
Communication Synthesis for Distributed Embedded

Systems�

Ti-Yen Yen

Quickturn Design Systems, Inc.

Mountain View, California

Wayne Wolf

Department of Electrical Engineering

Princeton University

Abstract

Communication synthesis is an essential step in
hardware-software co-synthesis: many embedded sys-
tems use custom communication topologies and the
communication links are often a signi�cant part of the
system cost. This paper describes new techniques for
the analysis and synthesis of the communication re-
quirements of embedded systems during co-synthesis.
Our analysis algorithm derives delay bounds on com-
munication in the system given an allocation of mes-
sages to links. This analysis algorithm is used by our
synthesis algorithm to choose the required communi-
cation links in the system and assign interprocess com-
munication to the links. Experimental results show
that our algorithm �nds good communication archi-
tectures in small amounts of CPU time.

1 Introduction

This paper describes new methodology to co-
synthesize communication links for real-time dis-
tributed embedded systems. Distributed co-synthesis
is important because many embedded systems are het-
erogeneous distributed machines. Communication is
the bottleneck in many embedded systems, because
communication links add both chip and board costs,
and designers frequently underestimate peak load. De-
sign decisions based on average communication re-
quirements may lead to an infeasible design. The
communication must be scheduled and allocated to
determine feasibility, and communication synthesis in-
teracts with process scheduling and hardware engine
design. In this paper, we propose a bus model for
communication in embedded systems with arbitrary
topologies in which point-to-point communication is a
special case. We extend previous work on delay esti-
mation [19] to include communication delay. We then
use the delay estimates to develop methods for syn-
thesizing communication links, based on a previous
work on co-synthesis of distributed systems [20]. Our

�This work was supported in part by the NSF under grant

MIP-9424410.

communication-synthesis algorithm selects the num-
ber of buses, the type of each bus, the messages trans-
ferred on each bus, and schedule the bus communica-
tion.

2 Previous Work

A great deal of literature on real-time distributed
systems with interprocessor communication focus on
a single non-periodic task graph model. Chu et al. [1]
reviewed some of these works and categorizes them as
graph-theoretic, integer 0-1 programming, and heuris-
tic approaches. However, in most real-time embed-
ded system, di�erent tasks running in di�erent rates
mix together. Rate-monotonic scheduling [10] (RMS)
gives a �xed-priority assignment for periodic inde-
pendent processes on a single processor. Suppose
P1; P2; : : : ; Pn are n priority-ordered processes allo-
cated on the same CPU, with P1 being the process
with the highest priority. When each deadline is
smaller than or equal to the period, Lehoczky et al. [6]
showed that the worst-case response time of Pi is the
smallest positive root of the equation

x = g(x) = ci +

i�1X

j=1

cj � dx=pje (1)

where cj and pj are the computation time and the pe-
riod respectively. Equation 1 will be used as ground-
work for communication delay estimation in Section 4.
The iteration technique to solve the nonlinear equa-
tion have been mentioned by Sha et al. [16], and re-
stated as a �xed-point iteration technique [19]. RMS
and its extensions can be applied to single CPU or
single bus scheduling.

In spite of its wide application, RMS has seldom
been extended to schedule distributed systems for pe-
riodic processes with data dependencies. The survey
of the scheduling or allocation algorithms for peri-
odic tasks in �xed-architecture real-time distributed
systems can be found in [17] and [15]. Many algo-
rithms [5, 14, 12] for periodic tasks in distributed sys-
tems form a big task with length of the least common
multiple (LCM) of all the periods. The LCM method
is not e�cient and sometimes inaccurate [19]. Peng et

al. [12] and Hou et al. [5] assumed point-to-point com-
munication with delay proportional to the volume of
data. Ramamritham [14] used a single multiple-access
network for interprocessor communication. Leinbaugh
and Yamani [7] derived analytic bounds for response
times of a set of tasks, given direct full duplex connec-
tion between every pair of PEs.

A great deal of recent work has studied hardware-
software partitioning, which only targets a one-CPU-
one-ASIC topology [4, 3, 18, 2]. Prakash and
Parker [13] formulated distributed system co-synthesis
as an integer linear program (ILP). However, their
ILP formulation cannot handle periodic and preemp-
tive scheduling of processes or communication in the
RMS model. In their system model, the communi-
cation topology is restricted to either point-to-point
interconnection or a single system bus.

