
An Effective System Development Environment
based on VHDL Prototyping

Serafín Olcoz, Luis Entrena, Luis Berrojo
Design Technology Department. TGI S.A.
Velázquez 134-bis. 28006 Madrid (Spain)

Abstract

This paper presents the use of VHDL
prototyping as an effective basis for developing
electronic (hardware and software) systems.
VHDL simulation is the platform on which a
distributed environment for debugging the
hardware and the software, that is running on
the VHDL prototype, is built. To do it, the
natural monitoring and observing facilities
provided by a commercial VHDL simulator
have been enhanced. The new environment
supports the development of the complete
system from the different points of view
corresponding to the involved domains. To ease
the task of creating a virtual prototype of the
hardware, an enhancement of the natural
configuration capabilities of VHDL, is also
provided by a complementary tool that helps to
build the prototype.
The use of this new environment implies a new
ESDA methodology.

1. Introduction

The main feature of VHDL, [1], is that it allows
to describe the behavior of a system by means of
simulating its response to certain set of stimuli
during a predetermined window time. In order
to perform a simulation, a description of the
Unit Under Test (UUT) and the unit that
generates the tests, the Test Bench (TB) or
Stimuli Generator (SG), is needed, see figure 1.
The tests provided to the UUT use to be an
abstraction of its environment. Once the UUT
has been tested, the SG has no more use in the
design process of the electronic system.
However, in the VHDL Virtual Prototyping, [2-
4], approach there is a complete working model
of all hardware components, see figure 2.
Because in system design it is not just the

design, but also the environment, that counts,
the specific environment of the system is also
part of the prototype.

In the virtual prototype the environment of the
UUT is a specific functional description instead
of an abstract one. The TB is fuzzed among
parts of it. With this approach, the part of the
VHDL description that corresponds to the UUT
only depends on the part of the system on which
the designer wants to be focused on.

The designer can identify the part of the model
under study (dark units in figures 1 and 2).
Obviously, the rest of the description
corresponds to the TB. So, when the interest of
the designer changes, it is possible to consider a
different part of the model as the UUT without
modifying the description of the complete
system. This way, VHDL is used as a language
for Virtual Prototyping.
The essential difference between the verification
environment, figure 1, and the virtual
prototyping, figure 2, is that in a virtual

Stimuli

Response

Stimuli Generator (SG) Unit Under Test (UUT)

Workbench

Figure 1.- VHDL Workbench.

Workbench

Figure 2.- VHDL Workbench.

prototype there is no question of an attempt at
completeness of the working model.
Completeness also means that the software part
of the system, if any, is also included in the
VHDL Prototype. The part of the SG that is not
included in the hardware models of the system,
figure 2, is kept as pure stimuli. These stimuli
can be interpreted as the machine code and then,
from the point of view of the system, the
simulation of the VHDL Virtual Prototype
corresponds to the "execution" of the software
on the VHDL model of the hardware. This way,
VHDL Virtual Prototyping can be considered as
an effective technique to system prototyping.
In practice, this approach is supported by a
special VHDL component that reads a VHDL
file containing the machine code coming from
the previous compilation/linking of the software.
This approach addresses the necessity to tackle
on-chip system development in the same way
on-board prototyping was classically used. Next
step of this approach is to include an interface
with the environment in which the electronic
system is embedded (e.g., a mechanical system,
[5]).
The paper is organized as follows. Section 2
presents an effective methodology for systems
development based on VHDL Virtual
Prototyping. Section 3 presents the system
development environment that supports this new
methodology. Finally, section 4 presents the
conclusions.

2. An Effective Methodology for
System Development

Figure 3 shows the classical development cycle
followed by system engineers. After the
hardware and software partitioning, the system
designer disappears from this development cycle
until all the components have been completely
developed. The system designer appears later on
to perform the integration and validation of
these components against the system
requirements.

This cycle originated from the existing gap
between the hardware and software development
cycles. This gap causes the serialization of the
system debugging: the software can be debugged
only when the hardware (free of bugs) is ready.
The VHDL Virtual Prototyping enables a more
effective systems development cycle, figure 4. In
this cycle, hardware and software can be
concurrently debugged. In fact, both parts of the
system are debugged on the same platform: the
VHDL prototype. This improved cycle implies a
new methodology for systems development. In
this methodology, the hardware and software
debugging can be done on the Virtual Prototype,
closing the gap between both worlds.

