
A Comparison of Functional and Structural Partitioning

Frank Vahid Thuy Dm Le Yu-chin Hsu
Department of Computer Science

University of California, Riverside, CA 92521
vahid@cs.ucr.edu

Abstract
Incorporating functional partitioning into a synthe-

sis methodology leads to several important advantages.

In functional partitioning, we �rst partition a func-

tional speci�cation into smaller sub-speci�cations and

then synthesize structure for each, in contrast to the

current approach of �rst synthesizing structure for the

entire speci�cation and then partitioning that structure.

One advantage is that of greatly improved partitioning

among a given set of packages with size and I/O con-

straints, such as FPGA's or ASIC blocks, resulting in

better performance and far fewer required packages. A

second advantage is that of greatly reduced synthesis

runtimes. We present results of experiments demon-

strating these important advantages, leading to the con-

clusion that further research focus on functional parti-

tioning can lead to improved quality and practicality of

synthesis environments.

1 Introduction

Functional speci�cations, consisting of a machine-
readable program-like description of a system's desired
behavior, are becoming commonly available with digital
systems. They can be input to simulators for early veri-
�cation of behavior, as well as to synthesis tools for au-
tomatic structural design. In addition, those speci�ca-
tions can be functionally partitioned to solve numerous
problems, including exploring hardware/software trade-
o�s, satisfying hardware packaging constraints, and re-
ducing synthesis runtimes.

Recent research has focused on the �rst problem of
exploring tradeo�s of cost and performance through
functional partitioning among software and custom-
hardware processor components [1, 2, 3, 4, 5, 6, 7]. The
latter problems are also important, but their functional
partitioning solutions have received far less attention.

The problem of satisfying hardware packaging con-
straints, such as size and I/O (input/output pin) con-
straints on ASIC or Field-Programmable Gate Array
chips (FPGA's), has received extensive attention by re-
searchers for over two decades [8]. The focus, though,
has been on partitioning already-designed structure.
Such structural partitioning is I/O dominated because
a typical package's I/O is usually relatively scarce com-
pared to gates, leading to more packages, power, and
execution delay [9]. While new techniques multiplex
wires to reduce I/O [9], the problem is still very hard
to solve structurally. Designers have long solved this
problem manually by performing functional partition-
ing, where a system's functions are �rst partitioned
among packages, and then each package's functions are
implemented. The existence of functional speci�ca-
tions means that such functional partitioning can now

be automated. In fact, several research e�orts have
addressed such automation, hypothesizing that func-
tional partitioning would excel over structural partition-
ing [10, 11, 12, 13, 14]. This paper provides empirical
results supporting that hypothesis.

Intuitively, functional partitioning excels by assign-
ing each function to one part, rather than spreading a
function over several parts. Such isolation: (1) reduces
I/O, (2) prevents the critical path from crossing parts,
thus reducing the clock period, and (3) often yields sim-
pler hardware, thus further reducing the clock period.
More importantly, we have complete control over I/O at
the functional level, and can easily tradeo� performance
and I/O. In particular, data transfers between parts can
be easily time-multiplexed over one bus by inserting an
addressed-protocol behavior (or even an arbiter behav-
ior), and transfers can be partially or fully serialized.
Another advantage is that each part's behavior is read-
able and late changes are often isolated to one part,
leading some designers to call this approach \partition-
ing for debug."

These advantages come with drawbacks. First, func-
tional partitioning must be guided by estimates of size,
I/O and performance for possibly thousands of exam-
ined partitions, but obtaining good size and perfor-
mance estimates quickly can be hard. In contrast, in
structural partitioning, we can easily estimate size and
and delay quickly and accurately, by summing object
sizes and counting critical path cuts. However, sophisti-
cated estimation techniques can help alleviate this draw-
back [15]. Second, a functionally partitioned system of-
ten (though not always, as we shall see) uses more gates,
since hardware objects aren't shared by functions on
di�erent parts. However, since partitioning is often I/O
dominated, this increase is often insigni�cant.

Another problem solvable with functional partition-
ing is reducing synthesis tool runtime. In particular,
one large process in a speci�cation can result in exces-
sive tool CPU time and memory use and can lead to an
ine�cient design. By functionally partitioning the spec-
i�cation into smaller ones, and inputing each to the syn-
thesis tool independently, runtimes can be reduced by
an order of magnitude. An analogous problem and so-
lution were presented in [16] for partitioning logic equa-
tions before logic synthesis; in this paper, we describe
results of functionally partitioning a speci�cation before
behavioral synthesis.

