Gate-Level Smulation of Digital Circuits Using M ulti-Valued Boolean Algebras

Scott Woods

Giorgio Casinovi

School of Electrical & Computer Engineering
Georgia Institute of Technology
Atlanta, GA 30332-0250

Abstract

This paper describes an algorithmfor the simulation of
gate-level logic. Multiplelogiclevels are used to describe
thestate of each node. Each state correspondsto a different
voltagelevel, and the number of levelsto be used for a sim-
ulationisuser-defined. Thisfeaturesimplifiesconsiderably
the interface between a digital and an analog simulator. A
DC solver isincorporated to find theinitial operating point
of a circuit before a transient analysis begins. This solver
has the capability of finding the operating point of gates
located in feedback loops. For transient analysis, a gate
delay model that takes into account the slope of the input
waveforms is used. The performance of the algorithmis
demonstrated by simulations of a number of benchmark
circuits.

1 Introduction

Asthe percentage of integrated circuitsthat contain both
analog and digital components keeps growing, so does the
importance of mixed-mode simul ation asaverification tool .
Extensive literature exists on thistopic: for adetailed bib-
liography the interested reader is referred to [1, 2] and to
thereferences listed therein. A feature common to al pub-
lished mixed-mode simulation al gorithmsisthat they must
trade-off speed versus accuracy, inparticular whenit comes
to simulating the digital portion of a circuit. In terms of
speed, gate-level simulation would have to be the preferred
choice, becauseit can run amost three orders of magnitude
faster than a circuit level simulation. Even higher levels
of simulation such as timing simulation can run up to 100
times dlower than a gate-level smulation[2]. On the other
hand, it is aso desirable to keep as much information as
possible about signal levels: denoting the output of a gate
as“unknown," asisdonein most logic simulators, provides
no information about theactua voltagepresent at thegate's
output. Thiscauses problemsat thedigital-anal oginterface
of mixed-mode simulators.

An attempt to reconcile these two conflicting require-
ments was made with the development of so called

This work was supported in part by the National Science Foundation
under Grant MIP-9211163.

electrical-logic analysis, or ELOGIC [3]. Thisisaswitch-
level timing analysis technique in which signals can take
any of a number of user-specified voltage levels between a
logic zero and alogic one. The ELOGIC simulation ago-
rithm then computes the time necessary for a node voltage
to changeitsvaluefromitscurrent level to an adjacent one.
In this way it is possible to control the signal resolution,
and in particular to trade off speed for accuracy. However,
the simulation is still performed at the device level using
ordinary device models, so that the computational effort
required is still substantially greater than gate-level logic
simulation [2]. A different approachis givenin[1], where
afunctional-level mixed-mode simulator is described. As
in ELOGIC simulation, an arbitrary number of voltagelev-
els between a logic zero and a logic one is available to
represent signal values. Ordinary AND and OR Boolean
operations are replaced by min and max operations on the
signal levels. In thisway logic functions can be simulated
at the gate level, and a certain number of high-level analog
operations can be handled as well.

The simulation algorithm described here a so triesto re-
tain the speed of traditional gate-level ssimulation, while at
the sametime maintai ning enough information onthewave-
forms generated by digital |ogic gates to compute accurate
delays and provide lower level ssimulators with detailed
data. In particular, multiple logic states (levels) are used
to describe the state of each node. Each state corresponds
to avoltage level, and the the number of levels to be used
for asimulationisuser-defined. Theselogiclevelsprovide
more information about a waveform than the traditional
gtates (O, 1, X, Z), so dopes of waveforms can be deter-
mined and accurate times can be calculated for threshold
crossings. There are however a number of differences be-
tween the al gorithm described here and the one proposed in
[1]: oneisthat our implementation requires only ordinary
Boolean a gebra operations (except for computing delays).
As a consequence of this fact, it is possible to determine
the initial state of the circuit by solving a set of Boolean
algebraic equations, so that a valid operating point for the
circuit can be determined before atransient analysisbegins,

thus eliminating the need for an unknown state. The DC
solver has the ability to handle gates in feedback loops, so
itisnot limited to combinational circuits.