This methodology relies upon two pillars: The
availability of system components libraries and
the extension of the existing tools in each
domain to create the needed ESDA (Electronic
Systems Design Automation) tools.

2.1. Library-Based Approach

The VHDL Virtual Prototyping enables a
library-based systems-development approach.
Libraries allow system engineers to rapidly build
a simulatable prototype of their system.

System Requirements

Hardware and Software Partitioning

Hardware Simulation and Synthesis Software Coding and Debugging

Software Debugging

Hardware Software Integration

Hardware Prototype

Figure 3.- Classical System Development Cycle.

System Requirements

Hardware and Software Partitioning

Hardware Simulation and Synthesis Software Coding and Debugging

Hardware and Software Debugging

on Hardware Virtual Prototype

Hardware Software Integration

Figure 4.- Improved System Development Cycle.

Maximum productivity is achieved when the
majority of the system building blocks can be
selected from a library and quickly composed in
a complete and working prototype.
To support this new methodology a set of VHDL
models (SPARC, [6],integer and floating-point
units, memory management unit, cache
memories, interrupt controllers, timers and
counters, USARTs, IOs, and so on) are under
development at TGI in several industrial
projects: IDeASG,SMILES, ECUO and
SIMAIDC.

The result of the IDeAS project was the silicon
implementation, fabricated by ES2 in 0.7 µm
CMOS TML technology, of a SPARC Integer
Unit from a VHDL description, [7]. The chip
and the VHDL Virtual Prototypes used to
develop it, were certified as SCD by SPARC Intl
(January 1994) using the same test suites, [8].
This library-approach promotes effective design
reuse of the different parts of the system. These
parts, corresponding to different domains of the
system (i.e., the ASIC, the software, and so on),
are developed in specialized environments. The
availability of models in each domain is crucial
in order to explore the system design space
quickly and efficiently.
Finally, all parts must be integrated to compose
the complete system and for this task new tools
and a new ESDA development environment are
needed.

2.2. ESDA Tools

It is not necessary to start these tools from
scratch. The already existing tools for each
specific domain (hardware, software, mechanics,
etc.) can be extended in order to cover the
system integration arena. The first needed
extension is to allow the integration of other
domains into every one of them. The second
extension is to enable the communication
between the domain-specific environments.

G IDeAS project was an internal project of TGI partially

supported by GAME program (Special action of ESPRIT III
to promote the microelectronics in Spain).

S SMILE is an OMI (Open Microprocessor Systems
Inititiave) ESPRIT III Project coordinated by MATRA MHS.

O ECU is an OMI (Open Microprocessor Systems
Inititiave) ESPRIT III Project coordinated by TGI.

C SIMAID is a (Computer_Integrated manufacturing)
ESPRIT III Project coordinated by SIEMENS.

These communication will provide the
distributed environment for developing systems.

2.2.1. The Functional Extensions. The
functional extensions to the existing design tools
will allow to deploy the different design
activities (simulation, debugging, profiling and
so on) through the different domains (VHDL,
Hardware and Software) of the system, figure 5.

The VHDL simulator can be extended in order
to be considered as a hardware simulator in
which the complexity of the information coming
from the VHDL description is filtered in order
to keep just the relevant information to the
hardware designer, not to the VHDL designer.
Following this approach the execution on the
simulated hardware can also be interpreted in
software terms, extending this way the
simulation to the software domain. These
extensions can be performed by extending the
monitoring facilities currently provided by a
VHDL simulator to allow the hardware and
software debugging.
The relationship between the hardware and
software profiling can be also considered under
this point of view. However, the extension of the
profiling activity in order to cover the range
from software to the VHDL models is not
considered in this approach. This profiling
activity is not currently applied to the VHDL
models and it is not very interesting from the
systems designer point of view.