This paper is organized as follows. We describe ex-
periments in Section 2 demonstrating functional parti-
tioning's advantages for satisfying package constraints,
and in Section 3 for reducing synthesis runtimes. We
discuss future work in Section 4, and provide conclu-
sions in Section 5.



Behavioral

(MEBS)
Synthesis

Behavioral

(MEBS)
Synthesis

Chip1 Chip1

(b)(a)

Chip2 Chip2

Functional Functional
Specification

(VHDL)
Specification

(VHDL)

Functional partitioning

Spec1
(VHDL)

Spec2
(VHDL)

Behavioral
Synthesis
(MEBS)

Structural
Netlist

Structural partitioning

Figure 1: Partitioning approaches: (a) structural, (b)
functional.

2 Partitioning for packages

We describe our functional and structural partition-
ing approaches, as illustrated in Figure 1, and compare
the resulting system performance, gates, and I/O for
several examples partitioned among two FPGA's.

2.1 Examples

Four VHDL design descriptions were used in the ex-
periments. 2p-fact is a decryption example, which at-
tempts to �nd two prime numbers who's product equals
some given value. Chinese is the application of \Chi-
nese Remainder Theorem" [17], which �nds the value
of x such that it satis�es three congruent equations.
8-bits rsa is a simple version of the RSA cryptogra-
phy system [17], which performs encryption or decryp-
tion with the given public and private keys. Vol is a
volume-measuring medical instrument controller, which
receives sonar data from which an object's volume is
computed. All examples were written with algorithmic-
level VHDL, as opposed to a state-machine or RT level,
and their sizes were 161, 168, 169, and 229 lines.

2.2 Functional partitioning

We �rst decomposed the speci�cation into a set
of functional objects to be assigned to system com-
ponents. The object granularity was procedures and
variables. Arguments for this granularity, as opposed
to �ner-granularities like statements, can be found in
[2, 5, 18, 19]. Techniques in [19] can be used to group
a procedure's statements into sub-procedures when the
user-written procedures would be too coarse-grained.

We then partitioned the functional objects among
two groups, using both automated and manual tech-
niques. We applied the prototype automated partitioner
in SpecSyn [20]. SpecSyn creates an internal model, ex-
tensively annotates that model with results from esti-
mators, builds complex equations for rapid metric esti-
mation during partitioning, and then inputs the model
to a partitioning engine (GPP { General Purpose Par-
titioner); we use the simulated annealing heuristic in
this case. We also independently partitioned the exam-
ples manually, using rough hand-calculated estimates of
size, performance and I/O to guide decisions. The au-
tomated and manual partitions were usually very close.

After choosing a partition, we manually rewrote the
speci�cation as two processes, each process containing
a subset of the original procedures and variables. These
processes communicated via global signals, where some
signals were used for data, and others for control hand-
shaking. The partitioning, speci�cation rewriting and
subsequent simulation of the new speci�cation required
about 1 hour per example, and we typically performed
two iterations. (SpecSyn can automatically partition
and rewrite the speci�cation in just a few minutes, so
iteration times could be greatly reduced).

2.3 Structural partitioning

We �rst synthesized the entire VHDL speci�cation
to a controller block and a datapath of interconnected
RT-level objects. We chose to partition structure at the
RT-level, rather than the gate level, in order to obtain
reasonably equivalent granularities for functional and
structural partitioning. Going to the gate level would
have introduced an order of magnitude more objects,
which might have caused partitioning heuristics to �nd
inferior solutions, thereby accounting for most of the
di�erence between structural and functional partition-
ing approaches.

We then converted the RT-level structure to a hy-
pergraph. We created a hypergraph node for each RT
object (each register, mux, functional unit, etc.). The
controller block was assigned to its own node. We as-
signed a weight to each node, corresponding to the size
of each object when synthesized into a Xilinx library;
various object sizes are shown in Table 1. We assigned
a weight to each hyperedge, corresponding to the num-
ber of bits being transferred over that edge; memory
accesses were encoded as address bits plus data bits.
Finally, we input the hypergraph into GPP and applied
simulated annealing. The average hypergraph size was
115 nodes. The simulated annealing cooling schedule
was chosen so that GPP would run for about 20 min-
utes. The cost function was a weighted sum of size and
I/O violations. We ran 4 trials for each hypergraph, in
which we weighed the size term of the cost function by
1, 5, 15 and 20.