2 Multiple-level logic

An obvious way to try to combine the speed of gate-
level logic simulation with the finer resolution of multiple
signal levels is to use Boolean algebras containing more
than two elements. A complete mathematical treatment of
such agebras is beyond the scope of this paper, and can be
found, for instance, in[4, 5]. Inbrief, aBoolean algebraisa
set of elements on which three operations, called AND (A),
OR (V) and NOT (), have been defined. It can be shown
that, as a consequence of the laws that Boolean operations
must satisfy, afinite Boolean algebra must contain exactly
2" elements.

An order relation (<) can be introduced in a Boolean
algebra by the following definition:

r<ysrAy=zx
or equivalently:
r<ysrVy=uy.

Unfortunately this order relation is only partial, not total
(except in the case of atwo-element algebra): this means
that there exist pairs of elements »,y such that neither
z < ynory < xistrue. It can beshownthatif - = =z Ay,
then z is the largest lement such that z < z and z < y:
therefore, the AND operation can can be regarded as a sort
of min operation on the the Boolean algebra. Similarly, if
z = x V y, then zisthe smallest element such that = < =
andy < z.

At afirst look it would appear that the easiest way to
perform logic simulation with more than two signal levels
would be to use a Boolean agebra with more than two
elements, with each element in the algebra corresponding
to a different signal level. However, because the various
Boolean operations are supposed to model the behavior of
physical gates, additional constraints must be taken into
account: for instance, it seems reasonable to require that
the output of an AND gate be equa to the lowest input
level (i.e. the AND Boolean operation must behave likethe
min operator on the input signals [1]). Similarly, the OR
operation shouldyield the max of theinputs. Unfortunately
those requirements are incompatible with the lattice struc-
ture of Boolean agebras, which are only partialy ordered
sets, whilethe set of all possiblesignal valuesis obviously
totally ordered. Thistype of problem, which presentsitself
whenever Boolean agebras with more than two e ements
areinvolved, was already pointed out in [6].

Thisdifficulty can beovercomeby representing thevalue
of asigna with a pair of Boolean agebra elementsin the

following way. Let A = {ap < a1 < ... < a,} and
B = {bp < b1 < ... < b,} betwo chainsin a Boolean
agebrasuch that ag = bp = Oand a,, = b, = 1, and such
thata € A=>a€ Bandbe B=5be A. Asignd leve
can now be represented by a pair (z!, z%"), withz! € A
and 2" € B: thepairs(0, 0) and (1, 1) represent the signal
levels corresponding to logic 0 and logic 1, respectively,
while other pairs correspond to intermediate levels. It is
now possi bleto define Bool ean operationson the signalsin
the following way:

(1, 21) A(23,25) = (2fAap,af Aag) (D)
(l‘{,l‘f) v(x£’$5) = (l‘{\/l‘é,l‘f\/l‘g‘) 2
(¢],2) = (a1,21) 3

Itiseasy to verify that, with those restrictionsplaced on the
pair (z!, z%"), the logic operations thus defined behave on
signals as desired: the output of an AND is the minimum
among the inputs, the output of an OR the maximum, and
aNOQOT generates asignal level which isas closeto alogic
zero asthe input was to alogic one.

The signal representation described above can beimple-
mented by describing each logic level by a binary string of
length 2n, divided in alower and an upper haf: the lower
half represents x! and the upper half represents ¥ in the
pair (z!, zI"). The number of onesin either half of thisbi-
nary string determinesthelogiclevel: if the string contains
all zeros, itisalogic zero, andif thestring containsall ones,
itisalogic one. Representations of intermediate levels are
obtai ned by shiftingthe same number of onesin both halves
of the string. In the lower half of the string the ones must
be shifted in from the right, so that al the least significant
bits of the string are ones and the the most significant bits
are zeros. The opposite operation is performed on the up-
per haf of the binary string: the ones must be shifted in
from the left, so that all the ones are contained in the most
significant bits and all the zeros are in the least significant
bits. Since both halves always have the same number of
ones and zeros, the two halves will always be symmetrical
about the middle. As an example, a representation with
five signa levelsis shown Table I, with OV corresponding
toalogiczero, and 5V correspondingtoalogicone. Inthis
example it is assumed the intermediate levels are equally
spaced, but this does not necessarily have to be the case.

