
Techniques for the Power Estimation of Sequential Logic Circuits
Under User-Specified Input Sequences and Programs

José Monteiro Srinivas Devadas
Department of EECS

MIT, Cambridge, MA 02139

Abstract— We describe an approach to estimate the average
power dissipation in sequential logic circuits under user-specified
input sequences or programs. This approach will aid the design
of programmable controllers or processors, by enabling the esti-
mation of the power dissipated when the controller or processor
is running specific application programs.

Current approaches to sequential circuit power estimation are
limited by the fact that the input sequences to the sequential circuit
are assumed to be uncorrelated. In reality, the inputs come from
other sequential circuits, or are application programs.

In this paper we show how user-specified sequences and pro-
grams can be modeled using a finite state machine, termed an
input-modeling finite state machines or IMFSM. Power estima-
tion can be carried out using existing sequential circuit power
estimation methods on a cascade circuit consisting of the IMFSM
and the original sequential circuit.

I. INTRODUCTION

Average power dissipation estimation is an important problem that
has become more relevant with the growing need for low-power elec-
tronic circuits. A comprehensive review of existing power estimation
techniques is presented in [6]. Most of the power estimation tech-
niques available today are restricted to combinational circuits, i.e.,
circuits without memory. Exact approaches and efficient approxi-
mate approaches to sequential power estimation have been presented
recently [9].

One of the limitations of the approach of [9] is that the input se-
quences to the sequential circuit are assumed to be uncorrelated. In
reality, the inputs come from other sequential circuits, or are applica-
tion programs. A high degree of correlation could exist in the applied
input sequence. This correlation could be temporal, i.e., consecutive
vectors could bear some relationship, or could be spatial, i.e., bits
within a vector could bear some relationship.

In this paper, we describe an approach to estimate the average
power dissipation in sequential logic circuits under user-specified in-
put sequences or programs. Both temporal and spatially correlated
sequences can be modeled using a finite state machine, termed an
input-modeling finite state machine or IMFSM. Power estimation can
be carried out using existing sequential circuit power estimation meth-
ods (e.g., [9]) on a cascade circuit consisting of the IMFSM and the
original sequential circuit.

Our techniques are applicable to estimating the switching activ-

ity, and therefore power dissipation, of processors running application
programs. We do not, however, model the power dissipated in external
memory (e.g., DRAM, SRAM), or caches. Our approach is useful in
the architectural and logical design of programmable controllers and
processors, because it enables the accurate evaluation of power dissi-
pated in a controller or processor, when specific application programs
are run.

Recent work in power analysis of embedded software [8] uses a
different approach to estimate the power dissipated by a processor
when a given program is run on the processor. An instruction-level
energy model has been developed, and validated on the 486DX2. The
advantages of this approach are that it is efficient and quite accurate
and can take into account the power dissipated in the entire system,
i.e., processor + memory + interconnect. A disadvantage is that each
different architecture or different instruction set requires a significant
amount of empirical analysis on implemented hardware to determine
the base cost of individual instructions.

The model we use to relate switching activity to power dissipation
is briefly described in Section II. In Section III we briefly describe the
approach to sequential power estimation originally described in [9].
In Sections IV-A, IV-B and V, we describe how completely-specified
input sequences, incompletely-specified input sequences and assembly
programs, respectively, can be modeled using IMFSMs. Preliminary
experimental results are presented in Section VI.

II. A POWER DISSIPATION MODEL

Under a simplified model, the energy dissipation of a CMOS circuit
is directly related to the switching activity.

In particular, the three simplifying assumptions are:
� The only capacitance in a CMOS logic-gate is at the output node

of the gate.
� Either current is flowing through some path from VDD to the

output capacitor, or current is flowing from the output capacitor
to ground.

