Topological Routing Path Search Algorithm

with Incremental Routability Test

Toshiyuki Hama

IBM Research, Tokyo Research Laboratory
IBM Japan Ltd.
1623-14, Shimoturuma, Yamato-shi,
Kanagawa-ken 242, Japan
Tel: +81-462-73-4669
Fax: +81-462-73-7413
e-mail: hama@trl.ibm.co.jp

Abstract— This article describes a topological rout-
ing path search algorithm embedded in our auto-
router for printed circuit boards. The algorithm
searches for a topological path that is guaranteed to
be transformable into a physical wire satisfying de-
sign rules. We propose a method for incrementally
verifying design rules during topological path search
in a graph based on constrained Delaunay triangula-
tion, and describe several improvements to the routing
path search algorithm that remedy the overhead of the

routability test and avoid combinatorial explosion.

I. INTRODUCTION

We have been developing an auto-router specifically for
a single-layer printed circuit board. The auto-router com-
pletes routing in two phases: a global routing phase and
a detailed routing phase. In the global routing phase, the
auto-router determines a topological wiring pattern and
does not fix the physical positions of wires. In the detailed
routing phase, the auto-router fixes the physical positions
of wires to meet design rules. In this article we describe
a topological routing path search algorithm used in the
global routing phase. A notable feature of the algorithm
is that it guarantees the routability of all topological paths
found, using an incremental routability test.

In the following sections, we describe the basic data
structure that we use to find a topological path in a rout-
ing region on a printed circuit board. We then explain
an incremental routability test algorithm and a routing
path search algorithm that includes it. We also describe
a technique for decreasing the overhead of the incremental
routability test embedded in the routing path search al-
gorithm. Finally, we discuss a performance problem and
give the results of experiments using several benchmark
printed circuit boards.

ASP-DAC'97
0-89791-851-7$5.00 O 1997 IEEE

Hiroaki Etoh

IBM Research, Tokyo Research Laboratory
IBM Japan Ltd.
1623-14, Shimoturuma, Yamato-shi,
Kanagawa-ken 242, Japan
Tel: +81-462-73-5066
Fax: +81-462-73-7413
e-mail: etoh@vnet.ibm.com

II. DATA STRUCTURE

We constructed a basic data structure by using Con-
strained Delaunay Triangulation to partition routing re-
gions into triangles [3], with each terminal regarded as
a point and the boundaries of printed circuit board and
inhibited regions as constrained edges. Since our auto-
router fixes only the topological path of wires in the global
routing phase, each wire is represented as a sequence of
crossing points on triangulation edges that uniquely rep-
resents the topological path in the routing regions [6].

Terminal

Inhibited Region

e

Fixed wire
—————————— Triangulation edge

vy —O—O— Path search graph

Fig. 1. Path search graph

The path search algorithm searches for a path that does
not cross fixed wires. Since the path search algorithm, like
ordinary shortest-path algorithms, works on a graph data
structure, we construct a graph (path search graph) on
which no path crosses fixed wires (see Figure 1). This
path search graph is dependent on a fixed wiring pattern.
Each time the auto-router fixes a new wire or rips up a
fixed wire, the path search graph is updated.

III. INCREMENTAL ROUTABILITY TEST

As we cannot be sure that a given topological wiring
pattern can be transformed into a physical wiring pattern
that satisfies design rules, we generally need to apply a
routability test before we move on to the detailed routing
phase. Since the pioneering work on routability test algo-
rithms and rubber-band expression of wires by Leiserson
and Maley [2], several improvements have been made to
routability test algorithms [1, 4]. In the original paper,
Leiserson and Maley proved that wires are routable if all
the critical cuts are safe (“safe” means that the length
of a critical cut is long enough to accommodate all the
crossing wires). Dai and others then proved that wires
are routable if all the wires are successfully transformed
into extended rubber-band expressions. Recent improved
routability test algorithms were developed on the basis of
the latter proof.