2.4 Experiments

We used the MEBS behavioral synthesis tool [21] to
synthesize structure in both the functional and struc-
tural partitioning approaches. MEBS converts a VHDL



Functional units type Area(gates)

REG 32-bits 224

REG 1-bits 7

ALU 32-bits 384

LESS 32-bits 190

MUL 32-bits 3230

2-1 MUX 32-bits 97

3-1 MUX 32-bits 193

4-1 MUX 32-bits 288

5-1 MUX 32-bits 384

6-1 MUX 32-bits 576

... ... ...

Table 1: Partial size library

process into a �nite-state machine (FSM) controller and
a connection of RT-level datapath components. MEBS
invokes Berkeley's SIS [22] tool to implement the con-
troller, and then maps the structure into a Xilinx tech-
nology library for FGPA implementation.

For both functional and structural partitioning, we
used Xilinx XC4000 FPGA's as the implementation
components. Size and I/O constraints for these chips
are shown in Table 2.

Device XC4008 XC4010/10D XC4013 XC4025

Gate count 8,000 10,000 13,000 25,0000

Number of IOBs 144 160 192 256

Table 2: Xilinx XC4000 FPGA's

Results are shown in Table 3. The unpartitioned col-
umn shows the I/O and size when synthesizing the en-
tire example into one design (i.e., assuming implemen-
tation on a single chip). The next three columns show
results of functional partitioning. The no bus column
shows the I/O and size of each chip after functional
partitioning without any additional buses created after
partitioning. The bus column shows I/O and size when
sequential communications between the two chips are
assigned to a single bus, thus reducing I/O. The p.d.

(ports distributed) column shows size and I/O when
accesses to external ports by a particular chip are dis-
tributed to the other chip and transmitted over the bus,
allowing better balancing of I/O between the chips. The
last four columns show structural partitioning results.
The w 1 column represents an even weighing of size and
I/O in the cost function used during partitioning. The
w 5 represents a weighing of the size term by a factor
of 5 more than the I/O term, thus striving for a better
balancing of size. The w 10 and w 15 columns represent
factors of 10 and 15.

2.5 Analysis

2.5.1 I/O and size

Functional partitioning led to much better satisfaction
of I/O and size constraints.

Structural partitioning could not satisfy I/O and size
constraints at the same time. With an even weighing of
those constraints in the cost function, I/O was satis�ed,
but sizes were grossly unbalanced and size violations
were huge. With heavier weighing of the size constraint,
better size balancing was obtained but at the cost of

large I/O violations. Functional partitioning nearly sat-
is�ed both constraints in all examples. In cases where
the I/O constraint was slightly violated, merging com-
munications into buses eliminated the violation. Note

that such merging after partitioning is very di�cult dur-

ing structural partitioning, since scheduling of communi-
cations over wires was already determined during design
of the structure. In functional partitioning, communi-
cation still represents high-level data transfers, so we
can merge transfers onto a single bus, introduce arbiters
(which was not necessary in our examples since we only
merged sequential communication), and even serialize
the data transfers.

We investigated the possibility that the excessive I/O
achieved during structural partitioning was caused by
too much sharing of resources in the datapath. We re-
synthesized the designs, telling MEBS not to share any
registers or functional units in the datapath. Obviously
this resulted in a much larger total size (more regis-
ter and functional units, though fewer muxes). After
applying structural partitioning, we found only minor
improvements in I/O satisfaction. For example, in the
2p-fact example, the packaging violation was 0 pins and
14043 gates (or 0/14043).

When faced with such constraint violations during
structural partitioning, the alternatives are to add more
FPGA's or use more expensive FPGA's with greater
capacities, leading to much higher-cost designs. Thus,
we see that functional partitioning can lead to much
lower-cost designs by using fewer or cheaper FPGA's.