� Any change in a logic-gate output voltage is a change from VDD

to ground or vice-versa.
All of these are reasonably accurate assumptions for well-designed

CMOS gates [4], and when combined imply that the energy dissipated
by a CMOS logic gate each time its output changes is roughly equal
to the change in energy stored in the gate’s output capacitance. If
the gate is part of a synchronous digital system controlled by a global
clock, it follows that the average power dissipated by the gate is given
by:

Pavg = 0:5�Cload � (V 2
dd=Tcyc)�E(transitions) (1)

where Pavg denotes the average power, Cload is the load capaci-
tance, Vdd is the supply voltage, Tcyc is the global clock period, and
E(transitions) is the expected value of the number of gate output
transitions per global clock cycle [5], or equivalently the average num-
ber of gate output transitions per clock cycle. All of the parameters in

Combinational Logic

Present States Next States

Clock

Primary
Inputs Outputs

Primary

 FF

Fig. 1. A Synchronous Sequential Circuit

Next State
 Logic

.

.
I01

I0M

.

.

.

.

NS1

NSN

.

.

.

.

It 1

It M

.

.

PSN

PS1

PS2

NS2

Combinational

 Power

 Estimation

Fig. 2. Modeling Correlation in a Sequential Circuit

(1) can be determined from technology or circuit layout information
except E(transitions), which depends on both the logic function
being performed and the statistical properties of the primary inputs.

Equation (1) is used by the power estimation techniques such as
[3], [5] to relate switching activity to power dissipation.

III. A STRATEGY FOR SEQUENTIAL CIRCUIT POWER ESTIMATION

The sequential logic estimation techniques summarized here were
originally presented in [9].

Power and switching activity estimation for sequential circuits is
significantly more difficult than combinational circuits because the
probability of the circuit being in any of its possible states has to be
computed. As an example, consider the sequential circuit of Figure 1.
When a vector pair hv1; v2i is applied to the combinational logic, it
is composed of a primary input part and a present state part, namely
hi1@s1; i2@s2i. Given i1@s1, the next state s2 is uniquely deter-
mined by the functionality of the combinational logic. This correla-
tion between the vector pairs has to be taken into account in accurate,
sequential switching activity estimation.

A. Modeling Correlation

To model the correlation between two vectors in a sequential cir-
cuit, combinational estimation methods (e.g., [3], [5]) have to be
augmented. This augmentation is summarized in Figure 2.

The combinational logic power estimator receives two sets of in-
puts, namely hI0; Iti for the primary inputs and hPS; NSi for the
present state lines. Given I0 and PS, NS is determined by the func-
tionality of the combinational logic. This is modeled by the next state
logic.

The configuration of Figure 2 implies that the switching activity can
be determined given the vector pair hI0; Iti for the primary inputs and
PS for the state lines. Therefore, to compute the average switching
activity, we require the transition probabilities for the primary inputs
and the static probabilities for the present state lines.

B. State and Line Probability Computation

The static probabilities for the present state lines marked PS in
Figure 2 are also correlated. Knowledge of present state probabilities
as opposed to present state line (PS) probabilities is required. The
state probabilities depend on the connectivity of the State Transition
Graph (STG) of the circuit and can be computed using the Chapman-
Kolmogorov equations for discrete-time Markov Chains [7]. However,
this can be very expensive.

An efficient and accurate approximation strategy is to ignore this
correlation and directly determine present state line probabilities [9].
These probabilities are directly computed by solving a nonlinear sys-
tem of equations obtained from the next state logic equations.

Experiments on a wide variety of benchmarks indicate that the
approximation methods are accurate to within 5%.

C. Primary Input Probability Assumption

In the experiments of [9], it was assumed that the transition prob-
abilities of the primary inputs were given and that the primary inputs
were uncorrelated. This is not a tenable assumption when the sequen-
tial circuit is embedded within a larger circuit and/or receives inputs
from an instruction memory. In the next two sections we will describe
how the transition probabilities of the primary inputs and correlation
between primary inputs can be modeled using input-modeling finite
state machines (IMFSMs).

