
ICCAD ’96
1063-6757/96 $5.00  1996 IEEE

To appear in Proc. IEEE/ACM International Conference on CAD, 1996

VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improvement

Techniques

Shantanu Dutt1 and Wenyong Deng2
1 Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455, USA

dutt@ee.umn.edu
2LSI Logic Corporation, Milpitas, CA 95035, USA

wydeng@lsil.com

Abstract
Move-based iterative improvement partitioning methods

such as the Fiduccia-Mattheyses (FM) algorithm [3] and Kr-
ishnamurthy's Look-Ahead (LA) algorithm [4] are widely
used in VLSI CAD applications largely due to their time effi-
ciency and ease of implementation. This class of algorithms
is of the “local improvement” type. They generate relatively
high quality results for small and medium size circuits. How-
ever, as VLSI circuits become larger, these algorithms are not
so effective on them as direct partitioning tools. We propose
new iterative-improvement methods that select cells to move
with a view to moving clusters that straddle the two subsets
of a partition into one of the subsets. The new algorithms
significantly improve partition quality while preserving the
advantage of time efficiency. Experimental results on 25
medium to large size ACM/SIGDA benchmark circuits show
up to 70% improvement over FM in cutsize, with an average
of per-circuit percent improvements of about 25%, and a total
cut improvement of about 35%. They also outperform the
recent placement-based partitioning tool Paraboli [13] and
the spectral partitioner MELO [14] by about 17% and 23%,
respectively, with less CPU time. This demonstrates the po-
tential of iterative improvement algorithms in dealing with
the increasing complexity of modern VLSI circuitry.

1. Introduction
The essence of VLSI circuit partitioning is to divide a

circuit into a number of subcircuits with minimum inter-
connections between them. This can be accomplished by
recursively partitioning a circuit into two parts until we reach
the desired level of complexity. Thus two-way partitioning
is a basic problem in circuit partitioning and placement.

Kernighan and Lin [1] proposed the well-known KL al-
gorithm for graph partitioning. The KL algorithm starts with
a random initial two-way partition and proceeds by swap-
ping pair of cells iteratively. Schweikert and Kernighan [2]
extended KL to hypergraphs so that it can partition actual cir-
cuits. Fiduccia and Mattheyses [3] modified this to a reduced-
complexity algorithm (FM) of time linear in the number of
pins in the circuit. This is done by moving one cell at a time
and using an efficient bucket data structure. Using an efficient
best-pair search strategy, Dutt [11] significantly improved the
complexity of the original KL algorithm, i.e., with pair swaps,
from Θ(n2 logn) to Θ(ed), wheren is the number of nodes,
e the number of edges, andd the maximum node degree;
empirical results show that it is as fast as FM and gives better
results. Krishnamurthy [4] enhanced FM by adding higher
level lookahead gains and improved the results for small cir-
cuits, while Hagen et al. [15] investigated implementation
and tie-breaking techniques for improving the performance

of FM-type algorithms. A number of clustering-based, i.e.,
bottom-up, partitioning algorithms [9, 10, 12, 13, 14, 18] have
also been proposed and good results have been obtained.

FM and LA are the most commonly used two-way par-
titioning algorithms largely due to their excellent run times,
simple implementations and flexibility. However, this class
of iterative improvement algorithms have a common weak-
ness, viz., they only find solutions corresponding to local
minima. Because of their iterative improvement nature, they
can only evolve from an initial partition through very short-
sighted moves. Thus the results strongly depend on the initial
partition. In order to get a local minimum that is close to the
optimum partition, multiple runs on randomly generated ini-
tial partitions are needed. As the circuit size becomes large,
the probability of finding a good local minimum in one run
will drop significantly. This makes FM an unattractive choice
for partitioning large circuits. As will become clear later, FM
gives good results on small to medium size circuits, but per-
forms very poorly on large circuits. Some clustering [8] or
compaction [18] techniques have been proposed to remedy
the above weakness. Very good results have been obtained
at the cost of considerable CPU time increases and imple-
mentation complexities. In this paper, we will propose a
technique that significantly improves the ability of iterative
improvement methods like FM and LA for finding good local
minima. The new technique pays more attention to the neigh-
bors of moved cells and encourages the successive moves of
closely connected cells. This implicitly promotes the move
of an entire densely-connected group (a cluster) into one sub-
set of the partition. The large reduction in both the minimum
and average cutsize of multiple runs indicates that the new
technique is a more robust and stable approach. The increase
in implementation complexity and run time is minimal. We
also propose a sophisticated extension of this basic technique,
which explicitly identifies clusters during the move sequence,
and dynamically adapts the move sequence to facilitate the
move of clusters into one subset of the partition. Very good
results have been obtained at reasonable CPU times.

In the next section, we briefly describe the FM and LA al-
gorithms and point out their shortcomings. Then in Section 3.
we present our rationale for the new technique mentioned
above, and also propose a cluster-detecting algorithm based
on iterative improvement methods. Extensive experimental
results are presented in Section 4. along with discussions.
Conclusions are in Section 5..

2. Previous Iterative Improvement Algo-
rithms

A circuit netlist is usually modeled by a hypergraphG =
(V;E), whereV is the set of cells (also called nodes) in the

1

circuit, andE is the set of nets (also called hyperedges). We
will represent a netni as a set of the cells that it connects.
A two-way partitionof G is two disjoint subsetsV1 andV2
such that each cellv 2 V belongs to eitherV1 or V2. A net
is said to becut if it has at least one cell in each subset and
uncutotherwise. We call this thecutstateof the net. All the
nets that are cut form a set called thecutset. The objective
of a two-way partitioning is to find a partition that minimizes
the size of the cutset (called thecutsize). Usually there is a
predeterminedbalance criterionon the size of the subsetsV1,
V2, for example, 0:45� jVij=jV j � 0:55, wherei = 1; 2.