3 Problem Formulation

3.1 Task Graphs

Our task model is similar to those used in dis-
tributed system scheduling and allocation problems [5,
14, 12, 7]. A process is a single thread of execution,
characterized by an computation time, which is a
function of PE type to which it is allocated. A task is
a partially-ordered set of processes, which may be rep-
resented as an acyclic directed graph known as a task
graph, in which a directed edge represents a data de-
pendency. A weight on a process denote the volume of
output data for communication. A problem speci�ca-
tion may contain several concurrently running tasks.
Each task is given a period (sometimes referred to
as a rate constraint), which de�nes the time be-
tween two consecutive initiations, a hard deadline,
which de�nes the maximum time allowed from initia-
tion to termination of the task and must be satis�ed,
and a soft deadline, which describes the optimiza-
tion goal of the task delay but does not have to be
satis�ed. The computation time of a process or the
period of a task can be a constant or an interval spec-
i�ed by a lower bound and an upper bound. Release
times (i.e., delayed initiation of a process) and mul-
tiple deadlines can be modeled by inserting dummy
processes|processes with delay but not allocated on
any physical PE|in the task graph. An inter-task
communication is a data transfer between processes
in two di�erent tasks. Because tasks run in di�erent
rates, such communication does not have to be syn-
chronized. However, the cost and delay for inter-task
communication cannot be ignored.

Co-synthesis produces an embedded system archi-
tecture. The hardware engine architecture is a labeled
graph whose nodes represent processing elements
(PEs) and whose edges represent communication
links. When a data dependency crosses PE boundary,
de�ne the block of data for transfer as as a message.

The allocation is given by a mapping of processes
onto PEs, and a mapping of messages onto communi-
cation links. The system schedule is an assignment
of priorities to processes and an assignment of pri-
orities to messages. The CPU always executes the
highest-priority ready process to completion, and a
communication link always grant the request of the
highest-priority message ready to transfer. There is a
cost (component price, etc.) associated with each PE
type. There is a hard constraint and a soft constraint
on the total system cost.

3.2 The Bus Model

We assume each CPU has a local memory where
the program code and local data are stored, so that
instruction and local data fetching do not a�ect inter-
process communication. The data transfer between
two processes allocated on the same PE causes no
extra delay or cost. On the other hand, when two
processes are allocated on di�erent PEs, the commu-
nication between them need go through a bus and can
introduce a delay in addition to the execution of the
processes.

For each message, we create a sending process
right after the process P1 to send the output data of
P1 to the shared memory of a bus, and a receiving
process right before the process P2 to receive the data
from the shared memory. A communication pro-
cess is either a sending process or a receiving process.
We call a normal process in the original task speci-
�cation an application process, whose existence is
independent of the system architecture. Unlike an ap-
plication process, a communication process needs to
be allocated on not only a PE but also on a bus. The
following properties should be identi�ed for a commu-
nication process or a communication link:

� The communication time of a communication
process is the time spent on �nishing an uninter-
rupted data transfer. It is proportional to the size
of the message, the PE speed, and the bus speed.

� Whether the communication will interfere with
the computation depends on the type of PE. Note
that a DMA controller without on-chip memory
may not really separate computation and commu-
nication, because a DMA transfer holds the local
bus and prevents the CPU from fetching instruc-
tions.

� If there is a dual-port bu�er between a PE and a
bus, the sending or receiving process on the PE
can be spared. Another PE can directly drop its
data on the bu�er instead of shared memory.

� Whenever a PE is connected to a bus, an associ-
ated cost is added to the total system cost. The
cost includes bus interface logic and extra bus
length.

In bus communication, at most one master (PE)
can utilize a bus at a time. When more than one
PE want to send or receive a message through a bus,
it is necessary to schedule the communication on the
bus. A common implementation scheme may assign
a �xed priority for each PE on a bus. If a PE has
higher priority than the others, all the sending and
receiving processes will have higher priority than the
communication processes on the other PEs. A more
complex scheme, as used in FutureBus and NuBus,
let a PE select its own priority during bus arbitration.
The second scheme requires more interface logic and
more bus arbitration delay, and are seldom used in
embedded systems.

