tool [17] is

currently under construction. This will extend the capabi-
lities of FRIDGE to a integrated HW/SW codesign envi-
ronment.
Future projects include the extension of existing ANSI-C

compilers to the extended �xed-C syntax.

VI CONCLUSION

Data type conversion of a
oating-point speci�cation to a
�xed-point speci�cation has been identi�ed to be a time
consuming and error prone process. Within this paper we
have presented FRIDGE, a tool that allows to achieve a bit-
true speci�cation of an algorithm starting from a
oating-
point description in ANSI-C. It is based on an interpola-
tive approach that allows the designer to bring in all his
speci�c knowledge but takes away the burden of specify-
ing all operands explicitly. This allows to analyze di�erent
design option within a short time. The tool handles com-
plicated control and loop structures and is capable of poin-
ter arithmetic, too. This results in a most
exible design
environment for various applications whenever �xed-point
implementations are required.

REFERENCES

[1] Synopsys, Inc., 700 E. Middle�eld Rd., Mountain View, CA
94043, USA, COSSAP User's Manual.

[2] CadenceDesign Systems, 919 E. Hillsdale Blvd., Foster City,
CA 94404, USA, SPW User's Manual.

[3] Mentor Graphics, 1001 Ridder Park Drive, San Jose, CA
95131, USA, DSP Station User's Manual.

[4] Angeles Systems, VANDA-Design Environment for DSP
Systems, 1994.

[5] Mathworks Inc., Simulink Reference Manual, Mar. 1996.

[6] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, \Pto-
lemy: A platform for heterogenous simulation and prototy-
ping," in Proc. 1991 European Simulation Conf., (Copen-
hagen, Denmark), June 1991.

[7] S. Kim, K. Kum, and W. Sung, \Fixed-Point Optimization
Utility for C and C++ Based Digital Signal Processing Pro-
grams," in Workshop on VLSI and Signal Processing '95,
(Osaka), pp. 197{206, Nov. 1995.

[8] T. Gr�otker, E. Multhaup, and O. Mauss, \Evaluation of
HW/SW Tradeo�s Using Behavioral Synthesis," in Proc. of
ICSPAT '96, (Boston), Oct. 1996.

[9] W. Sung and K. Kum, \Word-Length Determination and
Scaling Software for a Signal Flow Block Diagram," in Pro-
ceedings of ICASSP '94, pp. II 457{ 460, Apr. 1994.

[10] Alta Group Inc., 555 N.Mathilda Ave., Sunnyvale,CA
94086, HDS User's Manual.

[11] P. Zepter, T. Gr�otker, and H. Meyr, \Digital Receiver De-
sign using VHDL Generation from Data Flow Graphs," in
Proc. 32nd Design Automation Conf., June 1995.

[12] K. Louden, Programming Languages. Boston: PWS-KENT
Publishing Company, 1994.

[13] M. Willems, V. B�ursgens, H. Keding, and H. Meyr,
\FRIDGE:An InteractiveFixed-PointCode GenerationEn-
vironment for HW/SW CoDesign," in Proceedings of the
IEEE International Conference on Acoustics, Speech and
Signal Processing, (M�unchen), Apr. 1997. accepted for pu-
blication.

[14] B. W. Kernighan and D. M. Ritchie, The C Programming
Language (second edition). Prentice Hall, 1988.

[15] M. Willems, V. B�ursgens, H. Keding, and H. Meyr, \Auto-
matic Fixed-Point C-Code Generation From Floating-Point
Programs," in Proc. Int. Conf. on Signal Processing Appli-
cation and Technology, (San Diego), Sep. 1997. submitted
for publication.

[16] G. De Micheli, Synthesis and optimization of digital cir-
cuits. Mc Graw-Hill, 1994.

[17] D. W. Knapp, Behavioral Synthesis. Prentice Hall, 1996.

	CD-ROM Home Page
	DAC97
	Front Matter
	Table of Contents
	Session Index
	Author Index

	Paper URL