2.5.2 Performance

Functional partitioning led to better performance than
structural partitioning. To analyze performance, we
must look at two factors: (1) the number of clock cycles
n to execute the speci�cation (say on the average), and
(2) the clock period � . The performance is then com-
puted as n� � . In functional partitioning, we introduce
more clock cycles for data transfer, but the clock period
stays the same. In structural partitioning, the number
of clock cycles stays the same, but we must extend the
clock period to account for each intercomponent delay
(e.g., 7 ns for the Xilinx FPGA) that occurs during any
register-to-register transfer. For the examples, we op-
timistically assumed only one delay (7 ns) increase in
the clock period. Table 4 summarizes results. �sp and
�fp are the clock periods for structural and functional
partitioning, respectively, and tsp and tfp are the per-
formance times of each. h is the number of clock cycles
for high-level data transfer for the functional partition.
Thus, we can compute performance as:

tsp = n� �sp

tfp = (n+ h)� �fp

Functional partitioning led to signi�cant speedups
over structural partitioning. Structural partitioning re-
quired a longer clock cycle. However, this longer cycle
was only partly due to the 7 ns added for intercompo-
nent delay. A second factor leading to the longer cy-



Example Unpartitioned Functional partitioning Structural partitioning

I/O reduction technique Resource sharing

2p-fact none buses port dist. w 1 w 5 w 10 w 15

Chip 1 99/19697 199/7711 134/7117 102/6875 112/19396 210/15270 140/4854 355/12263

Chip 2 { 102/8398 38/8188 70/7836 14/301 112/4427 236/14843 389/7434

Violation 39/0 0/0 0/0 0/9396 50/5270 76/4843 424/2263

(160/10000)

rsa
Chip 1 132/22614 328/12786 164/11846 100/11604 101/814 169/4250 831/11887 692/13311

Chip 2 { 134/10705 38/9765 102/9249 262/21810 426/18374 832/10737 693/9313

Violation 136/0 0/0 0/0 70/8810 234/5374 1279/0 1001/311

(192/13000)

chinese

Chip 1 99/28471 502/19917 131/17284 99/17042 184/819 208/4014 212/4063 212/4063

Chip 2 { 325/14211 37/11578 69/11820 824/27652 912/24457 916/24408 916/24408

Violation 315/0 0/0 0/0 568/2652 656/0 660/0 660/0

(256/25000)

vol

Chip 1 110/17028 211/12040 191/12008 125/11766 183/14792 174/13907 223/3366 315/4003

Chip 2 { 133/10278 103/10246 135/10488 168/2236 196/3121 165/13662 168/13035

Violation 19/0 0/0 0/0 0/1792 4/907 31/662 123/25

(192/13000)

Table 3: Functional vs. structural partitioning

Examples 2p-fac 8-bits RSA chin thm vol

�sp 78 ns 315 ns 74 ns 66 ns

tsp 39000 ns 157500 ns 37000 ns 33000 ns

�fp 47 ns 305 ns 66 ns 54 ns

h 10 clk cycles 7 clk cycles 6 clk cycles 4 clk cycles

tfp 23970 ns 154635 ns 33396 ns 27216 ns

Speed up 1.63 1.02 1.12 1.21

Table 4: Performance comparison

cle was the more complicated hardware obtained when
synthesizing one large structure instead of two simpler
ones. Functional partitioning, on the other hand, re-
quired only a few extra clock cycles for handshaked
inter-component data transfer. Speedups ranged from
1.02 to 1.63 over the performance achieved by struc-
tural partitioning. More intercomponent delays after
structural partitioning, which are commonly the case,
would lead to even greater speedups.

3 Partitioning for synthesis

In this section, we evaluate synthesis tool perfor-
mance improvements gained with functional partition-
ing. Note that the resulting partitioned design may still
be implemented on a single package.

We evaluate synthesis tool performance using three
factors. (1) Synthesis time: the CPU time (on a Sparc
10) required for the synthesis tool to convert the behav-
ioral speci�cation into structure. We compare the time
for synthesizing the entire VHDL speci�cation with the
sum of the times for synthesizing each speci�cation af-
ter partitioning. (2) Output size: the total size of the
output structure, measured in equivalent gates using
the Xilinx XC4000 technology library. The sizes are
compared in a manner identical to synthesis times. (3)
Memory use: the maximum amount of memory used at
any time by the synthesis tool.

Our experiments showed that memory use was lin-
early proportional to the size of the input, so we do not
report memory use in subsequent tables. In our exam-
ples, the maximummemory used during synthesis of any

one example was 300 Mb. Since this amount of memory
was much less than our available memory, partitioning
did not yield signi�cant improvements with regard to
memory use. However, in cases where available memory
is scarce, partitioning could ensure that the maximum
memory amount was not exceeded.