The FM algorithm [3] starts with a random initial partition.
Each cellu is assigned a gaing(u) which is theimmediate
reduction in cutsize if the cell is moved to the other subset of
the partition:

g(u) =
X

ni2E(u)

c(ni)�
X

nj2I(u)

c(nj) (1)

whereE(u) is the set of nets that will be immediately moved
out of the cutset on moving cellu, I(u) is the set of nets
that will be newly introduced into the cutset, andc(ni) is the
weight (cost) of the netni.

At each move of FM, the cell with maximum gain value in
both subsets is checked first to see if its move will violate the
balance criterion. If not, it is chosen as the cell for the current
move (thebase cell). Otherwise, the cell with maximum gain
in the other subset is chosen as the base cell. The base cell
is then moved to the other subset, “locked”1, and its gain is
inserted in an ordered setS. The gains of all the affected
neighbors are updated—a cellv is said to be aneighborof
another cellu, if v andu are connected by a common net. The
next base cell is chosen in the same way from the remaining
“free” (unlocked) cells and the move process proceeds until
all the cells are moved and locked. Then all the partial
sumsSj =

Pj

t=1 g(ut); 1 � j � n, are computed, andp
is chosen so that the partial sumSp is the maximum. This
corresponds to the point of minimum cutsize in the entire
moving sequence. All the cells moved afterup are reversed
to their previous subset so that the actually moved cells are
fu1; : : : ; upg. This whole process is called apass. A number
of passes are made until the maximum partial sumSp is no
longer positive. This is a local minimum with respect to the
initial partition [V1; V2].

The FM algorithm has been criticized for its well-known
shortsightedness [4, 16]—it moves a cell based on the im-
mediate decrease in cutsize. Thus it tends to be trapped in
local minima that strongly depend on the initial random par-
tition. We will later point out some other consequences of
this shortsightedness that are related to the removal of natural
clusters from the cutset.

The FM gain calculation only considerscritical nets
whose cutstate will changeimmediatelyafter the move of
the cell. It is conceivable there will be many cells having the
same gain value since the gain is bounded above bypmax and
below by�pmax, wherepmax is the maximum degree of a
cell. Krishnamurthy has proposed a lookahead gain calcula-
tion scheme which includes less critical nets [4]. In addition
to FM gain, higher order gains are used to break the ties.

1The locking of a moved cell is necessary to prevent thrashing (a cell
being moved back and forth) and being trapped in a bad local minimum.

3. Clustering-Based Iterative Improvement
Methods

3.1. Case for a Cluster-Oriented Approach
A real VLSI circuit netlist can be visualized as an aggrega-

tion of a number of highly connected subcircuits or clusters.
This fact has motivated the proposition of many clustering-
based algorithms. It is conceivable that there are many levels
of clusters with different degrees in the density of their con-
nectivities. A small group of densely interconnected cells
may be part of a larger but less densely connected cluster.
The goal of our partitioning methods are to determine a cut
that goes through the most weakly connected groups.

Iterative improvement algorithms like FM and LA start
with a randomly assigned partition that results in a binomial
distribution of cells inV1 andV2. In such a distribution, the
probability of findingr (r � m) cells inV1 andm� r cells

in V2 in some group ofm cells isP (m; r) =
�
m
r
�
prqm�r,

wherep (q) is the probability of a cell being assigned toV1
(V2). For a random partition,p = q = 0:5. The probability
distribution maximizes atr = m=2 with standard deviation
� =

p
m=2. For example, a group of 100 cells will have

the expected distribution of 50 cells in each subset with a
standard deviation of 5 cells. Therefore, for a cluster with
a fair number of cells, there is a very high probability that
it will initially be cut. Hence in an initial random partition,
most clusters will straddle thecutline, which is an imaginary
line that divides the cells into the two subsets of the partition.
This situation is illustrated in Figure 1(a).

For an iterative improvementalgorithm to succeed, it must
be able to pull clusters straddling the cutline into one subset.
It is easy to visualize that there will be many cells in different
clusters with similar situations and therefore the same gain
values. Since there is no distinction between cells with the
same gain values but belonging to different clusters, the FM
algorithm may well start to work on many clusters simul-
taneously, trying to pull them out of unfavorable situations.
However, cell movement is a two-way process, and while
some cells in a cluster are moved fromV2 to V1, other cells
in the same cluster might be moved fromV1 to V2. Thus the
cluster can be locked in the cutset at an early stage —a cluster
is said to belockedin the cutset if it has locked cells in both
subsets of the partition. This is the situation of clustersC1
andC2 in Figure 1(b). Unfortunately, the moves made at an
early stage (before the maximum partial sum point) are the
actual moves. Hence these clusters will not be pulled out
from the cutset in the current pass, and in later passes the
same scenario may reappear.

Consider, for example, the simple graph shown in Fig-
ure 2(a) that shows a two-level clustered structure. Cellsu11

1 ,
u11

2 , u11
3 andu11

4 form a strongly connected subclusterC1
1;

other subclustersC2
1 ; C

1
2 andC2

2 are similarly formed. Sub-
clustersC1

1 andC2
1 construct a higher level but less densely

interconnected clusterC1. Similar is the case forC2, which is
composed of sublustersC1

2 andC2
2. After a random partition,

all the clusters as well as the subclusters straddle the cutline.
Initial FM gain calculation gives the gain values indicated
beside each cell in the figure. Cellsu11

3 andu22
3 belong to

different clusters, but have similar situations, and hence the
same gain of 4. We assume a 50%-50% balance criterion
in which cells move alternately between the two subsetsV1
andV2. The first four moves are shown by the numbered
dashed arrows in Figure 2(a). FM quickly reaches the local
minimum of cutsize 4 (further moves will be reversed finally
since the current point is the maximum partial sum point).
While FM succeeded in moving out subclusters, it locked the

V1 V2 V1 V2V1 V2

C1 C1C1

C2 C2 C2

(b)(a) (c)

Cutline Cutline Cutline

Figure 1:(a) In the initial partition, clusters straddle the cutline as
a result of random cell assignment. (b) FM locks clusters on the
cutline by moving cells within one cluster in both directions. (c)
Better approaches pull clusters out from the cutline by moving cells
within one cluster in a single direction.