Thesignal operationsdefined in egns. (1-3) requireonly
simplebitwiseboolean operations. Thiseliminatestheneed
for tablelookupsand the overhead of generating tables. As
long as the entire binary string can be stored in a single
computer word, the AND or OR of any two signalsrequire
only a single bitwise operation, regardless of the number
of levelsinvolved. The complementation operation (NOT)
is dightly more complicated, because it requires comple-
menting the entire binary string bitwise, and then swapping

TABLE |
A five-level signal representation

‘ level ‘ voltage‘ binary string

0.00 0000 0000
1.25 1000 0001
2.50 1100 0011
3.75 11100111
5.00 11111111

OORrWNE

the upper half with the lower half. A few examples of the
AND, OR, and NOT operations performed on signalswith
five logiclevels are shown below.

AND : (11111111) A (11000011) = (11000011)
(1000 0001) A (11100111) = (1000 0001)
OR: (11111111)v (11000011) = (11111111)
(1000 0001) v (1110 0111) (1110 0111)
NOT : (11100111) = (1000 0001)
(1100 0011) (1100 0011)

Note that if the number of logic states is odd, there is a
middle state which is the complement of itself (such asin
the last example of the NOT function). This state alows
for avalid operating point for feedback |oopswhere an odd
number of inversions exists.

3 Initialization

Most switch-level or gate-level simulation agorithms
have no mechanism for computing the initial operating
point of a digital circuit containing feedback loops. The
common solution is to initialize al the nodes to an unde-
fined state X, and then to continue the simulation with the
usua rulesof three-element logic algebra. It will be shown
next that, using the signal representation introduced in the
previous section, it is possible to compute the initia state
of any digital circuit, if one exists, or to determine that one
does not exist, or that more than one exists, and, in the
last case, what hodes may have more than one solution and
must therefore be truly considered to have an undefined
state. All thisis possiblebecause, as pointed out earlier, all
operationson signal's can be expressed in terms of ordinary
Boolean algebra operations.

In traditional circuit simulation, the DC operating point
of acircuit is found by computing a solution of a set of
real algebraic equations. Similarly, the initial state of a
digital circuit can be computed by solving a set of boolean

Il wFT I EY —
(X310, x1tx3) =

(xi,x0)

O—
(xb,x5) (xE0x5 x4 Oxb)
Figure 1. Boolean equations for a NOR gate.

algebraic equations: for instance, in [7] Gaussian elimina
tion is used to solve a set of linear boolean equations. In
the case considered here, the equations will generally be
nonlinear, so a different agorithm is needed. A suitable
oneisastraightforward extension of Gaussian elimination,
namely the method of successive eliminations, described
below; a broader and more thorough discussion of this al-
gorithm can be found in [8]. At the basis of the algorithm
are thefollowing theorems.

Theorem 1 ([4, p. 8]) Let a,b be two elements in a
Boolean algebra. Thenb < a < aAb=0.

Theorem 2 ([4, p. 58]) Let a,b,2 be eements in a
Boolean algebra. The following statements are equival ent:

(anz)V(brnz) = 0
b<z<a.

Consequently, the equation (a A z) V (b A) = 0 has
solutionsif andonly if a A b = 0.

It should be stressed again that the theorems above are
validinany Boolean algebra, not just inthe ordinary binary
algebra (where they are trivial).

If the state of each node in a digita circuit is described
by apair of Boolean variables (as explained in the previous
section), each gate in the circuit generates two Boolean
equations. For example, the NOR gate shown in Fig. 1
generates the equations:

o= A
o= AL
The above equations have the form:
ry = fi(ry, ..., 2n)
which, by thelaws of Boolean algebra, isequivaent to [4]:
(zi A i)V (7 A fi) = 0.