3.1 Examples

We used the same examples as above. However, in
this case, we needed to measure the e�ect of input size
on tool performance. If we compare tool performance
on di�erent examples of di�erent sizes, we can not deter-
mine whether the variations in performance result from
the di�erent sizes or from other factors. For example,
one example might require more synthesis time than an-
other not because of its size, but because of some piece
requiring substantial scheduling and binding. To elimi-
nate such additional factors, we created large examples
by duplicating smaller examples a number of times. The
duplication method was as follows. First, we duplicated
the ports, variables, and procedures N � 1 times, creat-
ing new identi�ers for each duplicated object. Then, we
duplicated the process' statements N � 1 times, where
each duplication accessed its own copy of ports, vari-
ables and procedures. We created four versions of each
example, corresponding to an N of 1 (the original ver-
sion), 2, 3 and 4 (the largest version of the example,
roughly four times bigger than the original version).

3.2 Synthesis

We again used MEBS to perform synthesis. The
MEBS synthesis tool divides behavior synthesis into two
subtasks: high-level synthesis and logic synthesis. High-
level synthesis involves a sequence of subtasks: compila-
tion, scheduling, allocation, and binding. MEBS's logic
synthesis has three modes: no optimization, fast, and
optimal. In this experiment, we use the fast mode and
the optimal mode.



2p-fact

Dup. Unpartit. Functional partitioning Speedup

Part1 Part2 Total S. P.

1 00:48 00:32 00:05 00:37 1.3 1.5

2 19+ hours 01:10 00:15 01:25 15.2 17.3

3 19+ hours 01:21 00:31 01:52 12.5 15.7

4 19+ hours 02:18 00:43 03:01 6.3 8.7

Chinese

Dup. Unpartit. Functional partitioning Speedup

Part1 Part2 Total S. P.

1 05:20 00:23 00:31 00:54 5.9 10.3

2 07:28 02:22 01:03 03:25 2.4 3.3

3 15:19 03:09 02:23 05:32 2.9 4.9

4 16+ hours 03:25 04:58 08:23 1.9 3.2

Vol

Dup. Unpartit. Functional partitioning Speedup
Part1 Part2 Total S. P.

1 00:15 00:06 00:02 00:08 1.9 2.5

2 01:03 00:12 00:05 00:17 3.7 5.25

3 05:26 00:35 00:22 00:57 5.7 9.3

4 09:06 01:29 01:06 02:35 3.5 6.1

Table 5: Synthesis times (optimal mode)

2p-fact

Dup. Unpartit. Functional partitioning Speedup
Part1 Part2 Total S. P.

1 890s 12s 3s 15s 59.3 74.2

2 2675s 23s 9s 32s 83.6 116.3

3 3400s 786s 12s 798s 4.3 4.3

4 5500s 1414s 120s 1534s 3.5 3.8

RSA

Dup. Unpartit. Functional partitioning Speedup
Part1 Part2 Total S. P.

1 1216s 7s 2s 9s 135.1 173.7

2 3759s 71s 4s 75s 52.9 52.9

3 4937s 610s 8s 618s 8.1 8.1

4 7597s 1314s 9s 1323s 5.8 4.4

Vol

Dup. Unpartit. Functional partitioning Speedup

Part1 Part2 Total S. P.

1 13s 11s 3s 14s 0.9 1.2

2 1260s 20s 79s 99s 12.7 15.9

3 1364s 35s 970s 1005s 1.3 1.4

4 1694s 51s 1138s 1189s 1.4 1.5

Table 6: Synthesis times (fast mode)

3.3 Results

Table 5 provides a comparison of the results of syn-
thesis of the unpartitioned and functionally partitioned
examples, using optimal mode logic synthesis. The Dup
column represents the number of duplications for a given
example, as described earlier. The Unpartit column rep-
resents the CPU times, in hours and minutes, for syn-
thesizing the unpartitioned example. The Part1 and
Part2 columns are the CPU times for synthesizing each
part of the functionally partitioned speci�cation, and
the Total column is the sum of those two times. The
S column shows the speedup obtained by partitioning.
The P shows the speedup if we assume that the two
parts of the partitioned speci�cation can be synthesized
in parallel. (Only three of the four examples are shown
in each table, as the synthesis tool's limitations at the
time the experiments were performed prevented com-
pletion of some duplicated examples.)

