An Effective System Development Environment
based on VHDL Prototyping

Serafin Olcoz, Luis Entrena, Luis Berrojo
Design Technology Department. TGl S.A.
Veldzquez 134-bis. 28006 Madrid (Spain)

Abstract

This paper presents the use ofHDL
prototyping as an effective basis for developing
electronic (hardware and software) systems.
VHDL simulation is the platform on which a
distributed environment for debugging the
hardware and the software, that is running on
the VHDL prototype, is built. To dd, the
natural monitoring and observing facilities
provided by a commercial VHDL simulator
have been enhanced. The new environment
supports the development of the complete
system from the different points of view
corresponding to the involved domains. To ease
the task of creating a virtual prototype of the
hardware, an enhancement of the natural
configuration capabilities of VHDL, is also
provided by a complementary tool that helps to
build the prototype.

The use of this new environment implies a new
ESDA methodology.

1. Introduction

The mainfeature of VHDL,[1], is that itallows

to describeghe behavior of aystem bymeans of
simulating its response to certain set of stimuli
during a predeterminedindow time. In order
to perform a simulation, a description of the
Unit Under Test(UUT) and the unit that
generates the tests, the Test Bench (TB) or
Stimuli Generator (SG), is needexte figure 1.
The tests provided to thBUT use to be an
abstraction of its environment. Once the UUT
hasbeen testedhe SG has nmore use in the
design process of the electronic system.
However, inthe VHDL Virtual Prototyping, [2-
4], approach there is @mplete working model
of all hardware components, see figure 2.
Because in systendesign it is not just the

design, but also the environmeiat counts,
the specific environment ofhe system is also
part of the prototype.

Stimuli

Response

Stimuli Generator (SG) Unit Under Test (UUT)

Workbench

Figure 1.- VHDL Workbench.

In the virtual prototypethe environment of the
UUT is a specifidunctional description instead
of an abstract one. The TB is fuzzed among
parts of it. With this approach, the part of the
VHDL descriptionthat corresponds to the UUT
only depends othe part of thesystem on which
the designer wants to be focused on.

—

Workbench

Figure 2.- VHDL Workbench.

The designer caitentify the part of thenodel
under study (dark units in figures land 2).
Obviously, the rest of the description
corresponds to the TEo, wherthe interest of
the designer changes, itpsssible to consider a
different part of themodel as th&JUT without
modifying the description of theomplete
system.This way, VHDL is used as &nguage
for Virtual Prototyping.

The essentiadlifference betweethe verification
environment, figure 1, and the virtual
prototyping, figure 2, isthat in a virtual

prototypethere is no question of an attempt at
completeness of the working model.
Completeness also meathst thesoftwarepart

of the system, if any, is also included in the
VHDL Prototype.The part of the SG that is not
included in the hardwarmmodels ofthe system,
figure 2, is kept as pure stimuli. These stimuli
can be interpreted as the machine code and then,
from the point ofview of the system, the
simulation of the VHDL Virtual Prototype
corresponds to the "execution" of teeftware
on theVHDL model of the hardwar&his way,
VHDL Virtual Prototypingcan be considered as
an effective technique to system prototyping.

In practice, this approach isupported by a
special VHDL componentthat reads aVHDL
file containingthe machineode coming from
the previous compilation/linking of the software.
This approactaddresses theecessity to tackle
on-chip system development ithe same way
on-board prototyping was classically used. Next
step ofthis approach is to include anterface
with the environment in which the electronic
system is embedddé.g., a mechanicalystem,
[5]).

The paper is organized dsllows. Section 2
presents areffective methodology for systems
development based on VHDL Virtual
Prototyping. Section 3 presents thsystem
development environment that suppdhis new
methodology. Finally, section 4 presents the
conclusions.

2. An Effective Methodology for
System Development

Figure 3 showshe classicatlevelopmentycle
followed by system engineers. After the
hardware andoftwarepartitioning, thesystem
designer disappears frattis developmentycle
until all the components have been completely
developedThe systemdesigner appears later on
to perform the integratiorand validation of
these components against thesystem
requirements.

| System Requirements |

N

|Hardware and Software Partitioninl;

N N

|Hardware Simulation and Symhesi* | Software Coding and Debugging |

Hardware Prototype
| Software Debugging |

)

| Hardware Software Integration |

Figure 3.- Classical System Development Cycle.

This cycle originated from the existing gap
between the hardwasndsoftware development
cycles. This gapcauseshe serialization of the
system debugging: the softwaran bedebugged
only when the hardware (free of bugs) is ready.
The VHDL Virtual Prototyping enables a more
effective systems development cydigure 4. In
this cycle, hardware andsoftware can be
concurrently debugged. In fact, bgthrts of the
systemare debugged orthe same platform: the
VHDL prototype.This improvedcycleimplies a
new methodology for systems development. In
this methodology,the hardware ansoftware
debugging can be done on the Virt@abtotype,
closing the gap between both worlds.

| System Requirements |

L

|Hardware and Software Partitioninl;

\))

|Hardware Simulation and Symhesi*s | Software Coding and Debugging

N N

Hardware and Software Debugging
on Hardware Virtual Prototype

N

| Hardware Software Integration |

Figure 4.- Improved System Development Cycle.