Thereforethereisno loss of generality in assuming that the
set of equations to be solved has the form:

filwa, o
This system is equivalent to the single equation:

n) =0 i=1...,m. (4

m

,l‘n) = \/fl(l‘]_,

i=1

ey, ... ,p) = 0. (5

Algorithms to solve Boolean equations in more than one
unknown use the result stated in Theorem 2 and the Shan-
non decomposition of Boolean functions[9]. The standard
method [4] to solve egn. (5) consists of eiminating one
unknown at a time using the Shannon decomposition: if
Fl= (21 AFL)V (21 A F2), thenegn. (5) can berewrit-
ten as.

(1 A Fxll(xz, e x)) V(e A Fxll(xz, .o, n)) = 0.

By Theorem 2, 21 must then satisfy the inequalities:

FL(x,. .. 2,) <@1 < FL(eg,...,x,) (6)

which can be satisfied if and only if the following equation
is satisfied:
Foap, ... x,) =

1 1
F51(1‘2, e l‘n) A Fxl(l‘z, e xn) =0.

Thus the number of unknowns has been reduced by one
from the original equation, because the function 72 does
not depend on x1. Recursive application of this technique
reduces the original system of equationsto one equationin
one unknown, whose solutions (if they exist) can be deter-
mined throughthe use of Theorem 2. By back substitution,
values for the other unknowns can be computed through
inequalities of the type shownin egn. (6).

However, if thisalgorithm wereimplemented exactly as
described above, the computational effort required to solve
even a system of moderate size would quickly exceed prac-
tical limits. To get around this problem, a slight modified
version of thisalgorithmisdescribed next. Thisimplemen-
tationrelies onthe sparsity of the system of equationsbeing
solved: in this case, this means that each equation in the
system depends explicitly only onasmall subset of thetotal
number of unknowns. It iswell-known that the equations
describing an electrical network are amost always sparse
[10]. To take advantage of this fact the equations will be
split into smaller groups, according to the unknowns that
affect them. Let:

S; ={j: f; dependsonx; butnoton x4, ..., z;_1},
and define:
Gi(xi,...,xn) = \/ Jies, .. xp)
JES:
Flay, .. xn) = GYap,... 2n)
it = (FLAFL)v G
Itisimmediateto verify that /' dependsonlyonz;, . . ., x,

(the claim is obvious for i = 1; by induction, I de-
pends only on z;,...,z,, so Fi. and FZ depend only
on ziy1,...,x,, a does G**1, and hence Fitt). The
solutions of the original system of equations can then be
computed in the following way:

(Fx, Fg) — (O, O);
Gatelist — A list of dl gatesin circuit;
for each nodein circuit {
Let x be the variable at thisnode;
(Fy, Fy) — Shannon_Decomp(z, F; A Fx);
for each gate in GateL.ist connected to thisnode {
Let f be the function describing this gate;
(Fy, Fz) — (Fy, Fz) V Shannon_Decomp(z, f);
Remove gate from Gatel.ist;
}
}

Figure 2.
tions.

An algorithm to solve Boolean equa-

Theorem 3 Any n-tuple z, ..
lowing set of inequalities:

., &, that satisfies the fol-

Fgl(xi+la .. .,l‘n) S i S F_Z:l(xi-l—la .. 'axn)a
t=n,...,1

isa solution of the system of equations (4).
Proof: By Theorem 2, theinequalitiesabove imply that:

(2 AFL)V (B AFE)=F =0, i=1,...,n,

whichinturnimpliesthat G* = 0,i = 1, ..., n. By defini-
tion of the functions ¢, thismeansthat f; (z1, ..., 2,) =
0,;7=1...,n.0

The advantage of thisalgorithmisthat it limitsthe num-
ber of functions that must be handled at the same time,
as well as the number of variables on which each func-
tion depends, thus reducing the computationa effort re-
quired to obtain a solution. For an efficient implemen-
tation, the functions involved can be represented using
BDD’s [11, 12]. A simplified pseudo-code description
of the algorithm is shown in Fig. 2. The function Shan-
non_Decomp() returns a pair of functions corresponding
to the Shannon decomposition of a function with respect
to the specified variable: if f = (¢ A fo) V (2 A f5),
then Shannon_Decomp(z, f) = (fz, fz). Functions de-
scribing gates are understood to have been put in the
form f = 0, as explained earlier in this section. Oper-
ations on pairs of functions are performed elementwise,
eg. (f1,f2) V(91,92) = (f1V g1, f2V g2). Upontermina-
tion of the procedure, (F, Fiz) containsapair of constants,
which determine the range of valuesfor the variable at the
last node. The values of the variables a other nodes can
be determined by saving the factors of the intermediate
Shannon decompositions, as explained in Theorem 3.

