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Abstract
Retiming is often used to optimize synchronous sequential circuits
for area or delay or both. If the latches1 that are retimed have
a hardware reset value, the initial state of the circuit must also
be retimed, i.e. an initial state must be derived for the retimed
circuit. Previously, it has been suggested that this can be avoided
if the hardware reset signals are represented explicitly. However,
it was thought that this adds unnecessary area and restricts the
space of possible retimings. In this paper we demonstrate that
this is not the case. In addition, we show that this methodology
does not require the restriction that all reset signals be asserted at
the beginning of circuit operation— a restriction that was imposed
by existing algorithms for determining the retimed initial state.
Finally we show how our explicit reset (ER) framework enables us
to retime when some latches may be driven by different hardware
resets, and some others may not have any hardware resets. We
also consider the case where the resets are asynchronous. We
expect these solutions to the “retimed initial state" problem to help
increase the practical applicability of retiming.

1 Introduction
This research addresses the optimization of synchronous digital
circuits. A synchronous circuit is defined informally as an inter-
connection of combinational logic gates (gates) and synchronizing
memory elements (latches), where each cycle contains at least one
latch. Retiming is a well known optimization technique – it moves
latches across combinational logic in order to minimize the delay
and/or the area of the circuit. Recently, efficient retiming algo-
rithms have been proposed for large industrial-sized circuits [9]
which take this technique one step closer to wider adoption in
practice. However, one nagging problem with using retiming in
practice is retiming latches which have hardware reset values (al-
ternatively called initial values) [3]. In practice, most designs have
a few such latches (called reset latches in this paper), and the re-
maining latches do not have any hardware reset (called no-reset
latches).

For the purposes of synthesis and analysis it is often convenient
to represent each reset latch with a no-reset latch and explicit hard-
ware circuitry. This framework (which we call the explicit reset
(ER) framework) was proposed by [1, 7]. Such a representation
also provides a natural solution for the problem of retiming the
initial state, since now no latch has a known initial value. Also,
it makes it possible to reason about the behavior of circuits which
have several different hardware reset lines without making an im-
plicit assumption that (a) the circuit operation starts only after all
these reset lines are asserted in the same cycle, and (b) the reset
lines are never asserted after this first cycle of operation. We call
this assumption the global reset activation (GRA) assumption.

1We use the term latches here to refer to memory elements. The actual implemen-
tation may be as either edge-triggered or level sensitive devices.
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Figure 1: Retiming reset latches and the reset state
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Figure 2: Retiming after the reset mapping

Relaxing this assumption is important because frequently we can-
not enforce these two requirements on every hardware reset signal
since reset signals may themselves be driven by other logic in the
circuit 2.

However, it has been suggested that the explicit representation
of reset circuitry restricts the retiming moves and adds unnecessary
overhead [7, 8, 11]. Consider, for example, the circuitC in Figure 1.
The rectangular boxes denote latches. Suppose each inverter has a
delay of d and the reset value of each latch is 0 (shown inside the
latch in the figure). This circuit can be retimed to obtain circuit D
which has a total delay of d, as opposed to the delay of 3d of the
original circuit (notice that we have retimed the reset state also
so that the new reset values are 1 and 0, respectively). However,
suppose we represent the reset circuitry explicitly to obtain the
circuit C1 from our original circuit C by using the reset mapping
(replacing reset latches with no-reset latches plus reset circuitry)
as shown in Figure 2. This circuit has an extra input, the global

2This iswhy we use the phrase “reset state” instead of “initial state” in the remainder
of the paper.



reset line. The additional combinational logic added in the circuit
(the two AND-gates) has delay 0. If we retime this circuit for
minimum delay, it seems that we can only retime the front latch
forward across the inverters; we can no longer retime the rear latch
because the AND gate is in the way. Thus, it looks like we can no
longer achieve a minimum delay ofd, as before. So, it appears that
the reset mapping may prevent a synthesis tool to reach regions of
the design space which were reachable before this mapping.