These routability test algorithms are used as filters to
prevent unroutable topological wiring patterns from being
passed to the detailed routing phase. However, if a given
topological wiring pattern is found to be unroutable, we
need to find another wiring pattern and test its routabil-
ity. The problem, we argue, is that the topological path
search algorithm in the global routing does not recognize
the routability of the current search path.

According to Leiserson and Maley’s result, we can guar-
antee the routability of wires if we can ensure that all the
critical cuts are safe. We detect crossing critical cuts and
check their safety whenever the path search algorithm ex-
tends the current search path by one edge. In the follow-
ing, we explain how to detect crossing critical cuts, given
a path on a path search graph.

In a triangulated region, a critical cut connects a trian-
gle vertex to another triangle vertex or to a triangle edge
if the latter is a constrained edge. We call an union of
triangle regions penetrated by a critical cut penetrates an
enclosing region of the critical cut.

Ccross

Critical cut

Cross unknown not-cross Ccross

Fig. 2. Enclosing region and various paths

Given a path starting from a certain terminal, from the
geometrical relation between the path and an enclosing
region, we can tell whether the path crosses the critical
cut, as shown in Figure 2.

cross: a path enters an enclosing region through a bound-
ary of the region and leaves it through a boundary
on the opposite side of the critical cut.

not-cross: a path enters an enclosing region through a
boundary of the region and leaves it through a bound-
ary on the same side of the critical cut.

unknown: a path enters an enclosing region and remains
in the region.

Thus, when a search path comes to a boundary of an
enclosing region of a certain critical cut, we activate the
cut and remember from which side of the boundary the
search path entered the region. Then, when the search
path comes to a boundary of the same enclosing region
again, we deactivate the cut and check whether the path
actually crosses the cut by comparing the leaving side
with the entering side. If we find that the path crosses
the critical cut, we check the safety of the cut. Since a
list of crossing wires is stored in each critical cut in the
global routing phase, it is easy to check the safety. An
incremental routability test can be realized by iterating
these steps whenever the path search algorithm extends
the current search path by one edge.

To determine the critical cut whose enclosing region a
current search path is about to enter, we need another
data structure. If a triangle edge or vertex belongs to the
boundary of an enclosing region of a certain critical cut,
we add the following three data to the edge or the node:

e A pointer to the critical cut

e The side of the boundary to which the edge or vertex
belongs

e The direction of the path when it enters the region

IV. PATH SEARCH ALGORITHM

In ordinary auto-routers, Dijkstra’s shortest-path algo-
rithm is used to find a path of a net. However, we cannot
directly apply Dijkstra’s algorithm to the routing path
search with the incremental routability test. As we ex-
plained in the previous section, it is unknown whether
the current path is routable until it leaves the enclosing
region of the cut. What is worse, a path sometimes turns
out to be unroutable after it has crossed the same cut
more than once.

Figure 3 shows an example in which Dijkstra’s algo-
rithm does not work correctly. In this example, we as-
sume that capacity of a critical cut is only three wires
and no more wires can pass through the cut. Let us trace
Dijkstra’s algorithm for this example. A path from vertex
a arrives at vertex ¢ and is found to be shortest, so the
distance and the pointer to the previous vertex (vertex
a) are updated at vertex c¢. Then, a path from vertex b
arrives at vertex c¢, but the path is not shortest, so this
path is given up here. The shortest path to vertex c is
determined. A path a ¢ then arrives at vertex d and is
found to cross a critical cut. Since the cut becomes un-
safe, not only the path a ¢ d but also the data on vertex

Critical cut

Fig. 3. Difficult case for Dijkstra’s algorithm

¢ become invalid. However, the distance and the pointer
to the previous vertex cannot be restored at the vertex ¢
in Dijkstra’s algorithm.