To further [imit the overall computationd effort, the cir-
cuit is partitioned into strongly connected components be-
forethe DC solution is computed. Thisisdone by treating
the circuit as a directed graph, and performing two depth-
first searches on the graph. Thetimeto partitionthe circuit
is bound by O(M), where M is the number of edges in
the graph. The DC solution is computed by using a graph
traversal a gorithmto propagatetheprimary inputsthrough-
out the circuit: when a strongly connected component is
met, the algorithm described above is used to compute the
voltages at the nodes contained in that component.

4 Trandent analysis

A standard event-driven selective-trace algorithm[13] is
used for transient analysis. The delay model implemented
inthisalgorithmistakenfrom[1]: it calculatesbothadeay
time for inputsto propagate to the output and a s opevaue
for the output. To take into account the gain of a gate,
the output dope s, isexpressed as a gate-specific function
fo() of theinput slope s; and the capacitance at the gate's
output, C',:

So = fo(sia Co)~

Similarly, riseand fal delay valuest, and ¢, are calculated
asfunctionsof s; and C,:

t, = fr(siaco)
tr = fi(si,0).

The functions f,(), f,() and f;() can be be given in
the form of two-dimensional tables. Alternatively, experi-
mental data shows that the gate delay as a function of the
reciprocal of theinput sloperesembles closaly alinear seg-
ment [1]. Therefore the gate delays can aso be computed
approximately as:

t, = ao/si+a1
ty = bo/si +b1

where ag, az, bp and by are gate-specific coefficients de-
scribing the gate's delay characteristics. I1n the same way,
instead of using atablethe output slope can be computed by
first multiplyingthe input slope (of the input which caused
the transition) by a gain factor £ specific to the gate, up to
amaximum dew rate s, .., determined by the gate:

sp = Min(ks;, Smaz)-

The value thus obtained, s,., does not take the capacitive
load of the gate into account. The actual value of the output
dopeiscomputed by scaling s, according to the load [1]:
g Co

TO G
In this formula, C, is the output capacitance of the gate
itself, whilethe C;’s represent the fanout capacitances.

S0 =

0 2e-07

1. 75e-07 2e-07

Figure 4. One period of the oscillator’s output.

5 Numerical results

The agorithms described in the previous sections were
implemented in a multi-level logic simulator, whose per-
formance was tested on anumber of circuits.

The first test circuit was aring oscillator consisting of
six inverters and a nand gate. A comparison between the
waveforms obtained by our smulator and by SPICE are
showninFig. 3: thedashed line showstheresultsusing the
simulation algorithm described here (17 logic states were
used), and the dotted line shows the results of a SPICE
simulation. For 200 nanoseconds of simulation time, the
gate-level simulation ran at over 600 times faster than the
SPICE simulation. A better comparison between the two
waveforms can be made in Fig. 4, which shows a blow-up
of one period of the oscillator’s output.

The performance of the algorithm to compute theinitial

TABLE I
DC solution times (in seconds) for ISCAS89

benchmarks

Ckt. No.of | Longest CPU
Name | Gates | Fbk.Loop | Time
s208.1 112 5 0.083
s298 133 18 0.27
s344 175 24 0.35
s349 176 25 0.40
s382 179 27 0.23
s386 165 59 0.53
400 185 28 0.52
420 234 5 0.13
444 202 37 0.40
s510 217 161 34.0
s526n 215 19 0.38
641 398 161 1.90
s713 412 93 1.20
s820 294 144 14.0
s832 292 147 240
s953 424 125 34.0
51196 547 0 0.033
51238 526 0 0.033
51423 731 12 1.20
s1494 653 0 0.10
51488 659 0 0.18
s5378 2958 252 270
s35932 | 17793 204 560
s38417 | 23815 0 33.0
s38584 | 16310 17 230