Table 6 is identical to Table 5 except that it shows
results using the fast logic synthesis mode. Finally, Ta-
ble 7 shows the size results. The last column of that

2p-fact

Dup. Unpartit. Functional partitioning Ratio

Part1 Part2 Total

1 13312 6347 7431 13778 1.11

2 24271 8410 10279 18689 0.77

3 34160 11431 13628 25059 0.77

4 45033 14717 15219 29936 0.67

RSA

Dup. Unpartit. Functional partitioning Ratio

Part1 Part2 Total

1 17275 14200 3558 17758 1.11

2 25655 21640 6525 28165 1.11

3 33435 28994 10814 39808 1.25

4 43182 34635 11690 46325 1.11

Vol

Dup. Unpartit. Functional partitioning Ratio
Part1 Part2 Total

1 11996 11884 6856 18740 1.6

2 19489 19449 9861 29310 1.4

3 27911 23043 13989 37032 1.25

4 35661 29306 17806 47112 1.25

Table 7: Size outputs

table indicates the ratio of the unpartitioned design size
over the total size of the partitioned design from the fast
mode.

3.4 Analysis

3.4.1 Synthesis time

Functional partitioning yields very substantial and prac-
tical reductions in synthesis times. When using optimal
logic synthesis mode, speedups were excellent, some-
times over 10. We observe reductions in some cases
from over 8 hours down to just 1-2 hours, thus convert-
ing an overnight job into one that can be done during
a work day. When using fast logic synthesis mode, we
�nd even larger speedups, in some cases near 100, al-
though synthesis time of the unpartitioned speci�cation
was reduced compared with optimal mode from roughly
10 hours to 1 hour.

Note that as the example size increased (denoted by
the duplication amount), the speedups tended to de-
crease. In such cases, it would likely be bene�cial to
partition the speci�cation into more than just two parts.

The observed improvements are likely due to
polynomial-time heuristics in the synthesis tools. Par-
titioning the speci�cation thus has a non-linear e�ect
on the tool's CPU time. Optimal logic-synthesis times
were dominated by control unit synthesis and thus were
strongly a�ected by the number of states and transi-
tions, whereas fast logic-synthesis times were dominated
by datapath binding and thus were a�ected by the num-
ber of operations.

3.4.2 Design size

One concern is that functional partitioning would lead
to much larger designs caused by the inability to share
functional units across parts and to extra hardware
for communication between parts. However, Table 7
shows that there is usually only a slight increase in size,
roughly 10-20% (which is quite negligible considering
that structural partitioning cannot utilize even more



gates since it is I/O dominated). The biggest increase
occurred in the vol example, since instead of just one
multiplier we needed two multipliers, one for each part.
In many cases, the sizes were nearly equal, and in some
cases, there was actually a decrease in size, most likely
attributable to simpler control logic and multiplexing.

Finally, we note that synthesis tool documentation
often encourages speci�cation writers to functionally
partition the input manually, by writing processes that
are no larger than some speci�ed criteria.

4 Future work

Functional partitioning can yield big advantages.
However, the problem is a di�cult one, and much re-
search is needed in several key areas before automated
functional partitioners become truly practical.

First, fast and accurate estimators must be devel-
oped. These estimators will likely need to be closely
integrated with commercial synthesis tools, in order to
provide accurate prediction of synthesis results.

Second, good partitioning and transformation heuris-
tics must be developed. We are presently extending the
Kernighan/Lin heuristic, which has proven to be fast
and yield good results for structural partitioning, to the
problem of functional partitioning. We are also inves-
tigating transformations that could lead to improved
results, such as cloning of shared procedures or paral-
lelization of sequential procedure calls. The integration
of partitioning and transformation must also be exam-
ined.

Third, techniques for interfacing functions on dif-
ferent components must be developed. We are cur-
rently developing communication libraries for such a
purpose. Techniques for generating a highly-readable
re�ned speci�cation must also be developed.

Most of the above problems were directly addressed
in Gajski's SpecSyn tool [20] from UC Irvine.

5 Conclusions

We have shown the importance of functional parti-
tioning in a synthesis environment. Functionally parti-
tioning a speci�cation among hardware packages yields
far better satisfaction of I/O and size constraints than
does the current approach of structural partitioning,
while also yielding much better performance. Function-
ally partitioning a system before synthesis can yield an
order of magnitude improvement in synthesis runtimes.
These �ndings suggest the need for signi�cant research
focus on functional partitioning.