IV. INPUT SEQUENCES

We consider the problem of estimating power dissipation of a se-
quential circuit when completely-specified or incompletely-specified
sequences are applied to the circuit.

A. Completely-Specified Input Sequences

Assume that we are given a sequential circuitM . We consider the
problem of estimating the average power dissipation in M upon the
application of a periodic completely-specified input sequence C. An
easy way of doing this is to perform timing simulation on the circuit
for the particular vectors, and measure the activities at each gate.
However, this will become very time-consuming for incompletely-
specified vector sequences.

Given the input sequence C = fc1; c2; : : : ; cNg, we specify the
State Transition Graph (STG) of an autonomous input-modeling finite
state machine (IMFSM), call it A, as follows. A has N states, s1

through sN . For 1 � i < N we have a transition from si to si+1. We
also have a transition from sN to s1. A is a Moore machine, and the
output associated with each state si is the corresponding completely-
specified vector ci. An example of a four-vector sequence with each
vector completely-specified over three bits is given in Figure 3(a), and
the STG of the derived IMFSM is shown in Figure 3(b).

A logic-level implementation of A can be obtained by arbitrarily
assigning distinct codes to the states si; 1 � i � N , using dlog2 Ne
bits. The encoding does not affect the power estimation step.1

1We will ignore any switching activity or power dissipation inA during the
estimation step. Hence the encoding does not affect the estimation of the power
dissipated inM .

111

110

010

011

111

110

010

011

(a) (b)

s1

s2

s3

s4

Fig. 3. Example of Autonomous IMFSM for a Four-Vector Sequence

Primary
Inputs Outputs

Primary

 M

 A/B

FFFF

IMFSM

Fig. 4. Cascade of IMFSM and Given Sequential Circuit

In order to estimate the average power dissipated in M upon the
application of a given completely-specified input sequence C, the
power estimation strategies reviewed in Section III are applied to the
cascade A ! M depicted in Figure 4. Since the cascade A ! M
does not have any external inputs, no assumptions regarding their
probabilities need to be made (cf. Section III-C).

B. Incompletely-Specified Input Sequences

We consider the problem of estimating the average power dissipa-
tion in M upon the application of a periodic incompletely-specified
input sequence I . By incompletely-specified we mean that the unspec-
ified inputs can take on either the 0 or 1 value with known probability.

As an example, consider the incompletely-specified sequence

11-
-1-
-01
-11

Completely-specified sequences that can possibly be applied toM are

110 111 110 110
010 111 010 111
001 101 001 001
011 111 011 011

among many others.
We are given the input sequence D = fd1; d2; : : : ; dNg, over

inputs p1; p2; : : : ; pM . We will assume that the - entries for any
pj are uncorrelated. The - entries for each pj have a user-specified
probability of being a 1 denoted by prob(pj = 1).

(a) (b)

11−

−1−

−01

−11

s1

s2

s4

s3

−−0/
110

−−1/
111

0−−/
001

1−−/
101

1−−/
111

0−−/
011

1−1/
111

0−0/
010

0−1/
011

1−0/
110

Fig. 5. Example of Mealy IMFSM for a Four-Vector Sequence

We specify the State Transition Graph (STG) of an input-modeling
finite state machine (IMFSM), call it B, as follows. B has N states,
s1 through sN , M primary inputs p1; p2; : : : ; pM , and M primary
outputs o1; o2; : : : ; oM . For 1 � i < N we have a transition
from si to si+1 regardless of the values of the pj’s. We also have a
transition from sN to s1 regardless of the values of the pj’s. However,
B is a Mealy machine, and the output associated with each transition
si ! si+1 is a logical function dependent on the corresponding di.
An example of the incompletely-specified four-vector sequence used
above is reproduced in Figure 5(a), and the STG of the derived IMFSM
is shown in Figure 5(b). Since d1 = 11-, we have o1 = 1, o2 = 1 and
o3 = p3 for the transition from s1. Similarly for the other transitions.