state of adigital circuit, described in Section 3, was tested
on anumber of circuitstaken from the 1989 | SCAS bench-
marks. A summary of theresultsisshown in Tablell: the
numbers in the "Longest Fbk. Loop" column indicate the
number of gates in the longest feedback loop present inthe
circuit, while the CPU times refer to a Sparcstation 10/40
running SUnOS 4.1.3. It can be seen that the required com-
putational effort isawaysvery reasonable, even inthe case
of circuits of respectable size containing deep feedback
loops.

Finally, simulations were run on a number of circuits
taken from the 1985 and 1989 ISCAS benchmarks. The
benchmark circuits were ssmulated by applying one hun-
dred random input vectors every 100 ns. with a centra
clock toggling every 20 ns. The results of the simulations
are shown in Tables 11l and 1V, which, for comparison
pusposes, show aso the times necessary to simulate the
same circuits with VERILOG XL. All CPU times refer to
a Sparcstation 10/40 running SUnOS 4.1.3.

TABLE llI
Simulation times (in seconds) for ISCAS85
benchmarks

Ckt. | No.of | CPU
Name | Gates | Time

VERILOG XL
Comp. Link Sim.

c432 160 0.8 0.8 04 | 03
c499 202 1.0 0.7 02 | 04
€880 383 15 0.7 03 | 04
c1355 546 56 1.0 05 | 05
€1908 880 4.5 11 05 | 05
c2670 | 1193 50 12 09 | 09
c3540 | 1669 9.0 1.7 09 | 08
c5315 | 2307 | 150 21 13 | 17
6288 | 2416 | 79.0 4.0 10 | 40
c7552 | 3512 | 240 3.0 14 | 24

TABLE IV
Simulation times (in seconds) for ISCAS89
benchmarks
Ckt. No.of | CPU VERILOG XL

Name | Gates | Time | Comp. Link Sim.
s208.1 112 0.2 0.5 0.2 | 05
s298 133 0.3 0.5 0.3 04
s344 175 0.6 0.6 0.2 0.6
s349 176 0.5 0.5 0.3 0.6
s382 179 0.5 0.5 0.3 0.6
s386 165 04 0.5 0.2 0.5
400 185 0.4 0.5 0.3 0.6
420 234 04 0.5 0.3 0.6
444 202 04 0.5 0.3 0.6
s510 217 0.2 0.5 0.3 0.5
s526n 215 04 0.5 0.3 0.5
641 398 0.8 0.7 0.4 0.6
s713 412 11 0.6 04 0.7
s820 294 0.7 0.6 0.3 0.5
s832 292 0.7 0.7 0.3 0.5
s838.1 478 0.9 0.8 0.4 0.8
953 424 0.9 0.7 04 0.8
s1196 547 1.6 0.7 0.3 0.7
s1238 526 17 0.7 04 0.6
s1423 731 1.6 0.8 0.6 1.0
51494 653 14 0.8 04 0.5
51488 659 13 0.7 04 0.5
s5378 2958 5.6 2.7 15 2.4
s35932 | 17793 | 93.0 | 31.0 10.2 | 23.2
s38417 | 23815 | 110.0 | 86.3 11.1 | 23.9
s38584 | 16310 | 69.0 | 40.41 10.0 | 20.0