2.2.2. The Communications in a Distributed
Environment. To allow the design activity
deployment through the different environments
corresponding to the involved domains a
communication mechanism must be defined.
This mechanism must interconnect a distributed
environment in a pipeline-like way that allows
the translation of information between the

Design Activity

DomainSoftwareHardwareVHDL

Simulation

Debugging

Profiling

Figure 5.- Design Activity Deployment.

software, the hardware and the VHDL
descriptions, figure 6.
However, this pipeline must not be straight to
avoid the excess of information exchange
through the network. To obtain better
performance, the hardware-VHDL part of the
pipeline has two ports to directly connect the
VHDL and the hardware and also to allow the
transparent communication between the
software and the VHDL, figure 6.

Since the software domain is on top of the
hardware domain a debugging/profiling action
in the software domain is transformed into a set
of debugging actions in the hardware domain,
which in turn are transformed into a set of
VHDL debugging actions over the underlying
VHDL models.
Next section shows how these communication
mechanisms and the needed functional
extensions has been developed in an industrial
environment.

3. The System Development
Environment

Figure 7 shows the main components of the
ECU Development System (EDS) that is under
development in the ECU (Embedded Control
Unit) Project, [9]. In the EDS, the hardware is
first configured with the help of a Hardware
Configuration Builder (HCB) tool and the
software is generated with the Software
Development System (SDS). The software is
loaded into the hardware to create the ECU
Virtual Prototype (EVP). Then the dynamic
behavior of the EVP can be executed, debugged
and profiled from both the software and
hardware points of view. To this purpose we can
use software development tools (SDTs) and
hardware debug and profile tools (HDPTs).

The following subsections presents a more
detailed description of the EDS toolset, paying
more attention to the HCB and HDPT
description because the SDS, specially the
SDT, was already presented in [4].

3.1. Hardware Configuration

In order to exploit the advantages provided by
this systems design approach, VHDL Virtual
Prototypes shall be generated easily and in a
user-friendly manner. This is the task assigned
to the Hardware Configuration Builder (HCB).
This tool has two main features, figure 8:
Creating a hardware configuration and allowing
the rest of the EDS to analyze the hardware
configuration chosen by the systems designer.
The HCB can be considered as a layer on top of
a Hardware Configuration Library (HCL).

3.1.1. Hardware Configuration Library. In
hardware systems configuration, the hardware
models are selected and instantiated taking into
account the role they play in the system.
Hardware components are previously classified
according to their functionality. This
functionality has to be recognized at the time of
configuring a system. To configure the
hardware, some additional information about
the modules is required that is not usually
provided within their VHDL descriptions. This
information is stored in the HCL, which can be
viewed as an extension of a VHDL library, see
figure 8.
The HCL contains a catalog of all components,
their corresponding views together with the path
to the actual data files. The HCL has a HCL
Browser that allows to navigate through the
stored configurations or inside one of them.

Software

Hardware

VHDL

Software

VHDL

Hardware

Figure 6.- Communicating a distributed toolset.

Hardware Software

HCB

SDS

HDPT

EVP

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AA
AA

AA
AAAAA
AAA

AA
AAA

A

AA
AA

AAAA
AA
A

AAA
AAA
A
A
A
A
A

AA
AA

Figure 7.- The ECU Development System (EDS).

The information regarding to the components is
provided by the HCL user/supplier. Each HCL
object is defined by a name and a set views:
• A VHDL view, that defines the VHDL
model of the object. This view is the core view
to which the others views have been added.
Some times, a component can have associated
more than one VHDL view (i.e., behavioral,
synthesizable, gate level, etc.).
• A hierarchical hardware view, that
defines the subelements that integrate this
component and provides the meaning of the
object from the hardware point of view, such as
registers, bus sizes and so on. This view can be
considered the result of filtering the VHDL
information.
• A Testing view, that defines the test
environment of the object. Provides the VHDL
description corresponding to the test bench of
the component.
• A schematic view, that defines the
schematic symbol associated to the object. This
view can be used by a graphical entry and is
also linked to a structural VHDL description of
the component.
• A connection view, that defines the
connectivity properties of the object.
• An implementation view, that defines
implementation properties of the object, such as
manufacturing technology, frequency range,
area and so on. This view could also be
decompose into several other views.
All hardware components have at least a VHDL
view. This view is needed to provide a link with
the rest of the EDS tools, see figure 8.
In the HCL, the components are organized
according to their configuration properties with
an object-oriented approach. A hardware
component view can be a file belonging to a
commercial database.
3.1.2. Hardware Configuration Creation.
Hardware alternatives are configured by creating
configuration templates and instantiating the
modules in the HCL. The process to create a
new configuration or a new module may
involve several steps:
1. Creation of a configuration template. A
configuration template is an incompletely
specified configuration, that can be further
specified in several ways to achieve different
versions with different properties.
2. Instantiation and configuration of the
modules in a configuration template.