As before, a logic-level implementation of B can be obtained by
arbitrarily assigning distinct codes to the states si; 1 � i � N , using
dlog2 Ne bits. The encoding does not affect the power estimation step.

In order to estimate the average power dissipated in M upon the
application of a given incompletely-specified input sequence C, the
strategies reviewed in Section III are applied to the cascade B !M .
The given static or transition probabilities prob(pj = 1) of the primary
inputs p1; p2; : : : ; pM to B are used to estimate the power. Note that
the probabilities for all inputs to M are automatically derived.

V. INPUT ASSEMBLY PROGRAMS

In many applications, a processor receives a set of instructions as
an input. An important problem is to estimate the power dissipated
in the processor when it runs a given application program or a set of
application programs. In this section, we describe ways of modeling
an input assembly program as a IMFSM so conventional sequential
estimation methods can be used.

For this purpose we will focus on a simple instruction set for a
RISC processor �0, which is a subset of the instruction set for the
DEC-AlphaTM microprocessor. Table I gives a description of the �0

instruction set.
Given an arbitrary�0 program, we will derive a logic-level IMFSM

B which is cascaded with the processor as illustrated in Figure 4 to
estimate average power consumption when the program runs on the
processor. Our model for the processor is illustrated in Figure 6. The
processor is a sequential circuit consisting of a register file, arithmetic
units, and control logic. It receives as input an instruction stream and
reads and writes an external memory.

Format h31 : 26i h25 : 21i h20 : 16i h15 : 13i h12i h11 : 5i h4 : 0i

Operate Opcode Ra Rb 000 0 Function Rc

Operate Opcode Ra Literal 1 Function Rc

with Literal
Memory Opcode Ra Rb disp:m

Branch Opcode Ra disp:b

Instruction Opcode Function Operation

add 0x10 0x20 Rc hRai + hRbijLit

and 0x11 0x00 Rc hRai ^ hRbijLit

or 0x11 0x20 Rc hRai _ hRbijLit

sll 0x12 0x39 Rc hRai SLL hRbijLit5:0

srl 0x12 0x34 Rc hRai SRL hRbijLit5:0

sub 0x10 0x29 Rc hRai � hRbijLit

xor 0x11 0x40 Rc hRai � hRbijLit

cmpeq 0x10 0x2D if hRai = hRbi, Rc 1, else Rc 0
cmple 0x10 0x6D if hRai � hRbi, Rc 1, else Rc 0
cmplt 0x10 0x4D if hRai < hRbi, Rc 1, else Rc 0

ld 0x29 EA hRbi+ SEXT (disp:m); Ra MEMORY [EA]

st 0x2D EA hRbi+ SEXT (disp:m); MEMORY [EA] hRai

br 0x30 Ra PC; PC hPCi+ 4 � SEXT (disp:b)

bf 0x39 Update PC; EA hPCi+ 4 � SEXT (disp:b),
if hRai = 0; PC EA

bt 0x3D Update PC; EA hPCi+ 4 � SEXT (disp:b),
if hRai 6= 0; PC EA

TABLE I
�0 INSTRUCTION SET

FF

 Register File
 ALUs
 Control Logic
Program Counter

 Instruction
 Memory

PC

IR
 Data
 Memory

ld

st

Fig. 6. Processor Model

A key assumption that we make is that data values loaded from
memory are random and uncorrelated. Therefore, the effect of a
sequence of loads to, and stores from the same location in memory is
not modeled. If we did not make this assumption then we would have
to deal with the entire state space of the memory – a very difficult
task. Note that in this paper we are also not concerned with the power
dissipated in the external memory.

We will now describe how to generate a IMFSM given an arbitrary
program comprised of a sequence of assembly instructions. Let the
program P be a sequence of instructionsP = fr1; r2; : : : ; rNg. The
STG of the Moore IMFSM Q has N states. For each of the different
classes of instructions in Table I we show how to derive the STG of
Q.