C1

C1
1

C2
1

Cutline Cutline Cutline Cutline

V1 V2 V1 V2 V1 V2V1 V2

u22
4

u22
3

u22
2

u22
1

u21
2

u21
4

u21
1 u21

3

u21
2

u21
1

u21
4

u21
3

u11
2

u11
1

u11
4

11
3u

u12
2

u12
4

u12
1 u12

3

u12
4

u12
1 u12

3

u12
2

u11
4

u11
1

u11
2

11
3u

u22
4

u22
1

u22
2

u22
3

u11
2

u11
1

u11
4

11
3u

u12
2

u12
4

u12
1 u12

3

u21
2

u21
4

u21
1 u21

3

u22
4

u22
3

u22
2

u22
1

u21
2

u21
1

u21
4

u21
3

u22
4

u22
1

u22
2

u22
3

u12
4

u12
1 u12

3

u12
2

u11
4

u11
1

u11
2

11
3u

4

4

-1

-1

-1

0

0

0

0

-1

4

4

-1

-2

-2

FM gain

(b)

C

C1
2

C2
2

2

(a)

-1

1

2

3

4

1

3

5

7

2

4

6

8

Figure 2: (a) FM only pulls out subclusters and finds a local
minimum in cutsize. (b) The new approach pulls out clusters and
finds the optimum cut.

higher level clustersC1 andC2 on the cutline. Therefore it
missed the optimal cut of one that can be easily identified in
the figure.

A mechanism is thus needed to aid iterative improvement
algorithms in pulling out clusters from the cutset. We pro-
pose a cluster-oriented framework for gain calculation and
base-cell selection that focuses on nets connected to moved
cells. It can be overlaid on any iterative-improvement al-
gorithm with any cell-gain calculation scheme. It implicitly
promotes the move of an entire cluster by dynamically as-
signing higher weights to nets connected to recently moved
cells. This greatly enhances the probability of finding a
close-to-optimum cut in a circuit. We also propose an ex-
tended version of this algorithm that tries to identify clusters
explicitly and then move them out from the cutset.
3.2. Considering Clusters in Iterative Improve-

ment Methods
We first re-examine the cell gain calculation of FM. Ini-

tially, cell gains are calculated based on the immediate ben-
efits of moving cells. After a cell is moved, the gains of its
neighbors are updated. At any stage in the move process,
the total gain of a cell can be broken down as the sum of
the initial gain component and the updated gain component.
The total gain indicates the overall situation of a cell, while
the updated gain component reflects the change in the cell's
status due to the movements of its neighbors.

An intuitive solution to the problem of an iterative-

improvement scheme “jumping around” and working on dif-
ferent clusters simultaneously, as illustrated in Figs. 1(b)
and 2(a), thus locking them in the cutset, is to make cell
movement decisions based primarily on their updated gain
components. This minimizes distractions during the cluster-
pulling effort caused by cells not in the cluster currently being
moved, but with high total gains. In other words, it allows
the algorithm to concentrate on a single cluster at a time for
moves in one direction; note that the updated gain component
of a cell reflects its goodness for moving with regard to the
cluster currently being pulled from the cutset. The initial gain
of a cell, however, provides useful information for choosing
the starting seed for removal of a cutset-straddling cluster—
the cell with the highest gain is most likely in such a cluster,
and thus a very good starting point. Once the move process
has begun, nets connected to moved cells should be given
more weights so that the updated gain components of cells
become more important than their initial gains. The utility
of giving more weight to nets connected to moved cells (and
hence to the updated gain components of cells) in facilitating
the movement of clusters from the cutset is established in the
following set of results proved in [17].

We consider an iterative improvement partitioning pro-
cess like FM and assume that the probability (fint) that an
edge connects a pair of cells inside the cluster is uniformly
distributed, the probability (fext) that an edge connects a cell
in C to a cell outsideC is also uniformly distributed, and
fint > fext. This is similar to theuniformly distributed
random graphmodel used by Wei and Cheng in [6].

Theorem 1 If a clusterC is divided by the cutline into sub-
setsC1 2 V1 and C2 2 V2, andC1 is moved toV2 by a
sequence of moves of its cells, then the cutsize of the parti-
tion will decrease, if initiallyjC1j � jC2j, or first increase
and then decrease, if initiallyjC1j > jC2j.

Figure 4 illustrates Theorem 1. This theorem has also been
empirically validated; see [17].

Assume that originally all net weights are one and when
updating the gain of a cell, each net connected to moved cells
is assigned a weight of at least 2pmax, where recall thatpmax

is the maximum cell degree in the circuit.

Observation 1 Once a cluster starts to move fromV1 to V2,
there is a high probability that the whole cluster will be
removed from the cutset.

The example of Fig. 2 can be used to demonstrate the
advantage of the above approach. The cell gains are first
computed and the base cell is againu11

3 . The first two moves
of u11

3 andu21
3 bring large negative gains to cellsu12

3 and
u22

3 through the weighted edges. Therefore in the subsequent
two moves, they are not selected as would be the case in FM.
Instead,u12

4 becomes the top cell inV1, and is selected as
the next cell to move. The sequence of the first few moves
are indicated by numbered arrows in the figure (for details
see [17]). After eight moves,C1 andC2 are moved out
from the cutset, and we obtain the optimal cut of one. Thus
this process escapes the local minimum of four in which the
original FM algorithm was trapped.
3.3. A Cluster-Oriented Iterative-Improvement

Partitioner
From the above discussion, we propose a general gain cal-

culation and base-cell selection framework CLIP (CLuster-
oriented Iterative-improvement Partitioner),presented in Fig-
ure 3, that can be applied to any FM-type iterative improve-
ment algorithm. For implementation convenience, we set the

Algorithm CLIP
1. Calculate the initial gain of all cells according to the iterative

improvement algorithm of choice (e.g., FM, LA, PROP[16]).
2. Insert the cells into some sorted data structures (free-cell store)

T1 and T2 for subsetsV1 and V2, respectively. Select the
maximum gain cellu 2 V as the first base cell to move.