In this paper, we first show that the above situation is rectifiable,
and all retimings which can be obtained under the implicit reset (IR)
framework (where the reset mapping is not used) can equivalently
be obtained in the ER framework, and without any additional area
overhead. This rectification is made possible with the use of a
resynthesis step along with the retiming step (a very special case
of the general class of transformations proposed in [7, 2]). We also
show that a retiming of the reset state across primary outputs and
primary inputs (OI), which is used during a retiming of the reset
state with a global STG-based analysis of the whole circuit [11] can
be accomplished in the ER framework. We show the correctness of
both the above transformations (retiming across gates and across
OI) without making the GRA assumption which was needed for the
global STG-based analysis [11].

We then extend our results to show how the ER framework
enables the retiming of a set of latches, some of which may have
different hardware reset lines and some may not have any reset
line. These generalizations provide a comprehensive solution to
the “retimed reset state" problem.

This paper discusses ways of retiming the reset state and estab-
lishing the correctness of these transformations for a given retiming.
Thus, this is orthogonal to the work done by Even et al. [3] which,
given a target delay, attempts to minimize the extra logic needed to
achieve the retiming.

2 Preliminaries

2.1 Leiserson-Saxe Retiming Graph

Leiserson and Saxe introduced retiming [6] using a graph-theoretic
model. A design is modeled as a finite edge-weighted directed
graph G = (V; E). Each vertex in V represents either a gate
in the design, or a special dummy node called the host. There
is an edge in E from gate g1 to gate g2 if an output of g1 is an
input to g2. There is an edge from the host to each gate fed by a
primary input and there is an edge from each gate which feeds a
primary output to the host. The non-negative weight of an edge
represents the number of latches on the corresponding path in
the design. A retiming of a design is an assignment of an integer
lag(v) to each vertex v which denotes the number of latches moved
across the gate corresponding to the vertex. If the lag is positive
(negative), the latches are removed from each fanout (fanin) edge
of the gate and placed at each fanin (fanout) edge of the gate.
Thus, for edge (u; v) with weight w, the weight after retiming
is w + lag(v) � lag(u). As an example, consider the retiming
graphs showing the lag assignment (in Figure 3) for the circuit
retiming shown later in Figure 8 (vertices H , 1, 2, and 3 represent
the host vertex, the AND-gate, the inverter, the fanout junction,
respectively). The retiming corresponds to the lag assignment
shown above each vertex. An alternative lag assignment which
gives the same circuit is given below each vertex. Notice that the
upperassignmentachieves this by backwardretiming moves across
the junction and the inverter while the lower assignment retimes
forward across the output-input (OI) and the AND-gate. Thus,
different retimings (lag assignments) can result in the same circuit.
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Figure 3: Retiming graph for the retiming in Figure 8
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Figure 4: The reset mapping

2.2 The ER framework
The ER framework replaces reset latches by no-reset latches plus
some reset circuitry. This replacement is possible for only syn-
chronous reset latches 3. A synchronous reset latch with reset sig-
nal R (shown above the latch in the figure), reset value B and data
inputD is represented by a no-reset latch and a multiplexor (MUX)
driving the no-reset latch (Figure 4). We denote this MUX-gate by
MUX(R;D;B). The MUX can be simplified to an AND-gate (an
OR-gate) if B is 0 (1). We call this transformation the reset map-
ping and denote it by Φ. This is useful for analyzing the behavior
of designs and of transformations on these designs without giving
a special status to the reset line (e.g., the GRA assumption). An
inverse transformation Φ�1 can always undo the reset mapping 4.

2.3 Generalizations of Circuit Model
We consider three primary generalizations of the traditional model
for retiming the reset state. These three generalizations are depicted
as the three dimensions in Figure 5:

3Unless specified explicitly, we assume synchronous reset latches. We deal with
the asynchronous case in Sections 3.3 and 3.5.

4This may be desirable because for a given technology library, it may be cheaper
to implement a circuit with reset latches instead of explicit reset circuitry.
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1. With or without the GRA assumption (x-axis). Not requiring
the GRA assumption means that the reset lines need not be
asserted at the start of the operations of the design, and that
the reset lines may be asserted anytime during the circuit
operation.

2. All reset latches versus some no-reset latches (y-axis). The
former requires all latches to be reset latches, the latter allows
no-reset latches.

3. Single reset signal versus multiple reset signal (z-axis). The
former requires a single signal to drive all reset latches, the
latter permits different reset latches to be driven by different
signals.

