
Object-Oriented Hardware Modelling –
Where to apply and what are the objects?1

Abstract
The importance of reusability of hardware models for

the necessary increase in design productivity will be
explained for different modelling problems. Methods hav-
ing previously been proven to be successful in software
engineering will be analysed with respect to their applica-
bility to hardware design. It will be shown that object-ori-
ented modelling techniques do potentially increase design
productivity, but that VHDL in its current version does not
support object oriented modelling. Possible subjects to
object-orientation will be discussed.

1. Introduction

The -despite of earlier assumptions- not saturating inte-
gration density of integrated circuits provides sufficient
motivation to investigate further possibilities to increase
design productivity. The increase of complexity can be
estimated to about ten every seven years. It can not be
compensated by the increase of computing power, which
on the one hand without a change in design methodology
does not achieve an increase in intellectual value addition,
on the other hand is consumed mostly by complex data-
mangement systems and user friendly graphical interfaces.

As keys to manage the design complexity and the
increase of design effort the termsHierarchy andAbstrac-
tion are typically mentioned. A hierarchical, structural
decomposition of the design problem reduces the com-
plexity by isolating subproblems and hence makes the glo-
bal design problem accessible for a solution. This
achievement has to be paid with a suboptimal total solu-
tion which is due to the local optimization of the substruc-
tures.

Abstraction should be looked at from two points of
view. First it allows to encapsulate existing components

1. Part of this work has been funded by the ESPRIT OMI project 20616,
REQUEST - REuse and QUality ESTimation: Advanced VHDL based
design methodology for quick system development.

which can be described by an abstract model containing
only that information which is required at the higher level
of abstraction. Examples of this kind of abstraction are cell
libraries of ASIC vendors. Here abstraction allows the re-
use of hardware components. They don't need to be rede-
signed for each application, i.e. the design cost -measured
in terms of transistors- is reduced.

On the other hand abstraction can be used for reducing
design effort if design detail can automatically be attrib-
uted to less detailed design specifications using synthesis
tools. Application examples are: logic synthesis, technol-
ogy mapping, place & route. Here the reduction in design
effort is due to a re-use of automated design strategies and
architectures.

1.1. Traditional approaches of re-use

In the past the method of design data encapsulation has
been developed in an evolutionary way in the direction of
higher levels of abstraction. The stepslow level design,
encapsulation andre-use were first applied to transistors,
then to cells and finally to macros. On the macro level,
however, the limits became obvious. To design a compre-
hensive library of complex parameterized macro cells has
turned out to be not cost efficient for general purpose
applications. The reasons are the high initial and mainte-
nance cost of the library whose elements are possibly only
seldom used and on top of that not optimal for the particu-
lar application. Today in general purpose ASIC libraries
there are usually only memories and analogue cells as
macro cells. Generators which were typically provided for
arithmetic functions etc. have been replaced by synthesiza-
ble models a couple of years ago. Some exceptions can be
found in the domain of signal processing and other special
purpose libraries.

One can conclude that the necessary further increase in
level of abstraction cannot be achieved by aggregating
physical representations of larger functional units and
abstracting them. The more promising approach is to
reduce the effort of high level modelling and to build on
automatic synthesis.

Wolfgang Nebel

OFFIS

Escherweg 2

D-26121 Oldenburg, Germany

nebel@offis.uni-oldenburg.de

Guido Schumacher

FB 10 – Department of Computer Science

Carl von Ossietzky University Oldenburg

D-26111 Oldenburg, Germany

guido.schumacher@informatik.uni-oldenburg.de

EURO-DAC ’96 with EURO-VHDL ’96
0-89791-848-7/96 $4.00 1996 IEEE

The acceptance of synthesis tools depends not only on
their stability, run time and achievable design quality, but
also on the predictability and comprehensiveness of the
results. A chaotic behaviour of the tools -i.e. minimal
changes of the tool input result in major changes of the
tool output- can only be avoided by a good controllability
of the synthesis result. Behavioural synthesis maintains
the process structure and hence provides a certain degree
of controllability by limiting the scope of changes to sin-
gle processes.

Moving the creative part of the design process to those
levels which are covered by hardware description lan-
guages, of course also moves the largest potential of
design productivity increase to those levels. According to
[1] already in 1993 almost 60% of the US designer com-
munity used logic synthesis and more than 50% used hard-
ware description languages. The large number of
simulation and synthesis iterations [2] emphasizes the
need to improve the modelling productivity. The current
effort in this domain is due to necessary debug phases and
the need to steer the synthesis process into the intended
direction. Different aspects of modelling cost and produc-
tivity will be discussed in section two.