3. Connection of the modules.

3.1.3. Hardware Configuration Analysis.
When required, the definition of a hardware
component or a complete hardware
configuration can be extracted from the HCL to
generate a VHDL description that is
downloaded into the VHDL Library. The
corresponding VHDL configuration will
constitute the EVP that can be analyzed by
means of the other tools of the EDS. As result
of this analysis, the configuration can be
validated or sent back to the HCB in order to
modify it in an iterative way.

3.2. The Extended VHDL Simulation

In order to support system development, the
VHDL simulator has to be extended to interface
with the various domains involved in a system,
and to communicate with other tools in a
distributed environment.
In the EDS, three main domains are handled,
figure 9: VHDL domain, hardware domain and
software domain. In addition, other domains
considered, such as the mechanical domain,
require special adapters to the VHDL domain.
In each domain, the user needs tools to analyze
the behavior of the entire system. This function
is typically assigned to debuggers and profilers.
Thus, we need a software debugger, a hardware
debugger and of course, a VHDL debugger.

HCL

Hardware Configuration Buider Interface

Create a Hardware Configuration Analyze the Hardware Configuration

VHDL

EDS

(SDS & HDPT)

Figure 8.- The Configuration Creation and
Analysis Flow.

Software

VHDL

Hardware

Mechanical

Adapter
Mechanical

Simulator

Software

Debugger

Hardware

Debugger

VHDL

Debugger

Figure 9.-The Functional Model Mapping

The internal structure of the extension of the
VHDL simulator (EDS Core) is shown in figure
10. It consists of two basic modules: the
Extended Simulation Module, consisting of the
Model Mapping (MM) and the Monitoring &
Observing, and the Communication Modules,
consisting of the Communication Server and the
Communication interface. he Communication
Module provides the simulator with an IPC
mechanism. This extension includes a
communication server that is able to manage
multiple requests from different tools (e.g.,
GDB, Mechanical simulator).

The MM layer performs the mapping between
the hardware/software worlds and the elements
in the underlying VHDL models, figure 10.
When a request involving hardware items
arrives to the MM, the request is transformed
into a request (or a set of requests) to the MO.
This request(s) are in terms of the underlying
VHDL model.
The Monitoring & Observing supports the
control and the observation of the virtual
prototype execution. At this layer, the virtual
prototype is seen from the VHDL point of view.
The services provided by this layer are similar to
those at the MM, but at a lower level of
abstraction: Access to the values of VHDL
objects; Access to C or VHDL routines that
implement specific unit services; VHDL
breakpoint services; Collection of profile
information.
The EDS Core interfaces with the simulator by
means of the application procedural interface
(API). Most commercial simulators provide an
API to link C programs to the VHDL models.
Although this interface is usually designed to
allow mixed simulation of VHDL models and C

models, we have decided to use it for a different
purpose: to extend the functionality of the
simulator.
A discussion about the kind of support provided
for the these features by several commercial
VHDL simulators can be found in [2-3].

3.3. The Software Development System

The SDS consists of a complete set of software
development tools (compilers for various
languages, assemblers and a linkers/loaders,

debuggers, and profiling tools, [10])
integrated into the EDS. In the ECU project
we are extending these tools to take advantage
of virtual prototyping. The extensions are of
two types: (a) improved support of existing
functionality; (b) new functionality that is
possible when the software is executed in a
virtual prototype.