� Operate: If ri is an Operate instruction (e.g., add, cmplt) we

assign ri as the output of state si. si makes an unconditional
transition to si+1.

� Branch: If ri is a branch instruction, we determine the branch
target instruction, call it rj . State si makes a transition to state
sj if variable vi = 1, and a transition to state si+1 if vi = 0. The
probability of vi being a 1 will be determined by preprocessing
the program P as described later in the section. The output
associated with si is ri.

� Memory: If ri is a Memory instruction, the output associated
with si is ri. On a load instruction (ld), Ra is loaded with a
random value from memory. The inputs to the processor from
memory will have certain probabilities associated with 0 or 1
values and we elaborate on this next. Since we are treating the
data memory as an external memory, a store instruction (st) is
essentially a null operation.

We now elaborate on the probabilities of the data inputs from
memory and the probabilities of the branch variables (vi’s). Branch
prediction is a problem that has received some attention in the compiler
world [1]. The probabilities of the branch variable vi = 1 corresponds
to the probability that a branch is taken on the execution of instruction
ri, and this probability can be determined, at least approximately, by
preprocessing the program P .

For example, if we have a constant iteration loop withN iterations,
the probability of staying in the loop is computed as N

N+1 and the
probability of exiting the loop as 1

N+1 . If comparisons between data
operands are used to determine branch conditions, the probability of
the comparison evaluating to a 1 assuming random data operands can
be calculated. For example, the probability that a � b is 0:5, and

s1

s2

s3

s4

(b)

s5

s6

s8

s9

s10

s11

s12

s7

vv

ld r1,r0,0x1000

add r3,r0,0

add r4,r0,0

cmplt r4,r1

bf done

add r3,r3,r2

add r4,r4,1

st r3,r0,0x2000

ld r2,r0,0x1010

and r0,r0,0

br loop

br init

(a)

 and r0, r0, 0
 ld r1, r0, 0x1000
 ld r2, r0, 0x1010
 add r3, r0, 0
 add r4, r0, 0
 cmplt r4, r1
 bf done
 add r3, r3, r2
 add r4, r4, 1
 br loop
 st r3, r0, 0x2000
 br init

init:

loop:

done:

Fig. 7. Example of Mealy IMFSM for Assembly Program

the probability that a + b > c is 0:75. These probabilities can be
computed using Binary Decision Diagrams [2].

Additionally, we can run the program P with several different
inputs, and obtain the information regarding the relative frequency
with which each conditional branch is being taken versus not being
taken. This relative frequency is easily converted into the probabilities
for the vi’s.

As before once the STG of the IMFSM has been derived and
encoded, estimation can be carried out using the topology of Figure 4.
An example assembly program for the processor �0 is given in figure
7(a) and the STG of its corresponding IMFSM is shown in figure 7(b).
The average power dissipation of the processor when executing the
program is computed by the estimation method.

VI. PRELIMINARY EXPERIMENTS

In this section we present preliminary experimental results obtained
using the methods of Sections IV and V.

We will decouple ourselves from the particular combinational
power estimation strategy used. As described in Section III, any
strategy has to be able to:

1. model the correlation between applied vector pairs due to the
next state logic as shown in Figure 2,

2. use present state probabilities or approximate using line proba-
bilities, and

3. model the correlation in input sequences or programs while
computing primary input probabilities.