3. Clear the gain of all cells to zero while maintaining their
original ordering in the data structure.

4. Moveu and update the gain of its neighbors and their ranks in
the data structure as done in the chosen iterative improvement
algorithm. The gain of a cell now only contains the updated
part.

5. Choose the base cell based on the cell's updated gain and the
balance criterion. Move the cell, update its neighbors.

6. RepeatStep 5 until all cells are moved.
7. Find the point in the move sequence which corresponds to the

minimum cutsize, and reverse all the moves after this point.

Figure 3: One pass of CLIP (CLuster-oriented Iterative-
improvement Partitioner).

cell gains to zero after the initial gain calculation, but order
them according to their initial gains. Cell gains are updated
as in the original algorithm over which CLIP is overlaid. Ze-
roing of initial gains followed by gain updating is equivalent
to giving nets connected to moved cells a weight of infinity
over nets with no moved cells.

After the first pass, most strongly connected clusters will
probably have been removed from the cutset. The few clus-
ters left in the cutset can be removed in the subsequent
passes. In later passes, another advantage of the above
cluster-oriented scheme is that clusters lying entirely in one
subset can be easily moved to the other subset. This is because
cell gains being cleared to zero in the initial stage causes cells
in a cluster to have less inertia in staying inside their original
subset. The benefit of cluster movement between subsets is
that larger but less densely connected clusters (superclusters)
can be removed from the cutset by moving their densely-
connected constituent clusters from one subset to the other.
By rearranging clusters between the two subsets in this way,
subsetsV1 andV2 of the final partition will become the two
largest but most weakly connected superclusters, which im-
plies that the cutsize will be small. As opposed to FM, which
tends to do only local improvement within large clusters, the
above new scheme can explore a wider solution space, and
hence has less dependence on the initial partition.

Compared to other clustering-based approaches, such as
bottom-up compaction [18], top-down clustering [8] and ver-
tex ordering [12], CLIP does not explicitly bind cells together
as inseparable clusters. Instead, cells can be implicitly re-
grouped into different clusters in subsequent passes. Both
the moving and possible regrouping of clusters are guided
directly by the ultimate objective—cutsize reduction. An ad-
vantage of this approach is that CLIP has more freedom to
search for the optimum cut.
3.4. A Cluster Detection Method

Although the new framework CLIP has significant advan-
tages over the traditional iterative improvement approach, it
is possible to do even better. We start by asking the following
questions. First, how do we know when a cluster has been
pulled out? Furthermore, once we finish pulling out the first
cluster, how do we select the next starting point?

We address the former question first by determining what
happens when a cutline sweeps across a cluster—this is equiv-
alent to a cluster being pulled out from the cutset. From
Theorem 1, as we move a cluster from the cutset, the over-
all cutsize will decrease until the cluster is entirely removed
from the cutset. In a practical partitioner, some external cells

V1
V2

End of

Cluster

Cutsize L 1 L L 20

2

Cluster

|C |0 1|C| |C|

δImprovement
starting points

Figure 4:The cutsize change with the move of a cluster as indicated
in Theorem 1. When the cutsize does not improve, it indicates the
end of a cluster.

Test # of # of # of Test # of # of # of
Case Cells Nets Pins Case Cells Nets Pins
s1423 619 538 1528 p2 3014 3029 11219
sioo 664 408 1882 s9234 5866 5844 14065
s1488 686 667 2079 biomed 6514 5742 21040
balu 801 735 2697 s13207 8772 8651 20606
p1 833 902 2908 s15850 10470 10383 24712
bm1 882 903 2910 industry2 12637 13419 48404
t4 1515 1658 5975 industry3 15406 21924 68290
t3 1607 1618 5807 s35932 18148 17828 48145
t2 1663 1720 6134 s38584 20995 20717 55203
t6 1752 1541 6638 avq.small 21918 22124 76231
struct 1952 1920 5471 s38417 23949 23843 57613
t5 2595 2750 10076 avq.large 25178 25384 82751
19ks 2844 3282 10547

Table 1:Benchmark circuit characteristics.

may be moved across the cutline due to their connections to
moved cells in the cluster. However, since they are randomly
distributed across many clusters (and thus do not belong to
a specific cluster), their contribution to the overall cutsize
change will not be significant. As a result, we obtain a cut-
size change similar to that illustrated in Figure 4, which is
a pictorial depiction of Theorem 1. Referring to this figure,
the movement of a cluster starts from either pointL1 or L2.
After it is removed from the cutset, there is an overall im-
provement in cutsize. If in subsequent moves no other cluster
starts getting pulled out from the cutset, the cutsize will not
improve further.

From this reasoning we propose the following cluster de-
tecting criterion:After the move process reaches a positive
maximum improvement point, and there is no further im-
provement in the following� moves, we say that a cluster has
been moved out at the maximum improvement point;� is a
parameter of the algorithm. Referring to the cutsize curve
in Figure 4, the� cells moved after the minimum cutsize
is reached do not belong to the previous cluster. This is in
contrast to the two cluster detection criteria that Saab pro-
posed in his compaction algorithm [18], viz., (1) The cutsize
decreases for the first time after a sequence of moves; (2)
The last moved cell in the sequence has a positive gain. We
derived our detection criterion from the analytical results in
Section 3.2., and we use the partial sum of gains of the se-
quence of node moves in our criterion, instead of individual
cell gains as in [18].