These three possible generalizations extend the traditional
model, which lies at [0,0,0] in Figure 5, to 8 possibilities (corre-
sponding to the 8 vertices of the unit cube). The unit cube defines
an obvious partial order over the possible models (for example, the
model at [0,1,1] is more general than the model at [0,0,0]). If we
give a method for retiming reset states for a more general model,
it will be applicable to a less general model, but not vice-versa.

The generalizations are not totally independent. If we make the
GRA assumption, the models for single versus multiple reset lines
are indistinguishable— if we require all reset lines to be asserted
exactly and only before the first clock cycle, they might as well be
the same reset line. Thus points [0,0,0] and [0,0,1] are equivalent,
and so are [0,1,0] and [0,1,1]. We will not consider [0,0,1] and
[0,1,1] any more.

Our primary focus will be the models on the x-axis (correspond-
ing to points [0,0,0] and [1,0,0]). We show that not only can we
achieve all retimings of the reset state in the ER model, we can do
these without making the GRA assumption. Section 3.1 covers this
case (Case A). Next, we show that it is possible to retime the reset
state for the model at [0,1,0] (GRA assumption but some latches
may be no-reset latches). Section 3.2 covers this case (Case B). In
Section 3.4 we show that if we do not make the GRA assumption,
all these retiming moves may not be possible when we also have
no-reset latches. We then show which retimings of the reset state
are possible (this solution is applicable for the model at [1,1,1],
and thus for the models at [1,1,0] and [1,0,1]); for the remaining
retimings, the reset circuitry has to separated from a latch in order
to retime the latch. This is described as Case C.

The analysis discussed above holds for when the reset on the
latches is synchronous, i.e. if hardware reset is asserted at the
clock edge, the reset value is activated at the next clock cycle
synchronously. On the other hand, for asynchronous resets, the
desired reset value can be locked in if the hardware reset is asserted
at any time (and not necessarily at the clock edge). We will argue
that for the asynchronous case, the solutions for Cases A and B are
applicable (Section 3.3). However, the solution for Case C is more
restrictive than that for the synchronous case; we discuss this in
Section 3.5.

Throughout this paper we will assume that the clock periods are
long enough to allow all logic to evaluate to a steady state. This
means that for asynchronous resets, the time between a positive
assertion of the reset line and the next clock edge is sufficient for
the next-state or output logic following the latch to complete its
evaluation.

2.4 Criterion for Validity of Transformations
For the model at [0,0,0], two circuits are equivalent if their re-
spective reset states are equivalent (equal output sequences for
each input sequence). However, in general, we need a stronger

condition which does not require special assumptions about the
resettability of the design.

Leiserson and Saxe [6] show the validity of retiming transfor-
mations under the following condition for replacement:

Definition 1 A design D is a sufficiently old replacement of
designC if there exists a non-negative integer p such that for every
state d that D can be in q cycles after power-up for any q > p,
there exists a state c in C such that d and c are equivalent.

Notice that at the power-up of a design, each latch non-
deterministically assumes a Boolean value (under the GRA as-
sumption, only the no-reset latches get arbitrary values; the reset
latches assume their designated reset values). If n in the above
condition is small enough, we can usually afford to wait these extra
clock cycles before beginning circuit operation. This notion of
replacement is very similar to (but stronger than) the notions of n-
delay replacement [10] and c-cycle redundancy [5]. To save space,
henceforth, we say that D is valid replacement of C if and only
if D is a sufficiently old replacement of design C . The notion of
valid replacement is clearly transitive, and we will make use of this
transitivity later. Note that this notion does not require a special
status of the reset lines, specifically that the reset lines have to be
asserted at the beginning of circuit operation.

If designD is obtained from designC by a sequence of retiming
moves, where only no-reset latches are retimed (and not the reset
circuitry), then:

Theorem 1 ([6]) D is a valid replacement of C .

3 Retiming Reset Circuitry
Retiming the reset state is accomplished in our ER framework by
moving the reset circuitry simultaneously with the latches during
retiming. We refer to this operation as retiming the reset circuitry.
First we show that all retimings of the reset state in the IR frame-
work can be achieved in the ER framework, and moreover, we can
generalize the circuit model so that we no longer make the GRA
assumption.