1.2. Software-engineering

Software-engineering is frequently cited to be compa-
rable to the problem of complexity in hardware design.
Abstraction and hierarchy have been applied to manage
design complexity in software engineering. The latest
development in rising the level of abstraction are object-
oriented programming languages. In parallel to the lan-
guage design object-oriented analysis and design method-
ologies have been developed. The object-oriented way of
structuring a system at the first glance seems to be closer
to how hardware designers tend to work, i.e. a structure of
communicating hardware entities. However, as we will see
later, the differences between these classical hardware
entities and the objects of the software world are still sig-
nificant.

Section three will introduce into techniques which are
typically called object-oriented. The acceptance problem
typically coming together with a shift in paradigms and
the current state of standardization of object-oriented
extensions to VHDL will be explained in section four.

2. Modelling problems

A careful analysis of the problems is required until a
technique, which has proven to show good results in one
domain, is applied to another domain. This principle has to
be obeyed for object-oriented methods before recom-
mending them as panacea.

Considering the special objective of reusability, model-
ling cost arise during different phases of the design. Their
relevance and whether reusability is feasible certainly also
depends on the complexity of the models. It is further nec-

essary to identify those aspects of the design which shall
be subject to re-use.

Table 1 structures these questions w.r.t. the modelling
phases and the level of abstraction of the respective mod-
els. The modelling phases and their particular problems
will be explained in the following.

2.1. Initial modelling cost

In this taxonomy initial modelling cost covers all cost
arising in the specification phase of a particular model
until it is accepted without syntactical and obvious seman-
tic and functional errors by an analyser (simulator). The
task starts with the interpretation and analysis of a specifi-
cation, which may be informal, covers structuring and
coding and ends with the fixing of syntactical, semantic
and functional errors. The result is a baseline model of
further design phases.

The initial modelling cost depends not just on the target
to be modelled and the user friendliness and equipment of
the work-place, but also on how well the modelling lan-
guage fits the application, the objects to be modelled and
the level of abstraction. The better the language fits the
problem, the less code needs to be written; the modelling
productivity increases. Another factor is the organization
of and extent to which previously acquired design know-
how can be exploited.

2.2. Cost of maintenance

Typically after the initial modelling phase some distur-
bances occur requiring changes of the initial model. These
include e.g. changes of the specification, functional errors
detected late or changes of constraints. These changes
require to get acquainted with the model and to implement
the modifications in such a way that exclusively the
intended changes are made but no others. In particular it is
necessary to minimize the impact of the amendments to
other members of the design team. The effort depends on
the structure and documentation of the initial model, but
also on the structuring capabilities of the hardware
description language used. An extensive encapsulation of
data and functionality and the avoidance of having to con-
sider the impact of local changes in non-local entities
helps to increase productivity.

2.3. Cost of re-use

Re-use of models is certainly an important aspect to
increase modelling productivity. Re-use is in particular in
the following situations advantageous [4]: frequently used
modules, e.g. memories; standard functionality, e.g. proto-
cols; evolutionary design (about 80% of all designs are re-
designs). A re-use concept for such components has been
presented in [3]. The components are supplemented by the
support of the phases of the design concept. As correctly
stated in [4], a pure re-use of an existing module does not
achieve any added value. I.e. for innovations, the modules

Table 1: Importance of modelling cost and re-use 1

initial spec. system subsystem cell level

initial modelling cost moderate high moderate low

maintenance cost moderate high high low

cost of re-use moderate high high low

cost of model disposal n.a. n.a. high high

level of re-use very low moderate high very high

have to be adaptable to e.g. new technologies or extended
functionality. Technology migration can be achieved by
synthesizable models. A certain flexibility in the applica-
tion can be gained by parameterized models, however, it is
limited if the basic functionality of the model needs to be
extended or modified.

An analysis of the cost of re-use is required in order to
decide whether the re-use of a model for a certain applica-
tion is feasible. The cost is composed of the additional
cost of a reusable model compared to a non-reusable
model. This includes the effort for better quality assurance
measures and possibly increased cost of more flexible
modelling. Secondly, cost of re-use includes the cost of
actually reusing a model. This covers the search for the
required model, the necessary modifications for the actual
purpose and the possibly increased hardware cost which is
due to overhead compared to an optimized full custom
model.