6 Conclusion

We have described an agorithm that extends logic sim-
ulation to multiple-level signals. Thisis made possible by

representing the value of a signal with a pair of elements
of an n-dimensional Boolean algebra. This representation
makes it possible to manipulate signals with an arbitrary
number of intermediate levels using only Boolean age-
bra operations and in a way that mimics the operation of
physical gates. There are severa advantages to this ap-
proach: because operations in an n-dimensional Boolean
algebra can be implemented as ordinary bitwise Boolean
operationson abinary string, the speed of logic simulation
is retained independently of the number of levels used (as
long as the number of levels does not exceed the computer
word length). Moreover, the problem of finding the initial
state of adigital circuit ("DC solution™) can be cast as the
problem of finding the solution of a set of Boolean equa-
tions. An agorithm for that purpose has been described,
and it has been shown how it can be modified to take ad-
vantage of the sparsity of the system of equations. On the
other hand, the availability of an arbitrary number of inter-
mediate signal levels between alogic zero and alogic one
eliminates the need for an "unknown" state, and makes it
easier the interfacing of digital and analog simulators. As
a disadvantage, it should be mentioned that certain analog
elements, such asadders and dividers, cannot be handled by
our agorithm (while they can by the algorithm described
in[1]).

A simulator implementing thetechniquesdescribed here
was developed, and its performance was tested on a num-
ber of benchmark circuits. The examples given show that
it achieves a satisfactory trade-off between speed and accu-
racy. Futureresearch plansinclude merging thissimulator
with the multi-level analog simulator described in [14].

References
[1] Genhong Ruan, Jiri Vlach, James A. Barby, and Ajoy
Opal, “Analog Functiona Simulator for Multilevel
Systems’, |EEE Transactions on Computer-Aided
Design, vol. CAD-10, no. 5, pp. 565-576, May 1991.

[2] Eduardo L. Acuna, James P. Dervenis, Andrew J.
Pagones, Fred L. Yang, and Resve A. Saleh, “Simula
tion Techniques for Mixed Anaog/Digita Circuits’,
|EEE Journal of Solid-State Circuits, vol. 25, no. 2,
pp. 353-362, April 1990.

[3] Young H. Kim, J. E. Kleckner, R. A. Saleh, and
A. R. Newton, “Electrica-Logic Simulation”, in
Proceedings of the 1984 Inter national Conference on
Computer-Aided Design. |IEEE, November 1984, pp.
7-9.

[4] Sergiu Rudeanu, Boolean Functions and Equations,
North-Holland Publishing Co., Amsterdam, 1974.

[5] Paul R. Hamos, Lectures on Boolean Algebras, Van
Nostrand Co., Princeton, NJ, 1963.

[6] Melvin A. Breuer, “A Note on Three-Valued Logic
Simulation”, 1EEE Transactions on Computers, vol.
C-21, no. 4, pp. 399402, April 1972.

[7] Randa E. Bryant, “Algorithmic Aspects of Symbolic
Switch Network Analysis’, |EEE Transactions on
Computer-Aided Design, vol. CAD-6, no. 4, pp. 618—
633, July 1987.

[8] Scott F. Woods and Giorgio Casinovi, “A Mixed
Digital/Anadog Gate-Level Simulation Algorithm”,
Submitted for publication in IEEE Transactions on
Computer-Aided Design.

[9] C.E. Shannon, “A Symbolic Analysis of Relay and
Switching Circuits’, Transactions of the American
Institute of Electrical Engineers, pp. 713-723, 1938.

[10] William J. McCala, Fundamentals of Computer-
Aided Circuit Smulation, Kluwer Academic Pub-
lishers, Norwell, MA, 1988.

[11] Randd E. Bryant, “Graph-Based Algorithms for
Boolean Function Manipulation”, |EEE Transactions
on Computers, vol. C-35, no. 8, pp. 677-691, August
1986.

[12] Karl S. Brace, Richard L. Rudell, and Randa E.
Bryant, “Efficient Implementation of a BDD Pack-
age’, in Proceedings of the 27th ACM/IEEE Design
Automation Conference, Orlando, FL, June 1990, pp.
40-45.

[13] Melvin A. Breuer and Arthur D. Friedman, Diagno-
sis& Reliable Design of Digital Systems, Computer
Science Press, Inc., Rockville, MD, 1976.

[14] Giorgio Casinovi and Jeen-Mo Yang, “Multi-Level
Simulation of Large Analog Systems Containing Be-
haviora Models’, |EEE Transactions on Computer-
Aided Design, vol. 13, no. 11, pp. 1391-1399, Novem-
ber 1994.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