3.1 Case A: single reset line and no no-reset
latches

Here we are interested in the models at [0,0,0] and [1,0,0] (Fig-
ure 5). The traditional solution retimes the implicit reset state (in
the IR framework) and works for the model at [0,0,0], i.e. it makes
the GRA assumption. Since we will relax the GRA assumption,
we will need to prove the validity of the transformation as specified
in Section 2.4.

The standard strategy to retime the reset state for individual
forward or backward retiming moves (as described in [1]) is to
take the forward or backward functional image. We show how this
can be achieved in the ER framework without making the GRA
assumption in Section 3.1.1. However, this strategy, by virtue of
being local, can make local decisions which may need subsequent
backtracking. To avoid this, it may be possible to determine the
final value of the reset state by looking at the entire set of retiming
moves and analyzing their effect on the transition graph of the
design [11]. In Section 3.1.2 we argue the correctness of this under
the ER framework without making the GRA assumption.

3.1.1 Local retiming of the reset state

Consider retiming across a multi-output gate F = (f1; : : : ; fn),
where each fi is a function from input space f0; 1gm to
f0; 1g (junctions are modeled as single input multi-output gates).



Bartlett et al. [1] describe the standard method for obtaining the
new reset state if we retime reset latches across the gate F .

Suppose the original design has one reset latch at each of the
inputs of the gate, with reset values~a = (a1; : : : ; am), and we want
to retime the latches forward acrossF . The reset values on the reset
latches in the retimed design are simply given by~b = (b1; : : : ; bn),
where each bi = fi(~a). Now, consider backward retiming across
F . Let the reset values of the latches on the outputs of F be
~b = (b1; : : : ; bn). If there is a set of values ~a = (a1; : : : ; am) such
that for each i 2 f1; : : : ; ng: bi = fi(~a), we set the reset values
on the retimed latches to~a. If there is no such vector, the reset state
cannot be retimed backward; we discuss this scenario later in this
section.

Now, we give a procedure of retiming in the ER framework
i.e. all latches are no-reset latches along with the reset circuitry.
This procedure is such that if circuit D is obtained from C (where
all latches are reset latches) after one atomic retiming move, as
described by the above re-mapping of the reset state, then the
mapped circuit C1 = Φ(C) can be retimed to D1 such that D1 =

Φ(D). We show that the retimed circuit D1 (or D) is a valid
replacement of the original circuit C1 (or C).

Proposition 2 For each retiming of latches and reset state in a
circuit with reset latches, we can achieve the same transforma-
tion in the ER framework such that the retimed design is a valid
replacement of the original design in the [1,0,0] model.

Proof: Suppose we are retiming across a multi-output gate with
the functionality F = (f1(x1; : : : ; xm); : : : ; fn(x1; : : : ; xm)).

There are two cases:
a) The move from C to D is a forward move. Refer to Figure 6

(for the IR framework, the common hardware reset line is omitted
from circuit figures). CircuitC1 represents Φ(C). Thus if in circuit
C the i-th latch has the reset value ai, then in circuit C1 the i-th
latch is represented with a no-reset latch and MUX(R, xi, ai). The
retiming from C1 to D1 consists of two steps. In Step 1, just the
latches are retimed. In Step 2, the reset circuitry is resynthesized
across the element. LetF(R;x1; ; x2; : : : ; xm; a1; a2; : : : ; am) be
the multi-output function being computed by the combinational
part of this circuit. This resynthesis follows directly from the
Shannon decomposition of F aboutR.

F = R � F(R = 1; x1; x2; : : : ; xm; a1; a2; : : : ; am) +

R � F(R = 0; x1; x2; : : : ; xm; a1; a2; : : : ; am)

The RHS simplifies to:
R � F (a1; a2; : : : ; am) + R � F (x1; x2; : : : ; xm)

This is equivalent to the circuit with multiplexors at the output
of F with bi = fi(a1; : : : ; am). Step 1 causes valid replacement
(Theorem 1). Step 2 is a valid combinational replacement, and by
the transitivity of valid replacements,D1 is a valid replacement of
C1. Now we can map the no-reset latches plus reset circuitry in
D1 to reset latches with the appropriate reset values (using Φ�1)
to get the desired retimed designD.

b) The move from C to D is a backward move. The result
follows by reversing the steps of case (a). Since the retiming can
be achieved for reset latches, there must exist values (a1; : : : ; am)
such that for each i 2 f1; : : : ; ng: fi(a1; : : : ; am) = bi.