2.4. Cost of model disposal

At first glance it may sound strange to think about a
disposal problem in the context of models. Cost of dis-
posal here is cost of pruning the repertoire of maintained
models inside an organisation. Such situations can arise if
e.g. software licences or hardware maintenance contracts
cannot be cancelled because they are needed to maintain,
update etc. design data including models. It is realistic to
assume that many systems need to be supported although
they are technically obsolete just because they are required
to fulfil long term delivery contracts of certain ICs.

Disposing these models requires an inventory where
these models are used and a replacement of the model
instances by functionally equivalent alternatives. As in the
other cost domains getting acquainted with the models and
their modification is part of the disposal cost.

2.5. Levels of complexity

The level of complexity of a model certainly has a
major impact on the modelling cost and the feasibility of
reusing such a model. Rather than defining the complexity
of the different levels in absolute terms, e.g. number of
equivalent logic gates, it is more appropriate to define a

1. This first estimation will be refined in course of the ESPRIT OMI
project REQUEST.

generic taxonomy of complexity which is independent of
the current integration capabilities of microelectronics
technology. While the number of gates which today build
a complete system will be needed for a subsystem in few
years, the generic characteristic of a system to be com-
posed of subsystems is time invariant.

2.6. Initial specification

Each design process with the exception of minor re-
designs will start with the capture of the interfaces, con-
straints and global functionality of the system. In many
cases this specification is not yet based on a hardware
description language. This model is the interface between
marketing/customer and designer.

2.7. System modelling

The next step of the design is the formal specification
of the system behaviour in terms of a hardware description
language. The result is a simulatable, but in general not
yet synthesizable specification. Different specification
mechanisms are often used to create the model or parts of
the system, e.g. state transition diagrams, time diagrams
etc. The model consists of one or more behavioural level
processes. It is subject to be validated by simulation and
builds the baseline of the next design step, the structural
decomposition into subsystems and their communication.

2.8. Subsystem modelling

A subsystem comprises a major functional unit of a
system. Again different methods may be used to generate
the models. In contrast to system models, however, the
probability of reusing subsystem models is much larger.
Different combinations of cores and periphery subsystems
may be useful for different applications and a value addi-
tion may be created simply by new combinations of sub-
systems into systems. In order to enhance the reusability,
functional modifications should be possible at low cost
and the functionality should be completely encapsulated
to support to get easily acquainted with the model. A
methodology for behavioural component re-use based on
encapsulation of the functionality has been presented in
[5]. In many cases subsystems will be modelled for re-use
from the beginning. Even if not achievable with current
synthesis technology, subsystem models should be tar-
geted to synthesizability.

2.9. Cell modelling

The basic building blocks targeted during logic synthe-
sis and technology mapping are standard cell models. The
functional modelling of these cells is straight forward. The
maintenance is limited to the (semiautomatic) characteri-
zation of new processes and the adaptation to new design
frameworks. Of course these cells are only designed for
re-use, however, the effort to really re-use them is minimal
due to their simple functionality. Furthermore the cell re-
use is usually done by tools rather than by designers.

2.10. Best gain domains of re-use

From the previous ideas about the different importance
of modelling cost and the relevance of re-use at the differ-
ent levels of complexity it can easily be concluded, that
the reductions in cost of re-use at the subsystem level are
most promising. Subsystems are likely to be re-used,
hence they inhibit the potential of significant total design
efficiency increase. At the same time, the cost of reusing
subsystems is regarded high because they are functionally
complex, expensive in initial modelling, shared in design
teams and subject to functional modifications and technol-
ogy migrations. Additionally applying new tools and
design methodologies to this level is a natural extension of
the bottom up evolution of the design automation process.

From the modelling efficiency point of view, a reduc-
tion in cost and development time of the initial specifica-
tion is also of high priority and their suitability for
efficient re-use is very important.

3. Object-oriented techniques

The result of the analysis of modelling cost as given in
section two suggests to check to what extent modelling
cost can be reduced by applying object-oriented methods
to hardware design.

3.1. Introduction

The fundamental concept of object-oriented program-
ming is a system of communicating objects. Each object is
characterized by attributes whose values define the state of
the object. The attributes’ values can be modified by a rep-
ertoire of methods. The communication amongst the
objects is done by invoking respective methods of the tar-
get object. Object-oriented programming techniques are
usually characterized with buzz-words:class, inheritance,
object, polymorphism, method, encapsulation and mes-
sage passing.