A communication process actually uses two re-
sources: a bus and a PE. In addition to schedul-
ing the communication on the bus, we also need to
schedule the communication processes on the PE, es-
pecially when the PE cannot perform communication
and computation in parallel. In this case, the prior-
ities are ordered for all the processes, including both
application processes and communication processes.
However, we assume that a communication process is
non-preemptive on a CPU for several reasons: CPU
preemption is usually implemented with interrupts,
and interrupts are not sampled in the middle of a
bus cycle; and DMA operations are usually not pre-
emptable. Furthermore, preempting a communication
causes swapping of processes on the bus and both the
sending and receiving PEs; the large amount of over-
head occurs suggests that preemptive communication
on a PE is not a practical approach.

4 Communication Delay Estimation

Performance analysis is essential to synthesis. In
this section, we extend the delay estimation tech-
niques developed previously [19] to handle communi-
cation. Suppose the allocation and scheduling have
been given. For each process Pi, ci is the computation
time or communication time, and Pi is allocated on
PEi with a priority Pprti. If Pi is a communication
process, it is also allocated on BUSi with a priority
Bprti. The occurring period of Pi is pi.

4.1 Communication Modeling

Figure 1 describes how a sending process and a re-
ceiving process may be inserted into an edge in a task
graph for various cases. If two processes connected
by an edge are allocated on the same PE, or either of
the processes is a dummy process, no communication
process needs to be created for this arc. When two
processes connected by an edge are allocated on dif-
ferent PEs, at least one communication process needs
to be created for the corresponding message. If there
is a dual-port bu�er, either sending or receiving pro-
cess can be deleted. The existence of a communication

P1

P2

P1

P2

P1

P2

P1

P2

P1

P2

P2

P1

send

receive
P2

P1

receive

P2

P1

send

Task graph
and allocation

The corresponding
communication
processes

Figure 1: The creation of communication processes for
various situations. Dash boxes represent PEs. A small
solid box stands for a dual-port bu�er for a PE.

P1

P2 P3

P1

P2 P3

P1

P2 P3

send

receive

P1

P2 P3

send

P1

receive receive

P2 P3

receive receive

P2 P3

P1

send send

Task
graphs and
allocation

The corresponding
communication
processes

Figure 2: The sharing of communication processes for
various situations. Dash boxes and dash line represent
PEs and communication links in the current alloca-
tion, respectively.

process depends on the allocation of other processes.

When there is more than one edge leaving a process
in a task graph, and no dual-port bu�er is available,
a communication process may be shared by di�erent
edges, as shown in Figure 2. If the destinations of two
edges leaving the same source process are allocated on
the same PE, both the sending process and the receiv-
ing process can be shared, because once the same mes-
sage is read into the local memory for the �rst process,
the second process can also read it without accessing
the bus again. If the destinations of two edges are on
two di�erent PEs which use the same bus used by the
PE containing the source process, the sending process
can be shared, although the receiving processes must
be separated. The saving of sending processes implied
that when a process wants to broadcast data to more
than one process, a bus might provide better perfor-
mance than point-to-point communication links. By
eliminating unnecessary communication processes, we
can reduce overhead in delay.

4.2 Communication Delay

Our previous algorithm [19] for estimating response
time of a task graph ignored communication delay. In
the following, we discuss how much should be added to
the total task delay when a communication process is
visited. We will use a pure RMS model without data
dependencies. The method in this section can be ex-
tended by techniques such as separation analysis and
phase adjustment [19] to deal with data dependencies
between processes.

Given any communication process Pi, de�ne the set
of processes which share the same bus as Pi, and have
higher priority than Pi on the bus, but are not allo-
cated on the same PE as Pi:

Bi = fPjjBUSj = BUSi; PEi 6= PEj;
Bprtj > Bprtig

Let the worst-case bus response time bi be the longest
time from the instant Pi request the bus to the instant
Pi �nish all its data transfer. Similar to equation (1),
bi is the smallest positive root of the equation

x = ci +
X

Pj2Bi

cj � dx=pje (2)

where cj is the communication time for each communi-

cation process. The worst-case total response time dCc
due to a communication process Pc is the longest time
from the request of Pc to the �nish of Pc. The request
of a sending process occurs when the process generat-
ing the data completes its computation. The request
of a receiving process occurs when the corresponding
sending process �nishes sending the data. The delay
dCc is divided into two components: dCc = dPc + dBc ,
where dBc is the time spent on the bus, and dPc is the
scheduling delay to wait for some other processes to
�nish on the PE before starting to use the bus. Appar-
ently, dBc = bc where bc is calculated by equation (2).