Thus, when backwardor forward retiming of reset latches across
combinational logic elements is possible by re-mapping the reset
values of reset latches, this can alwaysbe achieved in the ER frame-
work. Notice, that in essence, we have performed a special case of
the general retiming and resynthesis paradigm [7]. However, we
like to think of the step of resynthesizing the reset circuitry across
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Figure 6: Forward retiming of the reset circuitry

the logic element as retiming the reset circuitry. For an example,
consider the retiming of Figures 1 and 2. Using the procedure de-
scribed above, we can now obtain the desired retiming with delay
d, as shown in Figure 7.

Separating reset circuitry for backward retiming

In case (b) of Proposition 2 we saw that for retiming the reset state
backwards, we need the existence of the backward image of the
reset state acrossF .

Sometimes it may be impossible to retime reset latches without
adding extra logic in the design. This is illustrated by the following
example (due to Touati and Brayton [11]). Consider the upper
circuit in Figure 8 where both latches are reset latches driven by
the same reset line. If we want to retime these latches (and the
reset value, denoted by “?”) backward across junction and the
NOT-gate, to obtain the circuit drawn below, we would like to
determine an equivalent reset state for this circuit. The goal in [11]
is to determine a state such that the reset state of the lower circuit
is equivalent to the reset state of the upper circuit (so that when
the reset line is pulled to 1, both circuits have equivalent behavior).
However, it is clear from the STG of the lower circuit that no
such state exists. The only way to achieve a design equivalent to
the above design is by adding extra logic to the circuit. For such
designs,Touati and Brayton give an algorithm, based on an analysis
of the original STG, which adds redundant combinational logic so
that after retiming, the new STG does have a state equivalent to the
original reset state.

The ER framework provides an alternate and natural way of
determining this extra logic. The basic idea is to do the reset
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mapping, and if we are unable to locally retime the reset circuitry
along with the no-reset latch (this happens for a backward retiming
move as we saw in Section 3.1.1), leave the reset circuitry in place
and just retime the no-reset latch. For the example in Figure 8, we
can achieve the desired retiming as shown in Figure 9 (notice that
in this example, the fanout junction, which we model as a 1-input
2-output gate, does not have a backward image of the reset value
10). In order to get back to a model with all reset latches, we have
the option to apply a Φ�1 mapping step at the end; as we see in
this example, we may have a choice and it make sense to make the
choice which facilitates more future retimings of the reset circuitry.

3.1.2 Global retiming of the reset state

The procedure for obtaining the new reset values for each atomic
retiming move, described at the beginning of the previous section,
can run into problems because it uses only local knowledge when
making decisionsabout which new reset value to choosefor a back-
ward retiming move. Because of reconvergence in the logic, one
choice may cause a conflict in retiming the reset state in the future,
whereas another choice may not. This may result in backtrack-
ing to determine a value consistent with the different reconvergent
paths.

An elegant solution to avoid this is provided in [11] where the
global behavior of all latches is analyzed, and the value of the reset



state for the entire sequenceof retiming steps is found directly. The
solution requires analysis over the implicit state transition graph
of the design; a solution exists if there exists a state which goes to
the designated reset state of the original design after k transitions,
where k equals maxvflag(v) � lag(host)g over each vertex v of
the retiming graph. Touati and Brayton proved that their algorithm
obtains the retiming of the reset state such that the new designated
reset state is equivalent to the original reset state.

While reset state equivalence is sufficient for the model at [0,0,0],
we claim that it is also sufficient for [1,0,0]. As long as the (unique)
reset line is not asserted, the retimed circuit is clearly a valid
replacement for the original (since the reset circuitry does not affect
circuit behavior Theorem 1 asserts the validity). When the reset line
is asserted, every existing latch value is lost (since all latches have
reset lines) and is replaced by the designated reset value. Thus, we
only need state equivalence of the global reset states of the original
and the retimed design to show validity. This informal argument
illustrates the applicability of the Touati-Brayton algorithm for the
global retiming of the reset circuitry for Case A.