Objects are instances of a class. Inheritance allows to
create a class hierarchy in which common features of sev-
eral classes are specified in a parent class. This class hier-
archy and the inheritance concept allows to specialize and
generalize objects. Both support the re-use of models. Cre-
ating variants of objects in non-object-oriented modelling
techniques is usually done by copy, modify and paste. This

results in a multitude of versions which differ in details
only, contain a lot of redundancy and are difficult to
administrate. In particular problems occur when modifica-
tions are needed in parts of the models which are common
to all different versions. The consistency of the model
database can only be maintained at high cost and risk,
because such modifications need to be made in many
models and it is difficult to guarantee not to introduce side
effects. A clear advantage of a class hierarchy and an
inheritance concept is the better reusability of objects,
through the easier administration of the version multitude.

Polymorphism is the capability of an object-oriented
language to handle several versions of a method, i.e. oper-
ations in different classes of a class hierarchy, with the
same name. In contrast to the VHDL type of operator -
overloading the particular instance of the method to be
invoked is determined at run time of the model (late bind-
ing). The criterion for this selection is the actual class of
the target object. In VHDL operator-overloading the bind-
ing is done statically at elaboration time depending on the
number of parameter associations, the types and order of
parameters, the names of formal parameters and the return
type of function calls. This early binding does neither
allow to dynamically compute the target object during run
time nor to have non-static parameter types.

Assuming one has to design a modular instruction set
architecture which supports several classes of instructions
and address modes. All instruction classes are defined in a
class hierarchy as subclass of a generalised classinstruc-
tion. The instruction counter addresses an object which is
an instance of a class being derived frominstruction. All
objects of class instruction provide the methodexecute.
Invoking this method of the actual instruction being
addressed by the instruction counter would result in the
execution of the particular instruction although all execu-
tion phases of the architecture would be started with the
same statement e.g.:execute (<instruction counter>). Any
later additions to the instruction set do not influence the
code of the control flow of the sequencer.

A similar realization in VHDL with different types of
each class of instructions and address modes is not possi-
ble, because overloading requires that the types of the pro-
cedure arguments need to be static during elaboration
time. Hence a single type instruction would have to be
defined which can accommodate all possible instructions.
Each extension of the instruction set and each new address
mode would require an update of this type and -even
worse- of all references to this type. It can be concluded
that the more efficient extensibility of polymorphic meth-
ods and objects would be advantageous in evolutionary
hardware design.

As stated earlier, an object can be viewed as a finite
state machine with state attributes (instance variables) and
state transition and output functions (methods). The
instance variables can be accessed by sending externally
visible methods of the object to the target. If this is the
only possible access, the instance variable is encapsulated,
since the client of the object does not need insight into the

internal structure of the object. This encapsulation not
only provides an abstraction, but reduces implementation
dependencies between objects to the set of visible meth-
ods.

3.2. Objects in hardware design

It is the intention of this section to elaborate what are
suitable objects in hardware design for the application of
object-oriented modelling methods. As stated earlier,
physical objects have traditionally been the subject of the
design process. This has been obvious, because each sin-
gle design step has been a bottom-up design step, even in a
globally top-down design flow. This statement is at least
valid for the lower levels of design where a design step is
usually a structural composition of predefined elements.
These may be available partly in abstract form, e.g. as
DesignWare, CAD-algorithm etc. Even a RT-level model
is a structural model of elements of a fixed repertoire of
predefined operators.

An object-orientation of a design flow which is based
on physical components suggests to consider VHDL enti-
ties as objects. They would have to be provided with the
respective capabilities of object-oriented programming.
Inheritance could support the derivation of one entity from
another with the addition of new services (methods).
Encapsulation could be supported by an additional inter-
face concept to allow for the invocation of methods. Poly-
morphism would allow to dynamically activate different
entities during run time. A respective approach has been
proposed [8],[9] as part of the US RASSP program.

It is an algorithmic model which for the first time
allows a designer to specify a circuit without any forecast
of the later used hardware components. It is not the goal of
synthesis to map the algorithmic specification into an iso-
morphic hardware structure; the algorithm is rather a pos-
sible example solution for the design problem. Hence the
subjects of the intellectual design process from the algo-
rithmic level upward are not existing hardware compo-
nents, but rather abstract concepts for solving the design
problem. This point of view requires a radical change in
paradigms, since now a real top-down design process is
possible. The objects of the design process are now
abstract processes running on a simulation engine. Each
process is characterized by its state space and its I/O
behaviour. The later hardware structure is not implied by
the structure of the algorithmic specification, but may be
chosen freely as long as the functional correctness is main-
tained. This freedom is currently not yet fully exploited by
high-level synthesis tools, but could lead to better manu-
ally optimized results even today.