We therefore need to distinguish paths that enter an
enclosing region of a certain critical cut from a different
side of the cut, and also paths that cross different set of
critical cuts. To do so, we duplicate the vertex of a path
search graph and add a set of critical cuts as a label to the
vertex if a vertex with the same label has not yet been
created, when the current wave front of Dijkstra’s scan
reaches the vertex. The set of critical cuts consists of the
following critical cuts:

e Critical cuts whose enclosing region the current path
entered and stayed in, and the side of the region’s
boundary through which the path entered.

e Critical cuts crossed by the current path crossed

Thus, we augment a path search graph dynamically by
creating a vertex labeled with a set of critical cuts and ap-
ply Dijkstra’s shortest-path algorithm to the augmented
graph.

When this modified algorithm is used in practical appli-
cations, the size of an augmented graph is our main con-
cern. In the worst case, the size of an augmented graph
increases exponentially because the number of different
labels of the same vertex is proportional to the number of
combinations of crossing critical cuts. To keep the vari-
ation as small as possible, labels of the same vertex are
checked for an inclusion relation when a new labeled ver-
tex is created. If a label (a set of critical cuts) for path
A includes a label for path B, and path A is not shorter
than path B, we need not create a new labeled vertex for
path A.

V. PERFORMANCE IMPROVEMENT

The performance of the path search algorithm with the
incremental routability test depends on the number of
critical cuts, in two senses:

e Growth of an augmented path search graph caused
by combinatorial explosion of crossing critical cuts.

e Overhead of detecting critical cuts crossed by the cur-
rent path. crosses.

The number of critical cuts for a printed circuit board
with N terminals is O(N?). Thus, simple implementa-
tion of the algorithm will be vulnerable to combinatorial
explosion.

We have categorized the critical cuts into three groups,
and identified those that we actually need to check during
routing path search. The groups are as follows:

e Critical cuts that are always safe for any wiring pat-
tern

e Critical cuts that are always safe for the current
wiring pattern

e Critical cuts that are literally critical

The first group is identified before the global routing and
is ignored during routing path search. Since other groups
depend on topologically fixed wiring patterns, the classifi-
cation of all critical cuts is updated whenever a new wire
is fixed or a fixed wire is ripped up. In the following, we
explain the classification method.

After triangulation of the routing regions, we estimate
the upper bound of the flow of wires for each critical cut.
First, we set initial value of the maximum flow for a trian-
gle edge. If the edge is a constrained edge, the maximum
flow is zero (Figure 4(a)). If an edge of a triangle is a
constrained edge and there is a critical cut between the
edge and the opposite vertex, the maximum flow of the
critical cut is its capacity, and the maximum flows of the
other edges are identical to the capacity of the critical cut
(Figure 4(b)). Otherwise the maximum flow of a triangle
edge is its capacity.

Critical cut

[1
(c

(a) flow=0

(b) flow(a) = flow(b) < cap(C) (c) flow(c) < flow(a)+flow(b)

Fig. 4. Flow of wires of triangle edge

Next, by applying the following rule iteratively, we up-
date the maximum flow of all the triangle edges. To sim-
plify the explanation, we ignore the flow of a wire from a
triangle vertex.

For any triangle abc, we can bound the maximum flow
of edge ¢ by the inequality (Figure 4(c)),

Maxflow(c) < MaxFlow(a) + MaxFlow(b).

The maximum flows of all the triangle edges are now
determined. Next, applying a similar rule, we can bound
the maximum flow of each critical cut.

For any critical cut C the right boundary of whose en-
closing region consists of triangle edges ry, ro, ..., T,
and the left boundary of whose enclosing region consists

of triangle edges Iy, lo, ..., lm,

Maxflow(C) < Min{z Maxflow(r;), Z Maxflow(l;)}

i=1 1=1

If the capacity of a critical cut is greater than its es-
timated maximum flow, the critical cut never becomes
unsafe for any wiring pattern. Therefore we categorize
such critical cuts as the first group. In an experiment us-
ing several benchmark printed circuit boards, 70%-80% of
the critical cuts on average were categorized into the first
group.

Among the other critical cuts, we identify the second
group by using the following very simple test. If N wires
cross a critical cut in the current wiring pattern, a new
path never crosses the critical cut more than N+1 times.
Therefore, if the capacity of the critical cut is greater than
the flow of 2N+1 wires, the critical cut is always safe, at
least for the current wiring pattern.