De�ne the set of processes which are allocated on
the same PE as Pc, but cannot run in parallel with
Pc, and have higher priority than Pc:

Pc = fPjjPEj = PEc; Pprtj > Pprtcg (3)

The set Pc includes both application processes and
communication processes when the PE spends CPU
time on communication, but includes only communi-
cation processes if computation and communication
can be done independently.

Based on equation (1), we derive that the value of
dPc is the smallest positive root of the equation

x = dNc +
X

Pj2Pc

cj � dx=pje + dHc (x) (4)

The term dNc is the worst-case of the delay caused by a
communication process with a lower priority than Pc
on PEc. Because a communication process is assumed
to be non-preemptable, if it starts immediately (1 time
unit) before the request of Pc, it will continue until it
is �nished even though it has lower priority. De�ne
the set of communication processes with lower priority

than Pc on the same PE:
Nc = fPjjPEj = PEc; Pprtj < Pprtc;

Pj is a communication process.g

If Nc = �, dNc = 0. Otherwise,

dNc = max
Pj2Nc

(bj � 1) (5)

The function dHc (x) in equation (4) represents the
time interrupted through buses by some other com-
munication processes from other PEs. De�ne the set
of processes which use a bus connected to the PE for
Pc and may a�ect the total response time of Pc:

Hc = fPjjPEj 6= PEc; 9Pk 2 Pc such that
BUSj = BUSk and Bprtj > Bprtkg

For each process Pi in Hc, de�ne the set of processes
which can be preempted by Pi on the bus, and belong
to Pc.

Ei = fPjjPi 2 Hc; Pj 2 Pc;
BUSj = BUSi; Bprtj < Bprtig

The function dHc (x) in equation 4 is formulated as fol-
lows:

dHc (x) =
X

Pi2Hc

minf
X

Pj2Ei

dx=pje � dbj=pie;

d(x � dNc)=pieg � ci (6)

The formulation is special because the preemptive re-
lationship is not transitive when two resources|PE
and bus|are involved. In �xed-priority scheduling of
a single CPU, if process P1 can preempt P2, and P2 can
preempt P3, P1 is allowed to preempt P3 too. Suppose
P1 and P2 are communication processes and use the
same bus but di�erent PEs, while P2 and P3 use the
same CPU but P3 does not use buses. If P1 can pre-
empt P2 during bus transactions, and P2 can preempt
P3 on the CPU, P1 may not preempt P3 because they
use di�erent resources. Figure 3 demonstrates such
situations. For a process Pi 2 Hc, it can preempt a
process Pj in Ei at most dbj=pie times, where bj is the
longest time Pj stays on the bus and can be solved
from equation (2). The process Pj can occur during

the time interval dPc at most dx=pje times. Therefore,

Pi can a�ect dPc at most dx=pje � dbj=pie times. On
the other hand, in addition to the occurrences dur-
ing the interval dNc , the number of occurrences for Pi
cannot exceed d(x� dNc)=pie. Consequently, we use a
min function for these two formulas. Note that a min
function is a non-decreasing function, so �xed-point
iterations will still converge for equation (4).

4.3 The Delay of an Application Process

If the computation and communication cannot be
executed in parallel on a PE, the communication pro-
cesses can cause extra delay in the response time of
an application process when the delay estimation al-
gorithm visits it. The worst-case response time dAa for
an application process Pa is the smallest positive root

BUSm

PEm

BUSn

PEn

x

x

time

time

time

time

P1:

P2:

P3:

Figure 3: The execution of processes on a bus con-
nected with a PE in two cases. Suppose P2 has higher
priority than P3 on a PE, and P1 has higher priority
than P2 on a bus. Let x be the total response time
of P3. For PEm and BUSm, the number of times P1
a�ects the response time of P3 is dx=p2e � db2=p1e. For
PEn and BUSn, the number is dx=p1e.

of the equation

x = dNa + ca +
X

Pj2Pa

cj � dx=pje+ dHa (x) (7)

The de�nition of the set Pa is the same as that of Pc
in (3). Equation (7) is similar to equation (4), but the
computation time ca is included. The calculation of
dNa is similar to that of dNc in equation (5), and the
formulation of dHa (x) is similar to that in equation (6).