An object-orientation of this view of the design process
would require to support object-oriented modelling of data
structures. Objects are abstract containers, which can
accommodate extensible (inheritance, class hierarchy)
data types. The values of these containers could be manip-
ulated via method calls (messages). An encapsulation

could be achieved by an exclusive access via visible meth-
ods [12].

In conclusion one can state that there are at least two
different paradigms of object-orientation in hardware
design. The evolutionary design is based on existing phys-
ical or synthesizable design objects and suggests an
encapsulation based on structure [8],[9]. The implementa-
tion is the reusable intellectual property right here. The
shift in paradigms required from the designer is moderate,
because he/she can stay with the traditional bottom-up
way of designing. If, however, a real top-down design is
envisaged, which does not utilise existing physical or syn-
thesizable hardware components, a shift in paradigm
towards a data type driven object-orientation provides
more abstract modelling power. Here abstract algorithms
and data concepts for solving the design problem are the
reusable intellectual property rights. An increase in pro-
ductivity is expected during the specification and high
level design phase. Due to the consistency between this
paradigm and the object-orientation as used in software-
engineering, a good support of hardware/software code-
sign is expected. A respective concept has been developed
by Oldenburg University and OFFIS [12].

4. Acceptance of new design techniques

Introducing new design techniques and CAD tools only
seldom lead to an instantaneous increase in designer pro-
ductivity; in contrast, about 70% of the designers expect a
temporary decrease of productivity [1]. The extent and
duration of this decrease compared to the expected
medium and long term increase are important parameters
in the decision process whether to introduce changes in
the design process.

In many cases a compromise between a smooth transi-
tion and an optimal final goal is sought. An example is the
success ofC++ compared toSmalltalk. Smalltalk had
been developed and implemented in a research environ-
ment. Smalltalk may be regarded as the mother of object-
oriented programming languages. It was a complete new
development implementing the concepts of object-orienta-
tion in their purest form. Still Smalltalk could not compete
with C++ in software industry. A reason is certainly the
close relationship between theindustry standard C and
C++ which promises low transition cost and compatibility.
This statement is supported by a survey of the US EDA-
user organisation USE/DA [1] according to which 75% of
the designers mention insufficient compliance with stand-
ardized hardware description languages as reason for
changing a CAD vendor.

Several languages exist in the domain of hardware
specification which partly support object-oriented model-
ling [6]. One of them is SDL-93 [13] which is CCITT
standard and used in the telecommunication domain.
Because of this limited user community it is insufficiently
supported by tools. In particular a link to further synthesis
steps is missing. Hence SDL only supports the specifica-
tion phase. In the course of the design process the designer

has to use other languages. An automatic translation of
SDL models into VHDL has to fail due to some concepts
of SDL, e.g. the dynamic creation of processes [6]. Exist-
ing translation systems, like the one described in [14],
therefore support only SDL-subsets. This example demon-
strates that just the standardization itself does not provide
a sufficient user base which finances the development and
maintenance of the required tool set.

Hence an object-oriented hardware description lan-
guage needs to be standardized and target a large user
community to be successful. A standardization of object-
oriented extensions can be possible if they are compatible
with the fundamental concepts of VHDL, allow for an
upward compatibility of models and the cost introduction
and tool development is less than the expected gain in pro-
ductivity.

Additionally it is important to understand that an
object-oriented modelling language on itself can only pro-
vide a limited gain. Its full power can only be utilised if
linked with an adapted design methodology, as proposed
in the ESPRIT project 8641, INSYDE [10].

Both mentioned proposals [8],[9],[12] use constructs of
Ada [11] and have links to the analysis method by Booch
[7]. A detailed comparison of both proposals has been
published in [15]. They are currently under discussion in
the respective standardization committee1.

5. Summary and conclusion

This paper has analysed the suitability of object-ori-
ented modelling techniques as a mean for productivity
increases in the domain of hardware system design. The
modelling cost during different phases of design has been
investigated. The largest possible gain is expected in the
initial specification and debugging phase of complex sys-
tems as well as in the re-use of subsystems.