Global vs local retiming

While the global retiming solution has the ability to find a solution
as long it can find a state which reaches the reset state in k steps,
the big drawback of this approach is that it needs to sequentially
justify a given state over k previous states of the designs. This
limits its applicability to small to moderately sized designs. For
larger designs, the local retiming method discussed in Section 3.1.1
is the only possible approach.

We must also note that given a complete backtracking algorithm
to find the “right” choices for backward reset state computations,
the local retiming algorithm of Section 3.1.1 is sufficient to achieve
all retimings. Using the global retiming algorithm may just a more
efficient method to avoid this backtracking. Henceforth, we will
not consider showing the correctness of a global retiming procedure
for the remaining models.

3.2 Case B: GRA assumption with no-reset latches
Let us now consider the case where some of the latches are no-
reset. Our goal is to obtain a valid retiming of the reset circuitry. It
is sufficient to show how this is accomplished for the case of local
retiming of the reset state. Consider Figure 6 again. However, now
assume that only the first k latches are reset, the others are no-reset.

Let us consider forward retiming first. In this case, converting
the no-reset latches to reset latches with arbitrary reset values is
a valid operation. To see why this is so, for the environment
observing the circuit, all behaviors that correspond to any power-
up values for the no-reset latches values must be acceptable, i.e. the
observing environmentcannot expect any behavior that depends on
a specific reset state for the no-reset latches. Thus we can select any
arbitrary power up value. Now, the situation is exactly the same as
that for the forward retiming case of Case A (in Section 3.1), and
thus the retiming circuitry can be retimed forward along with the
latches.

In the case of backward retiming, we just need to find the inverse
image for the values in the reset latches. Let the reset values of the
reset latches on the outputs of F be~b = (b1; : : : ; bk) (only the first
k are reset latches). If there is a set of values ~a = (a1; : : : ; am)
such that for each i 2 f1; : : : ; kg: bi = fi(~a), we set the reset
values on the retimed latches to ~a. If there is no such vector,
we cannot retime the reset circuitry; we have to separate the reset
circuitry from the latch if we want to achieve the retiming. This
guarantees that for the first cycle we will get the correct values on

the outputs ofF for the signals which had reset latches, and for the
others the values will be one of the acceptable power-up values.

Note that for both the cases above we need the GRA assumption.
We replaced the arbitrary power-up values of no-reset latches by
specific values. This satisfies sufficiently old replaceability (Def-
inition 1) for n = 0 because the new designated reset state is one
of the many power-up states of the original design. The rest of
proof for the validity of these transformations follows from the
arguments in Section 3.1.

3.3 Asynchronous resets for Cases A and B
For the 4 models on the left plane in Figure 5, since the GRA
assumption holds, the reset lines are asserted before the circuit
operation. Thus for the transformations described in Sections 3.1
and 3.2, it does not matter whether the reset is synchronous or
asynchronous.

We will show the validity of the retiming transformations
for the model at [1,0,0]. We will consider forward and
backward retiming moves across a multi-output gate F =

(f1(x1; : : : ; xm); : : : ; fn(x1; : : : ; xm)). Consider circuits C and
D as shown in Figure 6 (we assume that the resets on the latches
are asynchronous instead of the synchronous assumption in Sec-
tion 3.1). Let ~a = (a1; : : : ; am) and~b = (b1; : : : ; bn). We need
the following result to show the validity.

Lemma 3 If for 1 � j � m, bj = fj(~a) then the reset states of
C and D are equivalent.

Proof: For any input sequence, we claim that the output se-
quences of circuits C and D starting from state ~a and ~b, re-
spectively, are identical. The outputs are identical and equal to
(f1(~a); : : : ; fm(~a)) on the first cycle. Consider the k-th output
vector for k > 1. If the resetR is asserted during the k-th cycle, the
outputs of C and D are both (f1(~a); : : : ; fm(~a)). Otherwise, as-
sume that (k�1)-th input vector is (R;~c)where ~c = (c1; : : : ; cm)
(note that if R is ever 1 during the (k� 1)-th cycle and if there is a
combinational path in the environment from ~y to ~x, then ~c may be
a combinational function of ~a or~b). For this case, the k-th output
vector for both C and D is (f1(~c); : : : ; fm(~c)).