We now address the second question raised at the begin-
ning of this subsection. After reversing the�moves, we come
back to the end point of the current cluster. Subsequently,
we need to select the next seed to start the move of another
cluster. For this purpose, the updated gain components of
cells should not be the determining factor. Rather, the total
gains of cells, which reflect their overall situation, is more
useful. Similar to the situation at the beginning of the pass,
the cell with the maximum total gain is a good seed to start
with. Following this, however, unlike at the beginning of
the pass, gain components of nodes are selectively zeroed.
Negative components due to connections to locked nodes are
retained, since they signify attachment to a moved cluster,
and a node with a significant negative gain most probably
belongs to such a cluster and should not be moved; see Fig. 5
for more details.

From the above discussion,a more sophisticated algorithm
CDIP (Cluster-Detecting Iterative-improvement Partitioner)
is presented in Fig. 5. This is an extension of CLIP and
can also be applied to any FM-type iterative improvement
algorithm. Note that in both CLIP and CDIP, the move
process removes (disjoint) clusters from the cutset to bothV1
andV2 in an interleaved manner. Though in CDIP there can
be intermediate configurations in which the balance criterion
is relaxed (this is not allowed in CLIP, since it is not crucial
to its operation), care is taken that it is ultimately satisfied;
see Fig. 5.

By using either of the two new algorithms, CLIP or CDIP,
we can find a good cut through weakly connected clusters. In
order to obtain even better results, we can apply the original
iterative improvement algorithm as a post-processing phase
to fine-tune the partition.

3.5. Complexity Analysis
In an implementation, both CLIP and CDIP have to be

overlaid on some chosen iterative improvement algorithm.
Let n be the number of cells,e the number of nets,p the
number of pins andd the average number of neighbors of a
cell. It is easy to show that CLIP does not increase the order of
time complexity of the original algorithm (which will always

Algorithm CDIP
1. Calculate the initial gain of all cells according to the iterative

improvement algorithm of choice.
2. Insert the cells into sorted data structuresT1 andT2 for subsets

V1 andV2, respectively. Select the maximum gain cellu 2 V

as the first base cell to move.
3. Clear the gain of all cells to zero while keeping their original

ordering inTi (i = 1; 2).
4. Moveu and update the gain of its neighbors and their ranks

in Ti (i = 1; 2) as done in the chosen iterative improvement
algorithm. Start to count the move indexj and to calculate the
partial sumSi;1

j for this first cluster, whereu 2 Vi. The gain
of a cell now only contains the updated part.

5. RepeatSteps 6 to 7 until all cells are moved and locked.
6. Choose the base cell based on the cell gain, and the balance

criterion with its allowable intermediate relaxation. Move the
cell, and update the neighbors as done before.

7. If the current maximum partial sumSi;k
p > 0, and the current

move indexq � p+ �, then
(a) Reverse the moves fromq to p+ 1.
(b) Choose the free cellv 2 Vi with the maximumtotal

gain as the next base cell.
(c) For each free cell inVi, clear the cell gain except the

gain component from nets connected to the locked cells
in the same subsetVi. Reorder cells inTi according to
the modified gain.

(d) Move the base cellv, update neighbors and start the
count of new move indexj and the calculation of new
partial sumSi;k+1

j from this move.
8. Find the maximum prefix point in the moving sequence that

satisfies the balance criterion (there may be intermediate re-
laxations at some points), and reverse all the moves after this
point.

Figure 5: One pass of CDIP (Cluster-Detecting Iterative-
improvement Partitioner).

Minimum of 20 runs Average of 20 runs
Test Cut Size Improvement % Cut Size Improvement %
Case CLIP CLIP CDIP CLIP CLIP CDIP CLIP CLIP CDIP CLIP CLIP CDIP

FM LA3 -FM -LA3 -LA3 -FM -LA3 -LA3 FM LA3 -FM -LA3 -LA3 -FM -LA3 -LA3

s1423 17 16 15 16 15 11.8 5.9 11.8 24.2 22.3 21.8 19.6 20.6 9.9 18.8 14.7
sioo 31 25 37 25 25 -16.2 19.4 19.4 47.5 25.4 49.9 25.3 25.1 -4.8 46.7 47.1
s1488 48 42 43 42 41 10.4 12.5 14.6 53.5 49.1 46.9 45.5 46.4 12.3 14.8 13.2
balu 27 27 27 27 27 0.0 0.0 0.0 38.1 36.1 38.9 32.5 33.9 -2.1 14.6 11.2
p1 47 52 52 52 52 -9.6 -9.6 -9.6 74.9 68.5 65.8 61.8 61.5 12.1 17.6 17.9
bm1 54 53 49 52 52 9.3 3.7 3.7 79.5 67.5 65.0 60.4 59.8 18.3 24.1 24.8
t4 87 82 56 51 52 35.6 41.4 40.2 129.3 117.2 77.0 72.9 71.7 40.4 43.6 44.6
t3 75 80 57 57 57 24.0 24.0 24.0 106.8 106.2 72.3 71.6 66.8 32.2 32.9 37.4
t2 149 126 89 92 90 40.3 38.3 39.6 182.1 148.1 105.2 106.8 101.0 42.3 41.4 44.5
t6 67 70 60 60 60 10.4 10.4 10.4 94.2 84.4 70.1 71.8 70.0 25.5 23.7 25.6
struct 46 44 37 33 36 19.6 28.3 21.7 58.0 49.6 45.6 46.8 46.8 21.3 19.3 19.4
t5 127 99 75 80 74 40.9 37.0 41.7 183.6 165.0 89.0 90.7 89.8 51.5 50.6 51.1
19ks 140 130 119 107 105 15.0 23.6 25.0 171.7 169.0 150.3 136.1 134.6 12.4 20.7 21.6
p2 212 149 149 142 152 29.7 33.0 28.3 273.9 233.4 233.2 208.8 193.2 14.8 23.8 29.5
s9234 59 43 49 47 44 16.9 20.3 25.4 84.7 81.1 89.5 80.8 77.2 -5.4 4.5 8.9
biomed 83 90 84 84 83 -1.2 -1.2 0.0 117.4 170.7 108.4 102.1 102.2 7.7 13.0 13.0
s13207 98 85 98 68 70 0.0 30.6 28.6 122.6 118.9 123.5 100.5 93.9 -0.8 18.0 23.4
s15850 109 87 80 73 67 26.6 33.0 38.5 176.9 140.4 140.9 106.7 107.0 20.3 39.7 39.5
industry2 264 422 260 205 190 1.5 22.3 28.0 627.5 732.4 369.6 332.8 293.6 41.1 47.0 53.2