5 Sensitivity-Driven Synthesis

Our co-synthesis algorithm uses an iterative im-
provement strategy. At each step, the algorithm may
reallocate one process from one PE to another or cre-
ates a new PE for the application processes [20]; the
algorithm may also reallocate one message from one
bus to another or create a new bus. As in most
gradient-search methods, we compute a local sensi-
tivity: given the current design, we estimate how
much the system performance and cost will change
when a single process is reallocated. By the delay es-
timation algorithm in Section 4, we can get the value
of a task delay in the current solution and the delay
value after a reallocation to evaluate the reallocation.

5.1 Bus Scheduling

In our case, the deadline may not be equal to the
period, so the rate-monotonic priority assignment [10]
of priorities is not optimal. If the deadline is smaller
than or equal to the period for a process, the inverse-
deadline priority assignment [8] is optimal for one pro-
cessor. However, in our model the deadline is speci�ed

end-to-end for a whole task, not for individual pro-
cesses. Based on the priority prediction technique [20],
we develop a heuristic to use the inverse-deadline pri-
ority assignment for bus scheduling.

We de�ne the fractional deadline of a communi-
cation process|the portion of the task deadline which
a particular communication process must meet|as
follows. The performance analysis algorithm for the
worst-case task delay [19] calculates the latest initi-
ation time and latest termination time relative to
the start of a task for each process. Assign each pro-
cess a weight equal to its latest termination time minus
its latest initiation time. For each bus B, temporarily
assign weight zero for the set of processes JB allocated
on B in the task. Then apply the longest-path algo-
rithm backwards from the end of the task. The lat-
est required time of each process in JB is the hard
deadline the task minus the longest path weight of the
process. The calculation of latest required times is
similar to the technique in as-late-as-possible (ALAP)
scheduling of high-level synthesis [11]. The latest re-
quired time is the time before which the process must
�nish in order not to violate the task deadline when
the processes allocated on other PEs run in their worst
case.

If the bus arbitration scheme allows the assignment
of a priority for each message, the fractional deadline
di of each process Pi 2 J R is its latest required time
minus its latest initiation time. We can then order the
priority by di|the shorter the fractional deadline is,
the higher the priority is. When the bus arbitration
scheme assigns priorities to PEs only, and all the com-
munication processes on the same PE have the same
priority on the bus, the PEs on a bus are scheduled as
follows. For each PE R on the bus B and for each task,
de�ne J B

R as the subset of JB such that J B
R contains

only those processes which are allocated on R. Let
the largest of the latest required times for processes
in J B

R be the fractional deadline of all the commu-

nication processes in J B
R . Choose the tightest (small-

est) fractional deadline among the fractional deadlines
computed in all the task graphs as the deadline of the
PE. Schedule the PEs on the bus by assigning a higher
priority to a PE with smaller deadline.

5.2 Communication Synthesis

We proposed an algorithm to schedule and allocate
processes on PEs in [20], where we did not handle the
synthesis of communication links. Several modi�ca-
tions are required to incorporate communication costs
into that co-synthesis algorithm. First, in the initial
solution, implement a bus for each message. Because
we allocate a di�erent PE for each process in the initial
solution, there is a bus for each edge in a task graph.
When computing sensitivities, include communication
delays computed by the method in Section 4, and the

bus cost mentioned in Section 3. In addition to consid-
ering possible reallocation of a process to another PE,
consider also possible reallocation of a pair of PEs to
another bus. Choose either a process reallocation or
a communication reallocation according to sensitivity
analysis during each iteration. When no reallocation
remains feasible, try to create a bus, in addition to
a new PE. Compute the sensitivities for each possi-
ble bus type and each message. The reallocation with
highest sensitivity will be chosen. Make such an re-
allocation, delete and regenerate communication pro-
cesses according to the new allocation. Reschedule
the PEs and buses. These steps are repeated until no
reallocation is possible.