For the asynchronous resets, the following shows the validity of
the forward retiming move (taking the forward image of the reset
state ~a) and the backward retiming move, if possible (taking the
backward image of~b):

Proposition 4 For the model at [1,0,0], if for 1 � j � m, bj =
fj(~a), D and C are valid replacements of each other.

Proof: We will only prove that D is a valid replacement of C; the
other direction is similar. Consider any state that D can be in q
cycles after power-up where q > 1. It is obvious that D will either
be in state~b or in state (f1(~c); : : : ; fm(~c)) where the inputs on the
(q � 1)-th cycle are ~x = ~c and an arbitrary value of R. From
Lemma 3, this state is equivalent to either~a or~c of designC . Thus
D is a sufficiently old replacement of C (Definition 1).

For the backward retiming case, when the backward image
across F is not defined, it is possible to obtain a solution simi-
lar to that for the synchronous case in Section 3.1. Consider the
solution shown in Figure 10 (the Xi reset values in D are arbitrary
and can be chosen suitably to facilitate future retimings).

Proposition 5 For the model at [1,0,0], D is a valid replacement
for C .
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Proof: For any arbitrary ~c = (c1; c2; : : : ; cm) we claim that (1)
state (1; c1; c2; : : : ; cm) of circuit D is equivalent to the state ~b =
(b1; : : : ; bn) of circuitC , and (2) state (0; c1; c2; : : : ; cm) of circuit
D is equivalent to state (f1(~c); : : : ; fn(~c)) of circuit C (the proofs
are very similar to that of Lemma 3). Thus any state of circuit
D is equivalent to some state of circuit C showing that D is a
sufficiently old replacement of C (Definition 1).

3.4 Case C: most general circuit model
The analysis for Case A can be extended to the case where different
latches may have different hardware reset lines. It is sufficient to
show how this is accomplished for the case of local retiming of the
reset state. We consider the case for forward and backward moves
separately.

Forward retiming

We will consider the same sequence of steps as that for Case A as
shown in Figure 6. For simplicity we assume that m = 3 and the
latch 1 is controlled by resetR1 and latch 2 is controlled by R2 and
latch 3 is a no-reset latch. First the reset circuitry is made explicit
using the reset mapping to give C1. Next, in Step 1 the latches are
retimed forward across F . Let F be the combinational part of this
circuit. We will first try and retime the reset circuitry forR1 across
F . We consider the Shannon expansion of F aboutR1 and R2:

F = R1 � (R2 � F (a1; a2; x3) + R2 � F (a1; x2; x3)) +

R1 � (R2 � F (x1; a2; x3) +R2 � F (x1; x2; x3))

In order for us to retime the reset circuitry for R1, we must have
F (a1; x2; x3) = c1 where c1 is a constant. In this case a1 is said to
be a controlling value for input R1. Since F (a1; a2; x3) = c1 the
above expansion simplifies to:
F = R1 � c1 + R1 � (R2 � F (x1; a2; x3) + R2 � F (x1; x2; x3))

This permits us to move the multiplexor forR1 to the outputs of
F . If F (a1; x2; x3) 6= c, then we cannot retime the reset circuitry
for R1. Similarly, if F (x1; a2; x3) = c2 (c2 is a constant), then
we can retime the reset circuitry for R2. If both F (a1; x2; x3) =

c1 and F (x1; a2; x3) = c2 are true, then c1 = c2 = c since
F (a1; a2; x3) must have a unique value. In this case the expression
for F simplifies to:
F = (R1 +R2) � c+ R1 �R2 � F (x1; x2; x3)

permitting retiming of the reset circuitry for bothR1 andR2 simul-
taneously.

Thus we see that in this case we cannot always guarantee that
we will be able to retime the reset circuitry. It is possible only for
those reset values on input lines that are controlling.

This method of retiming reset circuitry is best illustrated with
some examples. Consider the five examples in Figure 11. In the
figure, we are show the reset circuitry implicitly, thus assumingthat
the inverse of reset mapping (Φ�1) has been applied after retiming.
The reset circuitry for both the inputs of the NAND-gate is retimed
forward. For the AND-gate, the reset circuitry for both the reset
linesR1 andR2 can be retimed forward. For the OR-gate, the reset
circuitry on the first input line cannot be retimed forward. For the
ORAND-gate, the reset circuitry from the first two inputs, which
corresponds to a common reset line R1, can be retimed forward;
the reset circuitry for R2 has to be left behind. For the DEMUX,
the reset circuitry for reset line R1 can be retimed forward; there
was no reset circuitry for the second select line.