As an important decision criterion for the kind of lan-
guage extensions the subject of object-orientation has
been elaborated. One kind of objects could be physically
existing objects, which could be modelled in an abstract,
encapsulated and reusable way and hence support a bot-
tom-up design approach. On the other hand, object-orien-
tation could be applied to abstract concepts if these are
synthesizable down to the circuit level. In the first case the
re-used intellectual property right is the physical imple-
mentation and an increase in productivity is to be expected
during the implementation phase. In the second case, con-
cepts based on abstract data types are subject of re-use and
a more efficient specification and high level design phase
is expected.

Both kinds support better team work and isolation of
design task by encapsulation. Further they help to solve
the administration of model data bases due to their inherit-
ance concepts. They are currently discussed by the IEEE

1. DASC Study Group on OO Extensions to VHDL

VHDL standardization committee. For their acceptance
and success the standardization and the support by a large
designer community is essential. The ESPRIT OMI
project 20616, REQUEST, is going to participate in this
discussion in order to represent the partners’ requirements.
Furthermore prototype tools will be developed as part of
REQUEST to support and assess the new design method-
ology and language.

6. Literature

[1] USE/DA (User Society for Electronic Design Automation).
Results of the 1993 USE/DA Standards Survey. Feb., 1994

[2] R. A. Bergamaschi. Productivity Issues in High-Level
Design: Are Tools Solving the Real Problems? 32nd
Design Automation Conference, San Francisco, 1995

[3] V. Preis, R. Henftling, M. Schütz, S. März-Rössel. A Reuse
Scenario for the VHDL-Based Hardware Design Flow.
Proceedings of the EURO-DAC ’95 with EURO-
VHDL ’95. IEEE Computer Society Press, 1995

[4] E. Girczyc, S. Carlson. Increasing Design Quality and
Engineering Productivity through Design Re-use. 30th
Design Automation Conference, Dallas, 1993

[5] P. Kission, H. Ding, A. A. Jerraya. VHDL Based Design
Methodology for Hierarchy and Component Re-Use.
Proceedings of the EURO-DAC ’95 with EURO-
VHDL ’95. IEEE Computer Society Press, 1995

[6] G. Schumacher, W. Nebel. Survey on Languages for
Object Oriented Hardware Design Methodologies.
Current Issues in Electronic Modeling, Issue 1, Kluwer
Academic Press , 1995

[7] G. Booch. Object oriented design: with applications.
Redwood City, CA, Benjamin/Cummings, 1991

[8] B. M. Covnot, D. W. Hurst, S. Swamy. OO-VHDL An
Object Oriented VHDL. Proceedings of the VHDL
International User’s Forum, 1994

[9] S. Swamy, A. Molin, B. M. Covnot. OO-VHDL
Extensions to VHDL.IEEE Computer, Oct. 1995

[10] E. Holz, D. Witaszek, M. Wasowski, S. Lau, J. Fischer, P.
Roques, L. Cuypers, V. Mariatos, N. Kyrloglou.INSYDE
Integrated Methods for Evolving System Design ESPRIT:
P8641. Technology Assessment. Report. Alcatel Bell
Telephone, Dublin City University, Humboldt Universität
zu Berlin, Intracom S.A., Verilog S.A., Vrije Universiteit
Brussel

[11] ISO/IEC 8652:1995(E)Ada Reference Manual, Language
and Standard Libraries, Version 6.0 1994

[12] G. Schumacher, W. Nebel. Inheritance Concept for Signals
in Object-Oriented Extensions to VHDL.Proceedings of
the EURO-DAC ’95 with EURO-VHDL ’95. IEEE
Computer Society Press 1995

[13] CCITT Revised Recommendation Z.100 CCITT
Specification and Description Language (SDL), 1992

[14] W. Glunz.Hardware-Entwurf auf abstrakten Ebenen unter
Verwendung von Methoden aus dem Software-Entwurf.
PhD thesis. (in german) Paderborn/München, 1994

[15] W. Nebel, G. Schumacher. Konzepte objektorientierter
Hardware-Modellierung. Invited talk: 2. GI/ITG/GME-
Workshop "Hardwarebeschreibungssprachen und Model-
lierungsparadigmen", Darmstadt, Feb. 15-16, 1996

	CDROM Home Page
	1996 Home Page
	EURO-DAC96 Home Page
	Front Matter
	Table of Contents
	Session Index
	Author Index