6 Experimental Results

We implemented our algorithm in C++ and per-
formed experiments on several examples. All exper-
iments were performed on a Sun Sparcstation SS20.
The results of all our experiments are summarized in
Table 6.

The �rst example, ex1 is a small example shown in
Figure 6. We assume the designer wants to reduce the
delay and the cost as much as possible, so the soft con-
straints and soft deadlines are set to zero to encourage
optimization whenever it is possible. The communica-
tion time is assumed to be proportional to the size of
data. Communication and computation cannot run in
parallel on all types of PEs. The embedded system ar-
chitecture, total cost and the satisfaction of real-time
deadlines after each iterative step are given in Table 6.

Our second and third examples are the second ex-
ample of Prakash and Parker [13]; their algorithm
works on a single task graph. We use their assumption
about communication cost and delay and that each PE
can perform computation and communication in par-
allel. However, we do not restrict the architecture to
use point-to-point communication links. In prakash-

parker-1, the hard cost constraint is 15; our result for
the task delay is 6 which is worse than, but similar to 5
in their result. In prakash-parker-2, the hard cost con-
straint is 12; our result for the task delay is 6 which is
the same as theirs. Their integer linear programming
approach is optimal but takes hours on these exam-
ples, while ours takes only a minute.

We also combine Prakash and Parker's two exam-
ples together and assign the periods as well as the
deadlines of 7 and 15 to the two tasks. The results are
given under prakash-parker-2. This example demon-
strates how our algorithm can co-synthesize frommul-
tiple disjoint task graphs, which ILP formulation can-
not handle.

a

b

c

d

e

f

period = 2807
hard deadline = 515

period = 789
hard deadline = 859

Hard cost constraint = 1800

Task graphs
4

2

9

(a)

PE type Cost Computation time

a b c d e f

X $800 179 95 100 213 367 75

Y $500 204 124 173 372 394 84

Z $400 210 130 193 399 494 91

(b)

Bus communication time Bus interface cost

type per data unit X Y Z

B1 2 36 19 30

B2 1 20 10 15

Figure 4: A small example ex1. (a) The task graphs
for two tasks, their periods and deadlines. The num-
ber below a process is the volume of data for transfer.
The dash line from b to f is an inter-task communica-
tion. (b) The computation time of each process and
the cost on each type of PE. (c) The communication
time per data unit and the bus interface cost on each
type of bus.

7 Conclusions

Communication is critical for the performance and
cost of distributed embedded systems. We have pre-
sented a new communication synthesis algorithm for
heterogeneous distributed systems of arbitrary topol-
ogy. In the future, we plan to consider more com-
munication protocols in our bus model. Algorithms
which analyze caching e�ects [9] can be used to adjust
available bus bandwidth. We believe that algorithms
such as this are an important tool for the practicing
embedded system designer.

References

[1] W. W. Chu and L. M.-T. Lan. Task allocation
and precedence relations for distributed real-time sys-
tems. IEEE Transactions on Computers, C-36(6),
June 1987.

Example Problem size The result CPU

#task #process #PE type #bus type #PE #bus cost time

ex1 2 6 3 2 3 2 $1765 10.63s

prakash-parker-1 1 9 3 1 4 2 $14.5 59.15s

prakash-parker-2 1 9 3 1 4 1 $12.0 56.79s

prakash-parker-3 2 13 3 1 3 1 $11.5 193.3s

Table 2: The problem size, the �nal result, and the CPU time of running our algorithm for each example.