References
[1] S. Antoniazzi, A. Balboni, W. Fornaciari, and D. Sci-

uto, \A methodology for control-dominated systems
codesign," in International Workshop on Hardware-
Software Co-Design, pp. 2{9, 1994.

[2] P. Eles, Z. Peng, and A. Doboli, \VHDL system-level
speci�cation and partitioning in a hardware/software
co-synthesis environment," in International Workshop
on Hardware-Software Co-Design, pp. 49{55, 1992.

[3] R. Ernst, J. Henkel, and T. Benner, \Hardware-software
cosynthesis for microcontrollers," in IEEE Design &
Test of Computers, pp. 64{75, December 1994.

[4] R. Gupta and G. DeMicheli, \Hardware-software cosyn-
thesis for digital systems," in IEEE Design & Test of
Computers, pp. 29{41, October 1993.

[5] D. Thomas, J. Adams, and H. Schmit, \A model and
methodology for hardware/software codesign," in IEEE
Design & Test of Computers, pp. 6{15, 1993.

[6] F. Vahid and T. Le, \Towards a model for hardware
and software functional partitioning," in International
Workshop on Hardware-Software Co-Design, pp. 116{
123, 1996.

[7] X. Xiong, E. Barros, and W. Rosentiel, \A method
for partitioning UNITY language in hardware and soft-
ware," in Proceedings of the European Design Automa-
tion Conference (EuroDAC), 1994.

[8] F. Johannes, \Partitioning of VLSI circuits and sys-
tems," in Proceedings of the Design Automation Con-
ference, 1996.

[9] R. Tessier, J. Babb, M. Dahl, S. Hanono, and A. Agar-
wal, \The virtual wires emulation system: A gate-
e�cient asic prototyping environment," in International
Workshop on Field-Programmable Gate Arrays, 1994.

[10] E. Lagnese and D. Thomas, \Architectural partition-
ing for system level synthesis of integrated circuits,"
IEEE Transactions on Computer-Aided Design, vol. 10,
pp. 847{860, July 1991.

[11] R. Gupta and G. DeMicheli, \Partitioning of functional
models of synchronous digital systems," in Proceedings
of the International Conference on Computer-Aided
Design, pp. 216{219, 1990.

[12] K. Kucukcakar and A. Parker, \CHOP: A constraint-
driven system-level partitioner," in Proceedings of the
Design Automation Conference, pp. 514{519, 1991.

[13] Y. Chen, Y. Hsu, and C. King, \MULTIPAR: Behav-
ioral partition for synthesizing multiprocessor architec-
tures," IEEE Transactions on Very Large Scale Inte-
gration Systems, vol. 2, pp. 21{32, March 1994.

[14] F. Vahid and D.Gajski, \Speci�cation partitioning for
system design," in Proceedings of the Design Automa-
tion Conference, pp. 219{224, 1992.

[15] F. Vahid and D. Gajski, \Incremental hardware esti-
mation during hardware/software functional partition-
ing," IEEE Transactions on Very Large Scale Integra-
tion Systems, vol. 3, no. 3, pp. 459{464, 1995.

[16] R. Camposano and R. Brayton, \Partitioning before
logic synthesis," in Proceedings of the International
Conference on Computer-Aided Design, 1987.

[17] T. Cormen, C. Leiserson, and R. Rivest, Introduction
to Algorithms. Cambridge, MA: MIT Press, 1989.

[18] P. Gupta, C. Chen, J. DeSouza-Batista, and A. Parker,
\Experience with image compression chip design using
uni�ed system construction tools," in Proceedings of the
Design Automation Conference, pp. 250{256, 1994.

[19] F. Vahid, \Procedure exlining: A transformation for im-
proved system and behavioral synthesis," in Proceedings
of the International Symposium on System Synthesis,
pp. 84{89, 1995.

[20] D. Gajski, F. Vahid, S. Narayan, and J. Gong, Speci-
�cation and design of embedded systems. New Jersey:
Prentice Hall, 1994.

[21] Y. Hsu, T. Liu, F. Tsai, S. Lin, and C. Yu, \Digital
design from concept to prototype in hours," in Asia-
Paci�c Conference on Circuits and Systems, Dec. 1994.

[22] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and
A. Wang, \MIS: A multiple-level logic optimization sys-
tem," IEEE Transactions on Computer-Aided Design,
vol. 6, pp. 1062{1080, November 1987.


	CD-ROM Home Page
	ISSS Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index