Subtotal 1740 1722 1436 1313 1292 17.5 24.5 25.7 2646 2585 1963 1773 1694 25.8 33.0 36.0

industry3 272 504 261 261 243 4.0 4.0 10.7 506.0 758.0 376.6 421.6 358.6 25.6 16.7 29.1
s35932 85 168 102 73 73 -16.7 14.1 14.1 210.3 231.4 127.1 79.0 83.0 39.6 62.4 60.5
s38584 100 85 49 55 47 51.0 45.0 53.0 299.8 271.2 83.2 103.3 95.7 72.2 65.5 68.1
avq.small 347 608 223 146 148 35.7 57.9 57.3 578.6 815.5 335.1 309.9 311.7 42.1 46.5 46.1
s38417 240 284 78 73 79 67.5 69.6 67.1 384.1 408.2 136.7 114.0 108.7 64.4 70.3 71.7
avq.large 350 398 216 138 145 38.3 60.6 58.6 755.0 693.4 305.2 349.1 280.8 59.6 53.8 62.8

Subtotal 1394 2047 929 746 735 33.4 46.5 47.3 2734 3178 1363 1377 1238 49.1 48.6 53.8

Total 3134 3769 2365 2059 2027 24.5 34.3 35.3 5380 5763 1963 1773 1694 38.2 41.4 45.5

Average of % improvement 17.8 25.0 26.1 26.1 33.2 35.2

Table 2:Comparisons of CLIP and CDIP (applied to FM and LA3) to FM. CLIP-LA3 results are for� = 50. Subtotals shown correspond
first to medium-size circuits and then to large circuits.

beΩ(p)). CLIP-FM and CLIP-LA (CLIP applied to FM and
LA, resp.) can thus be implemented withΘ(p) complexity if
a bucket list structure is used.

CDIP has two major additional operations beyond those
in the CLIP algorithm. After each detection of a cluster:
(1) The � moves are reversed, and (2) The free cells are
reordered. Assumingc clusters are detected in a pass, the
first operation impliesc� additional moves over the entire
pass, and the second operation causesc reorderings of all
free cells. For a bucket list structure, where the insertion of a
cell into a bucket is a constant time operation, the complexity
of the first operation isO(c�d) (each extra move requires
O(d) time for updatingd neighbors and reinserting them in
the bucket data structure), and the complexity of the second
operation isO(cn) over the entire pass. Thus the complexity
of CDIP isO(max(c�d; cn; p)) for CDIP-FM and CDIP-LA
for one pass. Empirical results presented later show that
CDIP is quite fast.

4. Experimental Results
All experiments have been done on ACM/SIGDA bench-

mark circuits whose characteristics are listed in Table 1. The
circuit netlists were acquired from the authors of [12] and
[13]. All cutset results are for the 45-55% balance criterion.
4.1. Comparisons to FM

Table 2 presents the results of applying CLIP to FM and
LA3 (LA algorithm with lookahead level of 3). Both the
minimum and average cutsizes over 20 runs are greatly im-
proved compared to their corresponding original schemes.
The overall minimum-cutsize improvements are 24.5% for
CLIP-FM over FM and 45.4% for CLIP-LA3 over LA3.
Note also from the table that while LA3 performs slightly
better than FM for small to medium-size circuits, it performs
much worse for large circuits—for an explanation of this phe-
nomenon the interested reader is referred to [17]. However,

CLIP-LA3 now performs much better than FM (by 24.5% for
medium-size benchmarks and 46.5% for large-size bench-
marks, for an overall improvement of 34.3%). As is clearly
evident, the most improvements of the new schemes over
FM are obtained for large circuits. The largest improvement
of CLIP-LA3 over FM is about 70% for the circuits38417.
This clearly demonstrates the new clustering-based schemes'
ability to tackle large circuits. The cluster detection method
CDIP-LA3, obtained by overlaying CDIP on LA3, performs
even better. The minimum and average cutsizes are improved
over those of FM by 35.3% and 45.5%, respectively. Both
the minimum and average cutsizes are also superior to those
of CLIP-LA3. This indicates that CDIP is a better and more
stable partitioner than CLIP.

4.2. Comparisons to Paraboli and MELO
Finally, in Tables 3 and 4, we compare the original iterative

improvement and the new cluster-oriented iterative improve-
ment algorithms to two state-of-the-art partitioning methods,
the placement-based algorithm Paraboli [13] and the spectral
partitioner MELO [14]. Here, all the new clustering-based it-
erative improvement algorithms are further improved by the
corresponding original schemes as indicated at the end of
Section 3.4. (e.g., CLIP-FMf is CLIP-FM followed by FM
improvement). Since FM is very fast, we perform 100 runs
of both FM and CLIP-FMf ; all other iterative improvement
algorithms' results are for 20 runs.