Step embedded system architecture cost

1 (Y: e) (Z: a) (Z: b) (Z: c) (Z: d) $2645

(Z: f) (B1: a!b) (B1: b!c)

(B1: d!e) (B1: d!f) (B1: b!f)

2 (Y: e d) (Z: a) (Z: b) (Z: c) (Z: f) $2215

(B1: a!b) (B1: b!c) (B1: d!f)

(B1: b!f)

3 (Y: e d) (Z: b a) (Z: c) (Z: f) $1785

(B1: b!c) (B1: d!f) (B1: b!f)
4 (Y: e d) (Z: c b a) (Z: f) $1355

(B1: d!f) (B1: b!f)

5 (X: c) (Y: e d) (Z: b a) (Z: f) $2190

(B1: b!c) (B1: d!f) (B1: b!f)

6 (X: c f) (Y: e d) (Z: b a) $1765

(B1: b!c b!f) (B1: d!f)

7 (X: c f b) (Y: e d) (Z: a) $1765

(B1: a!b) (B1: d!f)

Table 1: The iterative optimization for ex1. After each
step, each PE or bus in the re�ned system architecture
is shown by its type, followed by a colon, and then
the processes or messages allocated on it are listed
from the highest priority to the lowest according to
the schedule.

[2] E.Barros, W. Rosenstiel, and X. Xiong. A method for
partitioning UNITY Language in hardware and soft-
ware. In Proceedings, European Design Automation
Conference, 1994.

[3] R. Ernst, J. Henkel, and T. Benner. Hardware-
software co-synthesis for microcontrollers. IEEE De-

sign & Test of Computers, 10(4), December 1993.

[4] R. K. Gupta and G. D. Micheli. Hardware-software
cosynthesis for digital systems. IEEE Design & Test

of Computers, 10(3), September 1993.

[5] C. J. Hou and K. G. Shin. Allocation of periodic task
modules with precedence and deadline constraints in
distributed real-time systems. In Proceedings, Real-

Time Systems Symposium, 1982.

[6] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic
scheduling algorithm: Exact characterization and av-
erage case behavior. In Proceedings, IEEE Real-Time
Systems Symposium, 1989.

[7] D. W. Leinbaugh and M.-R. Yamani. Guaranteed re-
sponse times in a distributed hard-real-time environ-
ment. In Proceedings, Real-Time Systems Symposium,
1982.

[8] J. Y.-T. Leung and J. Whitehead. On the complex-
ity of �xed-priority scheduling of periodic, real-time
tasks. Performance Evaluation, 2, 1982.

[9] Y.-T. S. Li and S. Malik. Performance estimation
of embedded software with instruction cache model-
ing. In Proceedings, IEEE International Conference

on Computer-Aided Design, 1995.

[10] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment. Journal of the Association for Computing Ma-
chinery, 20(1), Jan. 1973.

[11] M. C. McFarland, A. C. Parker, and R. Camposano.
The high-level synthesis of digital systems. Proceed-
ings of the IEEE, 78(2), February 1990.

[12] D.-T. Peng and K. G. Shin. Static allocation of pe-
riodic tasks with precedence constraints. In Proceed-
ings, International Conference on Distributed Com-

puting Systems, 1989.

[13] S. Prakash and A. C. Parker. SOS: synthesis of
application-speci�c heterogeneous multiprocessor sys-
tems. Journal of Parallel and Distributed Computing,
16, 1992.

[14] K. Ramamritham. Allocation and scheduling of com-
plex periodic tasks. In Proceedings, International
Conference on Distributed Computing Systems, 1990.

[15] K. Ramamritham and J. A. Stankovic. Scheduling
algorithms and operating systems support for real-
time systems. Proceedings of the IEEE, 82(1), Jan-
uary 1994.

[16] L. Sha, R. Rajkumar, and S. S. Sathaye. General-
ized rate-monotonic scheduling theory: A framework
for developing real-time systems. Proceedings of the
IEEE, 82(1), January 1994.

[17] K. G. Shin and P. Ramanathan. Real-time comput-
ing: A new discipline of computer science and en-
gineering. Proceedings of the IEEE, 82(1), January
1994.

[18] F. Vahid, J. Gong, and D. D. Gajski. A binary-
constraint search algorithm for minimizing hardware
during hardware/software partitioning. In Proceed-
ings, European Design Automation Conference, 1994.

[19] T.-Y. Yen and W. Wolf. Performance estimation for
real-time distributed embedded systems. In Proceed-
ings, IEEE International Conference on Computer

Design, 1995.

[20] T.-Y. Yen and W. Wolf. Sensitivity-driven co-
synthesis of distributed embedded systems. In Pro-

ceedings, 8th International Symposium on System
Synthesis, 1995.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