SDTs need the addition of specific software to
control and observe the execution of the
application software on the target
(local/remote) hardware. This specific
software is executed by the target along with
the application software. Since the platform is
shared, the execution of the software must be
interrupted to attend debugging actions and to

collect information to be postprocessed later on.
This is the typical intrusive software debugging
approach.
In a virtual target, the development-support
software is part of the extended simulator (EDS
Core) instead of an extension of the application
software. This approach allows to control and
observe the execution of the software on the
virtual prototype in a non-intrusive manner, [4].

3.4. Hardware Debug & Profile

The Hardware Debug & Profile (HDPT)
provides a hardware model of the virtual
prototype which abstracts the designer from the
details of the VHDL description. The hardware
model is defined upon configuration by the
HCB.
The HDPT, through the extended VHDL
simulator, provides the following services:

• Access to the values of hardware
signals, register contents, memory contents, etc.
These are mapped at this layer into the values of
the VHDL objects of the VHDL description of
the virtual prototype.

VHDL Sim

User IF

Kernel

Dynamic Library
API

UNIX

EDS Core

Communication IF

Communication Server

Model Mapping

Monitor & Observing

Closing procedure

Error Handler

Elaboration

Evaluation

Writing Output Data

Reading Output Data

Communication Module

Extended Simulator Module

Extended VHDL Simulator

Software Development System

Figure 10.-The VHDL Extended Simulator

• Access to specific services of the virtual
prototype modules. These services are
commonly used to set a module to a particular
hardware state (e.g., reset state). They are
implemented by C routines attached to the
virtual prototype components.

• Control of the execution by setting
breakpoints based on hardware conditions.
The HDPT is the debugger/profiler interface for
the hardware domain. The hardware designer is
allowed to control and observe the execution of
the Virtual Prototype from the point of view of
the hardware of the system.

4. Conclusions

The use of VHDL for prototyping represents a
expansion over its original goals, that allows an
effective system development methodology. This
methodology is today possible due to the market
acceptance of the IEEE standard, the enhanced
performance of VHDL based tools (simulators,
synthesizers, etc.) and intrinsic description
capabilities of the language (abstract data types,
support for different description styles at
different abstraction levels, design library
management and maintenance, design
parameterization, etc.).
The execution performance obtained, [2], is
sufficient to allow the integration of software
and hardware for light software tasks.
This approach is based on the availability of
system components (VHDL, hardware and
software) libraries and the extension of the
existing tools in each domain to create the
needed ESDA (Electronic Systems Design
Automation) tools.
With this approach, an effective environment for
developing systems based on VHDL Virtual
Prototyping has been presented.

References

[1] IEEE Standard VHDL Language Reference
Manual, IEEE Standard 1076-1993, The IEEE,
New York, NY,1993.

[2] S. Olcoz, L. Entrena, L. Berrojo, J. Goicolea,
"Reinvented Prototyping on VHDL". VIUF
Spring Conference. San Diego. April 1995.

[3] S. Olcoz, L. Entrena, L. Berrojo, J. Goicolea.
"Prototyping: the Bottom Line of VHDL System
Simulation". Proc. Workshop on Libraries,
Component Modelling and Quality Assurance.
Nantes (France). April, 1995.

[4] S. Olcoz, L. Entrena, L. Berrojo. "VHDL Virtual
Prototyping". 6th IEEE Int´l Workshop on Rapid
System Prototyping. Chapel Hill, NC, June 1995.

[5] S. Olcoz, L. Entrena, L. Berrojo. "A VHDL
Virtual Prototyping Technique for Mechatronic
Systems Design". International Conference in
Recent Advances in Mechatronics. Istambul,
August 1995.

[6] "SPARC Architecture". SPARC International
Inc, Prentice Hall, 1991.

[7] S. Olcoz, J. Goicolea, "VHDL modeling SPARC
Architecture", EuroSPARC-92, Madrid, October,
1992.

[8] R. Usselmann. "MicroSPARC Instruction Set
Architecture Test Suite Manual". SPARC
International, Inc. Rev. 2.0. March, 1993.

[9] J. Goicolea, R. Guzmán, M. A. Salas, S. Olcoz,
D. Navarro, A. Roy, "System Designers
Approach to the Development of Embedded
Systems based on VHDL", Proc. of the APCHDL-
94, pp. 135-138, Toyohashi, Japan, October,
1994.

[10]GNU User's Guide. Cygnus Support 1992.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