Item 3 has been the focus of this paper.
In Table II we present power estimation results on sequential cir-

cuits, of three different types, small machines synthesized from State
Transition Graph descriptions, larger controller circuits, and a small
processor similar to the �0. For each given sequential circuit or pro-
cessor, assuming uniform primary input probabilities, we compute the
power dissipation using the techniques of [9]. The power estimation
values assuming a clock frequency of 20MHz, a supply voltage of
5V and a unit delay model are given in the column UNIFORM-PROB,
together with the CPU time in seconds required for the computation
on a DEC-AXP 3000/500. For the first type of circuits (for which we
have a STG available) we built a transfer input sequence, i.e., an input
sequence that will traverse all states in the STG. For all sequential
circuits we generated a random input sequence. Given these input
sequences we construct a IMFSM using the methods of Section IV.
The corresponding power values and CPU time are given in columns
IMFSM-TRANSFER-SEQ and IMFSM-RAND-SEQ respectively. Similarly,
we use the techniques of Section V to obtain a IMFSM for 2 different
input programs for the �0 processor.

We compute the power dissipation of the cascade circuit consisting
of the IMFSM driving the sequential circuit or processor (cf. Figure
4) using the techniques of [9].

In Table III we give percentage errors of the present line proba-
bilities. For each sequential circuit and each random/transfer input
sequence we compute the static probabilities of the present state lines
and compare them with the static probabilities obtained by assuming
uniform primary input probabilities. Under min/max columns we give
the percentage error of the state line with minimum/maximum static
probability error. Under avg we give the average error over all present
state lines.

As can be seen from table II, the CPU time required to compute
the power for the cascaded circuit is not much more than for the
original circuit. However, the power estimation error for the first set
of circuits can be as high as 44%, implying that the uniform probability
assumption is unrealistic. Obtaining more accurate line probabilities
allows the final combinational power estimation to be more accurate.
Once accurate present state line probabilities have been computed a
variety of methods can be applied to estimate the power dissipated in
the logic.

For the processor example, huge errors occur. The first program
is a simple program which does not cause any activity in the majority
of the registers and in a large fraction of the combinational logic in
the processor. The difference between the average power dissipated
when this program is run, and when random inputs are assumed is
therefore very high. The second program is more complex, and it
causes greater activity and greater power dissipation. Note that for
the input programs to the processors we have assumed a random
distribution for data values, an assumption critiqued in Section VII.

VII. CONCLUSIONS, LIMITATIONS AND FUTURE WORK

Average power dissipation estimation for sequential circuits is a
difficult problem both from a standpoint of computational complexity,
and from a standpoint of modeling the correlation due to feedback
and correlation in input sequences. Previous approaches to sequential
circuit power estimation are limited by the fact that the input sequences
to the sequential circuit are assumed to be uncorrelated.

Circuit #gate #ff UNIFORM-PROB IMFSM-RAND-SEQ IMFSM-TRANSFER-SEQ

Name power cpu power % diff cpu power % diff cpu

bbtas 26 3 134 0.4 142 6.0 1.4 117 12.7 0.8
cse 136 4 454 13.5 473 4.2 15.5 510 12.3 15.6
keyb 174 5 587 17.5 479 18.4 23.4 577 1.7 21.7
kirkman 171 4 734 6.7 826 12.5 15.5 409 44.3 4.8
planet 333 6 2359 33.7 2158 8.5 129.7 2147 9.0 83.5
styr 318 5 1195 31.5 1175 1.7 46.6 1317 10.2 46.5
tbk 483 5 1835 81.7 1705 7.1 94.1 2084 13.6 101.0
train4 15 2 85 0.3 54 36.5 0.4 52 38.9 0.4

s298 119 14 441 2.5 331 24.9 8.1 N/A
s444 181 21 411 6.7 348 15.3 17.8 N/A
s526 193 21 529 5.3 423 20.0 13.9 N/A
s713 393 19 1176 333.7 1096 6.8 513.0 N/A
s1196 529 18 2674 174.2 2313 13.5 197.3 N/A