First, it is clear from the tables that the original FM algo-
rithm can obtain good results for medium-size circuits. For
this set of benchmarks, it is about 4% better than MELO, and
1% better than Paraboli in total cut. However, for large size
circuits, it falls far behind Paraboli (by -22.5% in total cut).
This confirms our earlier discussion on the shortcomings of
previous iterative methods. After using the clustering-based
techniques, CLIP and CDIP, all of the four new algorithms
CLIP-FMf , CLIP-LA3f , CLIP-PROPf and CDIP-LA3f , are

Test Cut Size % Improvement over Paraboli
Paraboli FM CLIP CLIP CDIP CLIP FM CLIP CLIP CDIP CLIP

Case -FMf -LA3f -LA3f -PROPf -FMf -LA3f -LA3f -PROPf
s1423 16 17 15 15 15 15 -5.9 6.2 6.2 6.2 6.2
sioo 45 25 25 25 25 25 44.4 44.4 44.4 44.4 44.4
s1488 50 46 43 42 41 43 8.0 14.0 16.0 18.0 14.0
balu 41 27 27 27 27 27 34.1 34.1 34.1 34.1 34.1
p1 53 47 47 51 47 51 11.3 11.3 3.8 11.3 3.8
struct 40 41 33 33 36 33 -2.4 17.5 17.5 10.0 17.5
p2 146 182 148 142 151 152 -19.8 -1.4 2.7 -3.3 -3.9
s9234 74 51 44 45 44 42 31.1 40.5 39.2 40.5 43.2
biomed 135 83 83 83 83 84 38.5 38.5 38.5 38.5 37.8
s13207 91 78 76 66 69 71 14.3 16.5 27.5 24.2 22.0
s15850 91 104 75 71 59 56 -12.5 17.6 22.0 35.2 38.5
industry2 193 264 174 200 182 192 -26.9 9.8 -3.5 5.7 0.5

Subtotal 975 965 790 800 779 791 1.0 19.0 17.9 20.1 18.9

industry3 267 263 241 260 243 243 1.5 9.7 2.6 9.0 9.0
s35932 62 85 83 73 73 42 -27.1 -25.3 -15.1 -15.1 32.3
s38584 55 63 47 50 47 51 -12.7 14.5 9.1 14.5 7.3
avq.small 224 297 200 129 139 144 -24.6 10.7 42.4 37.9 35.7
s38417 49 147 66 70 74 65 -66.7 -25.8 -30.0 -33.8 -24.6
avq.large 139 350 185 127 137 143 -60.3 -24.9 8.6 1.4 -2.8

Subtotal 796 1205 822 709 713 688 -33.9 -3.2 10.9 10.4 13.6

Total cut 1771 2170 1612 1509 1492 1479 -22.5 8.8 14.8 15.8 17.5

Average of per-ckt % improvements -4.2 11.6 14.8 15.5 16.5

Table 3:Comparisons of various iterative improvement algorithms to Paraboli [13]. The results for the clustering-based iterative-improvement
algorithms in the table have been further improved by their corresponding original schemes (indicated by the subscriptf). FM and CLIP-FMf

results are the best cutsizes from 100 runs, while results of our other algorithms are the best of 20 runs. CDIP-LA3f results are for� = 50.
Subtotals shown correspond first to medium-size circuits and then to large circuits.

able to obtain cutsizes that are overall better than Paraboli's.
Total cut improvements range from 8.8% to 17.5%.

The best results are obtained by applying CLIP to PROP
(CLIP-PROP). PROP is a probability-based iterative im-
provement partitioner [16] that calculates cell gains based
on the probabilities of nets being actually moved in a pass.
Thus the cell gain calculation is more accurate than that of
either FM or LA. Hence CLIP-PROP overcomes the two fun-
damental shortcomings in traditional iterative improvement
methods—inaccurate gain calculation and lack of a global
view of the cluster-oriented structure of circuits. It thus
emerges as a very powerful partitioning tool and performs
about 17% better than Paraboli. When compared to MELO
[14], for which only results on medium-size circuits are given,
all the new algorithms show about 23% better results in total
cutsize.

4.3. Run Time Comparisons
The run times of the iterative improvement algorithms are

very favorable compared to other purely clustering-based al-
gorithms like Paraboli and MELO. Run times of Paraboli and
MELO are reported for the DEC3000 Model 500 AXP and
SUN SPARC10 workstations, respectively, while we have
executed all CLIP and CDIP based algorithms, as well as FM
and LA, on the SUN SPARC5 Model 85 workstation; see
[17] for a detailed table. The data structures used to store
free cells for FM and LA are bucket structures as proposed
in [3] and [4], respectively. Despite theO(max(c�d; cn; p))
worst-case time complexity of CDIP-LA3f , in practice it
uses less than twice the CPU time of CLIP-LA3f , which has
a linear run time. PROP uses a tree structure which makes
it easy to accommodate arbitrary net weight as is required
in performance-driven partitioning [7, 5]. Yet the run time
of CLIP-PROPf is quite reasonable. The total CPU times
of all four new algorithms are less than that of Paraboli.
Assuming the same speed for the three different worksta-
tions, CLIP-FMf is 1.9 times, CLIP-LA3f is 3.3 times, and
both CDIP-LA3f and CLIP-PROPf are 1.8 times faster than
Paraboli. CLIP-PROPf is comparable to MELO in run time,
while CLIP-FMf , CLIP-LA3f and CDIP-LA3f are faster

than MELO by factors of 1.2, 1.7 and 1.2, respectively. This
also means that if equal CPU times are allocated, the new
algorithms can perform more runs and generate even better
cutsizes than those presented in Tables 3 and 4.

5. Conclusions
We proposed a new clustering-based approach that greatly

enhances the performance of iterative improvement methods.
The new approach incorporates clustering mechanisms nat-
urally into traditional FM-type algorithms. This revives the
power of fast move-based iterative improvement algorithms,
making them capable of dealing with large-size circuits. They
are significantly better, in terms of both cutset quality and
speed, than current state-of-the-art algorithms like Paraboli
[13] and MELO [14] that are purely clustering-based, and de-
serve new attention in the development of VLSI CAD tools.

Acknowledgements
This work was supported partly by NSF grant MIP-

9210049. We thank the anonymous referees for their useful
comments.

References
[1] B. W. Kernighan and S. Lin, “An Efficient Heuristic Procedure for

Partitioning Graphs”,Bell System Tech. Journal, vol. 49, Feb. 1970,
pp. 291-307.