VI. DISCUSSION

The topological routing path search algorithm with an
incremental routability test is vulnerable to combinatorial
explosion. However, our concern is the applicability of the
algorithm to printed circuit boards of a practical size. We
have described two techniques for preventing an explosion
in the size of an augmented path search graph:

e Reducing the number of labels of a vertex by checking
for inclusion between labels.

e Reducing the number of critical cuts by estimating
the upper bound of a flow of wires.

We conducted experiments on the growth of the aug-
mented graph for several benchmark printed circuit
boards. In these experiments, we measured the number
of vertices in the original path search graph, the num-
ber of labeled vertices generated during a search, and the
number of critical cuts needing to be checked.

| Board ’ Terminals ‘ Vertices ’ New vertices ‘ Cuts ‘
Sample 1 363 1662 3175 54
Sample 2 756 3958 98373 185
Sample 3 1203 4215 221089 20
Sample 3’ 1203 4215 5470 20

Fig. 5. growth of augmented graph

The results in Figure 5 shows the worst case for each
benchmark board. For the first three samples, inclusion

relations between labels of vertices were not taken into
consideration. With sample 3, we encountered an actual
combinatorial explosion. The result for the last sample
was obtained by using label size reduction in the path
search algorithm. This result shows that it is really pos-
sible to reduce the graph size by using inclusion relations
between labels, and that we were able to avoid combinato-
rial explosion for a benchmark board of a practically large
size. Furthermore, the reduction in the number of critical
cuts to be checked is remarkably small, considering the
number of terminals of in the benchmark boards.

According to our observations, only a small number of
wires are generally fixed at the beginning of the global
routing, and the number of literally critical cuts is also
small. The path search algorithm rarely encounters a
combinatorial explosion. The possibility of combinatorial
explosion increases as the global routing proceeds. At the
end of the global routing phase, on the other hand, fixed
wires partition the routing region into small areas, and
reachable vertices on a path search graph are confined
to a small portion of the graph. Thus, the possibility of
combinatorial explosion decreases toward the end of the
global routing, and is relatively high in the middle of the
global routing phase.

VII. SUMMARY

We have described a topological routing path search
algorithm with an incremental routability test. The al-
gorithm finds a topological path that is guaranteed to be
transformable into a physical wire that meets design rules.
Although the algorithm is inherently vulnerable to com-
binatorial explosion, we also described two techniques for
avoiding this problem and showed that the algorithm is
applicable to printed circuit boards of a practical size.

REFERENCES

[1] W. W.-M. Dai, R. Kong, and M. Sato. “Routability of a rubber-
band sketch,” In Proceedings of the 28th ACM/IEEE Design
Awutomation Conference, pages 45-48, 1991.

[2] C. E. Leiserson and F. M. Maley. “Algorithms for routing and
testing routability of planar VLSI layouts,” In Proceedings of
the 17th Annual ACM Symposium on Theory of Computing,
pages 69-78. ACM, 1985.

[3] Y.Luand W. Dai. “A numerical stable algorithm for construct-
ing constrained Delaunay triangulation and application to mul-
tichip module layout,” In Proceedings of 1991 International
Conference on Circuits and Systems, pages 644—647, June 1991.

[4] F. M. Maley. “Testing homotopic routability under polygonal
wiring rules,” Algorithmica, 15:1-16, 1996.

[5] D. Staepelaere, J. Jue, T. Dayan, and W. W.-M. Dai. “Surf:
A rubber-band routing system for multichip modules,” IEEE
Design & Test of Computers, 10(4):18-26, 1993.

[6] H. Tanaka, M. Kanazawa, H. Tanaka, M. Satoh, and T. Ohtuki.
“A multi-layer routing system based on sketch model (in

Jananese),” IPSJ SIG Notes DA 70-9, pages 6370, 1994.

	CD-ROM Home Page
	ASP-DAC Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