�0-prog1 144 75 965 4.3 N/A 26 97.5 13.4
�0-prog2 N/A 918 4.9 59.1

TABLE II
COMPARISON OF POWER DISSIPATION UNDER UNIFORM INPUT ASSUMPTION AND IMFSM COMPUTATION

Circuit IMFSM-RAND-SEQ IMFSM-TRANSFER-SEQ

Name min avg max min avg max

bbtas 8.1 15.7 22.4 7.3 20.3 31.7
cse 9.8 20.3 27.1 9.8 16.3 20.6
keyb 0.0 5.9 10.1 0.9 12.5 20.0
kirkman 26.9 39.6 49.3 27.1 39.7 49.3
planet 0.2 1.7 3.7 0.4 0.9 2.0
styr 8.0 20.2 29.7 13.8 19.0 22.5
tbk 1.3 3.7 5.4 0.4 12.6 17.7
train4 0.0 8.3 16.7 6.9 10.6 14.2

s298 0.0 4.9 9.5 N/A
s444 0.0 1.6 7.4 N/A
s526 0.0 2.9 12.8 N/A
s713 0.0 3.3 18.3 N/A
s1196 0.0 5.7 15.2 N/A

�0-prog1 N/A 0.0 2.3 49.2
�0-prog2 N/A 0.0 0.2 1.5

TABLE III
PRESENT STATE LINE PROBABILITY ERRORS

We showed how user-specified sequences and programs can be
modeled using a finite state machine, termed an input-modeling finite
state machines or IMFSM. Power estimation can be carried out using
existing sequential circuit power estimation methods on a cascade
circuit consisting of the IMFSM and the original sequential circuit.

Given input sequences or programs, we need to keep the IMFSM
description reasonably compact, in order to manage the computational
complexity of estimation. This implies that we need to make certain
assumptions, the primary one being that data values are assumed to
be uncorrelated. This assumption can be relaxed by using empirical
data for particular applications such as voice and video, and we are
currently looking at methods to derive this information automatically.
Finally, more work is required to improve the efficiency of available
sequential power estimation methods.

VIII. ACKNOWLEDGEMENTS

This research was supported in part by the Advanced Research
Projects Agency under contract DABT63-94-C-0053, in part by the
Portuguese “Junta Nacional de Investigação Cientı́fica e Tecnológica”
under project “Praxis” and in part by a NSF Young Investigator Award
with matching funds from Mitsubishi Corporation.

REFERENCES

[1] A. Aho, R. Sethi, and J. Ullman. Compilers Principles, Techniques
and Tools. Addison-Wesley, 1986.

[2] R. Bryant. Graph-Based Algorithms for Boolean Function Ma-
nipulation. IEEE Transactions on Computers, C-35(8):677–691,
August 1986.

[3] A. Ghosh, S. Devadas, K. Keutzer, and J. White. Estimation of
Average Switching Activity in Combinational and Sequential Cir-
cuits. In Proceedings of the 29th Design Automation Conference,
pages 253–259, June 1992.

[4] L. Glasser and D. Dobberpuhl. The Design and Analysis of VLSI
Circuits. Addison-Wesley, 1985.

[5] F. Najm. Transition Density, A Stochastic Measure of Activity in
Digital Circuits. In Proceedings of the 28th Design Automation
Conference, pages 644–649, June 1991.

[6] F. Najm. A Survey of Power Estimation Techniques in VLSI
Circuits (Invited Paper). IEEE Transactions on VLSI Systems,
2(4):446–455, December 1994.

[7] A. Papoulis. Probability, Random Variables and Stochastic Pro-
cesses. McGraw-Hill, 3rd edition, 1991.

[8] V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded
Software: A First Step Toward Software Power Minimization.
IEEE Transactions on VLSI Systems, 2(4):437–445, December
1994.

[9] C-Y. Tsui, J. Monteiro, M. Pedram, S. Devadas, A. Despain, and
B. Lin. Power Estimation for Sequential Logic Circuits. IEEE
Transactions on VLSI Systems, 3(1), June 1995. to appear.

	Compendium95 Home Page
	ISLPD95
	Table of Contents
	Session Index
	Author Index