[2] D. G. Schweikert and B. W. Kernighan, “A Proper Model for the Parti-
tioning of Electrical Circuits”,Proc. 9th Design automation workshop,
1972, pp. 57-62.

[3] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions”,Proc. ACM/IEEE Design Automation
Conf., 1982, pp. 175-181.

[4] B. Krishnamurthy, “An improved min-cut algorithm for partitioning
VLSI networks”, IEEE Trans. on Comput., vol. C-33, May 1984, pp.
438-446.

[5] M. Marek-Sadowska and S.P. Lin, “Timing driven placement”,Proc.
IEEE/ACM International Conference on CAD, 1989, pp. 94-97.

[6] Y.C. Wei and C.K. Cheng, “Towards efficient hierarchical designs
by ratio cut partitioning”,Proc. Int' l. Conf. Computer-Aided Design,
1989, pp. 298-301.

Test Cut Size % Improvement over MELO
MELO FM CLIP CLIP CDIP CLIP FM CLIP CLIP CDIP CLIP

Case -FMf -LA3f -LA3f -PROPf -FMf -LA3f -LA3f -PROPf
balu 28 27 27 27 27 27 3.6 3.6 3.6 3.6 3.6
p1 64 47 47 51 47 51 26.6 26.6 20.3 26.6 20.3
bm1 48 49 47 51 47 47 -2.0 2.1 -5.9 2.1 2.1
t4 61 80 53 49 48 52 -23.8 13.1 19.7 21.3 14.8
t3 60 62 56 56 57 57 -3.2 6.7 6.7 5.0 5.0
t2 106 124 87 92 89 87 -14.5 17.9 13.2 16.0 17.9
t6 90 60 60 60 60 60 33.3 33.3 33.3 33.3 33.3
struct 38 41 33 33 36 33 -7.3 13.2 13.2 5.3 13.2
t5 102 104 74 80 74 77 -1.9 27.5 21.6 27.5 24.5
19ks 119 130 109 104 104 104 -8.5 8.4 12.6 12.6 12.6
p2 169 182 148 142 151 152 -7.1 12.4 16.0 10.7 10.1
s9234 79 51 44 45 44 42 35.4 44.3 43.0 44.3 46.8
biomed 115 83 83 83 83 84 27.8 27.8 27.8 27.8 27.0
s13207 104 78 76 66 69 71 25.0 26.9 36.5 33.7 31.7
s15850 52 104 75 71 59 56 -50.0 -30.7 -26.8 -11.9 -7.1
industry2 319 264 174 200 182 192 17.2 45.5 37.3 42.9 39.8

Total cut 1554 1486 1193 1210 1177 1192 4.4 23.2 22.1 24.3 23.3

Average of per-ckt % improvements 3.2 17.4 17.0 18.8 18.5

Table 4: Comparisons of various iterative improvement algorithms to MELO [14]. The results in the table have been further improved by
the original schemes (indicated by the subscriptf). FM and CLIP-FMf results are the best cutsizes from 100 runs, while results of our other
algorithms are the best of 20 runs. CDIP-LA3f results are for� = 50.

[7] M.A.B. Jackson, A. Srinivasan and E.S. Kuh, “A fast algorithm for
performance driven placement”,Proc. IEEE/ACM International Con-
ference on CAD, 1990, pp. 328-331.

[8] Y. C. Wei and C. K. Cheng, “An Improved Two-way Partitioning
Algorithm with Stable Performance”,IEEE Trans. on Computer-Aided
Design, 1990, pp. 1502-1511.

[9] L. Hagen and A. B. Kahng, “Fast Spectral Methods for Ratio Cut
Partitioning and Clustering”,Proc. IEEE Intl. Conf. Computer-Aided
Design, 1991, pp. 10-13.

[10] J. Cong and M. Smith, “A bottom-up clustering algorithm with ap-
plications to circuit partitioning in VLSI designs”,Proc. ACM/IEEE
Design Automation Conf., 1993, pp. 755-760.

[11] S. Dutt, “New faster Kernighan-Lin-type graph-partitioning algo-
rithms”, Proc. IEEE/ACM International Conference on CAD, Nov.
1993.

[12] C. J. Alpert and A. B. Kahng, “A General Framework for Vertex
Orderings, With Applications to Netlist Clustering”,Proc. IEEE Intl.
Conf. Computer-Aided Design, 1994, pp. 63-67.

[13] B. M. Riess, K. Doll and F. M. Johannes, “Partitioning Very Large
Circuits Using Analytical Placement Techniques”,Proc. ACM/IEEE
Design Automation Conf., 1994, pp. 646-651.

[14] C. J. Alpert and S-Z Yao, “Spectral Partitioning: The More Eigenvec-
tors, the Better”,Proc. ACM/IEEE Design Automation Conf., 1995.

[15] L.W. Hagen, D. J.-H. Hwang and A.B. Kahng, “On implementation
choices for iterative improvement partitioning methods”,Proc. Euro-
pean Design Automation Conf., Sept. 1995, pp. 144-149.

[16] S. Dutt and W. Deng, “A Probability-Based Approach to VLSI Circuit
Partitioning”,Proc. ACM/IEEE Design Automation Conf., June 1996,
pp. 100-105. (Recepient of the best-paper award.)

[17] S. Dutt and W. Deng, “VLSI Circuit Partitioning by Cluster-Removal
Using Iterative Improvement Techniques”, Technical Report, Depart-
ment of Electrical Engr., University of Minnesota, Nov. 1995.
This report is available at ftp site ftp-mount.ee.umn.edu in file pap-
pdw96-ext.ps in directory /pub/faculty/dutt/vlsi-cad/papers.

[18] Y. G. Saab, “A Fast and Robust Network Bisection Algorithm”,IEEE
Trans. Computers, 1995, pp. 903-913.

	CDROM Home Page
	1996 Home Page
	ICCAD 96
	Front Matter
	Session Index
	Table of Contents
	Author Index