For the OR-gate example (the third example in Figure 11), it
might seem that we could retime the reset circuitry forward and
give it a reset value of either 0 or 1, because at circuit power-up the
no-reset latch could power up in either 0 or 1. But, this retiming
of the reset state is not valid because, even though at power-up
the second latch can either settle to 0 or 1, we cannot assume an
arbitrary value for this latch any time the reset line R1 is asserted
later in circuit operation. This is especially important considering
that the circuit may not a unique global reset line and also that often
hardware reset lines are derived from other logic in the design.

Backward retiming

If different latches on the output lines have different reset lines,
there is no efficient way to retime the reset circuitry backwards
while preserving valid replaceability; in order to retime the latches
backwards the respective reset circuitry must be left behind. Note
that many gates are single-output (a notable exception is the fanout
junction which we model as a single-input multi-output gate); so it
may not be so important to worry about the inability of backward
retiming of multi-output gates with different reset lines for different
outputs. Also, it is only during forward retiming that we may hinder
the space of possible retimings if we separate the reset circuitry
from the latches, like in the example discussed in Section 1.

3.5 Asynchronous resets for Case C
The mapping Φ is not valid for asynchronous resets. So we cannot
directly use the arguments of the previous section. We consider the
cases for forward and backward retiming separately.

For forward retiming, when the input reset values are control-
ling, we can retime the controlling reset value forward. For exam-
ple, the retimings across the NAND-gate, the AND-gate and the
DEMUX-gate in Figure 11 are valid. The validity of these moves
follows from an argument similar to that in Section 3.3. The only
generalization is that now we have reset latches driven by different
reset lines and that we have some no-reset latches as well. Since
all reset values on the input latches are controlling, whenever any
reset line is asserted, the original design will go of one of many
states (depending on the current values at latches whose reset is not
asserted). However, it is easy to see that all these states are equiv-
alent to each other and to the unique state the retimed design goes
to when any reset line is asserted (with an argument similar to the
one used in proving Lemma 3). Unfortunately, for the case where
any input reset value is non-controlling, it not possible to retime
the latches forward; note that since Φ is not valid, it is not even
possible to just retime no-reset latches forward and leave the reset
circuitry behind. Thus, it is not possible to achieve the retimings
for the OR-gate or the ORAND-gate in Figure 11. There is a way
to retime the latches if we are willing to duplicate the function F

across which the latches are retimed, but we omit it for brevity.
For backward retiming, although it is not possible to retime the
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Figure 11: Examples of forward retiming of multiple reset lines.

reset values backward, we can retime the no-reset latches and leave
a combinational subcircuit (corresponding to the reset circuitry for
the asynchronous case) behind, just like in Figure 10 (except that
we have multiple reset latches, one corresponding to each reset
line). The proof is similar to that for Proposition 5.

4 Summary
We describe an overall strategy for retiming the reset state for use
in a synthesis tool. We show that reset latches can be represented
and retimed in the ER framework effectively. We show that for
the most common reset models (single reset signal), this neither
restricts the space of retiming moves nor adds unnecessary extra
logic or wiring as conjectured before. Whenever possible, the no-
reset latch plus its associated reset circuitry can be thought of as
one unit (and a simple post-processing tool can easily undo the
reset mapping to obtain reset latches from no-reset latches plus the
reset circuitry). If possible, we retime this whole unit together. In
case it is not possible to retime the reset state, the reset circuitry
can be left behind and just the no-reset latch retimed.

To summarize, we make a strong case to model the reset cir-
cuitry explicitly at the technology-independent optimization stage
(which includes the retiming operations). This does not restrict the
space of retiming transformations, and the lost area can likely be
recovered at the technology mapping stage. In design situations
where routing the global reset line is an issue, the ER framework
gives additional flexibility in trying to minimize the routing of reset
circuitry by separating the reset circuitry from latches and retiming
the latches. Also, for designs where the technologylibrary contains
logic elements where each implements a latch plus some combi-
national logic [4], the techniques described in this paper should be
useful in “retiming” such elements.
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