This methodology relies upotwo pillars: The
availability of system componenltibraries and
the extension of the existingools in each
domain to create the needed ESDA (Electronic
Systems Design Automation) tools.

2.1. Library-Based Approach

The VHDL Virtual Prototyping enables a
library-based systems-development approach.

Libraries allow system engineers to rapidly build
a simulatable prototype oftheir system.

Maximum productivity is achieved when the
majority of the systembuilding blocks can be
selected from a librargnd quickly composed in
a complete and working prototype.

To support this new methodology a seVeiDL
models (SPARE, [6],integer andloating-point
units, memory management unit, cache
memories, interrupt controllers, timers and
counters, USARTS, 10sand soon) are under
development at TGl in severaindustrial
projects: IDeA§,SMILES, ECWP and
SIMAID ¢

The result of thdDeAS project waghe silicon
implementation, fabricated by ES2 in Qum
CMOS TML technology, of a SPARC Integer
Unit from a VHDL description, [7]. The chip
and the VHDL Virtual Prototypes used to
develop it, were certified as SCD by SPAR(
(January 1994) using the same test suites, [8].
This library-approactpromotes effectivaesign
reuse of the different parts of tlsgstem. These
parts, corresponding to different domains of the
system(i.e., the ASIC, thesoftware,and soon),
aredeveloped in specializeghvironments. The
availability of models in each domain is crucial
in order to explore thesystem design space
quickly and efficiently.

Finally, all parts must be integrated compose
the complete systerandfor this tasknew tools
and anew ESDA development environment are
needed.

2.2. ESDA Tools

It is not necessary tostart thesetools from
scratch. The already existingpols for each
specific domain (hardware, software, mechanics,
etc.) can be extended in order tover the
system integration arena. The firsneeded
extension is to allowthe integration of other
domains intoevery one of them. Theecond
extension is to enable the communication
between the domain-specific environments.

G Deas project was an internal project of TGI partially
supported byGAME program (Special action &SPRIT Il
to promote the microelectronics in Spain).

S SMILE is an OMI (Open Microprocessor Systems
Inititiave) ESPRIT Il Project coordinated by MATRA MHS.

O Ecu is an OMI (Open Microprocessor Systems
Inititiave) ESPRIT 1l Project coordinated by TGI.

C sIMAID is a (Computer_Integrated manufacturing)
ESPRIT Il Project coordinated by SIEMENS.

These communication will provide the
distributed environment for developing systems.

2.2.1. The Functional Extensions. The
functional extensions to the existing desigals
will allow to deploy the different design
activities (simulation, debugging, profiling and
so on) through the different domaigHDL,
Hardware and Software) of the system, figure 5.

DesingActivity |
]
[]
Profiling | —
—
. []
Debugging ; I !
—
)) [] | L]
Simulation —
VHDL Hardware Software Domain

Figure 5.- Design Activity Deployment.

The VHDL simulator can be extended in order
to be considered as a hardware simulator in
which thecomplexity ofthe information coming
from the VHDL description is filtered in order
to keep justthe relevant information to the
hardware designer, not to thHDL designer.
Following this approach thexecution on the
simulated hardware can also be interpreted in
software terms, extending this way the
simulation to the software domain. These
extensions can be performed by extending the
monitoring facilities currently provided by a
VHDL simulator to allowthe hardware and
software debugging.

The relationshipbetweenthe hardware and
software profilingcan be also considered under
this point ofview. Howeverthe extension of the
profiling activity in order tocover the range
from software tothe VHDL models is not
considered inthis approach. This profiling
activity is not currently applied tthe VHDL
modelsand it is notvery interesting from the
systems designer point of view.

2.2.2. The Communications in a Distributed
Environment. To allow the desigractivity
deploymentthrough the different environments
corresponding to theinvolved domains a
communication mechanism must be defined.
This mechanism must interconnect a distributed
environment in a pipeline-likevay that allows
the translation of informationbetween the

software, the hardware and théHDL
descriptions, figure 6.

However, this pipeline must not be straight to
avoid the excess of information exchange
through the network. To obtainbetter
performance, the hardware-VHDpart of the
pipeline hastwo ports to directly connect the
VHDL and the hardware aradso to allow the
transparent communication between the

software and the VHDL, figure 6.

Software
A

Hardware

Software

SiCiSics

Hardware

Figure 6.- Communicating a distributed toolset.

Since thesoftware domain is on top of the
hardware domain a debugging/profiling action
in the softwaredomain is transformed into a set
of debugging actions in the hardware domain,
which in turn are transformed into a set of
VHDL debugging actions ovethe underlying
VHDL models.

Next section shows how these communication
mechanisms and the needed functional
extensionshas been developed in aimdustrial
environment.

3. The System
Environment

Development

Figure 7 showsthe maincomponents of the
ECU Development System (ED8)at is under
development inthe ECU (Embedded Control
Unit) Project, [9]. Inthe EDS, the hardware is
first configured with the help of a Hardware
Configuration Builder (HCB) tool and the
software is generated withthe Software
Development System (SDSYhe software is
loaded into the hardware to create the ECU
Virtual Prototype (EVP).Then the dynamic
behavior of the EVP can lexecuted, debugged
and profiled from both the software and
hardware points ofiew. Tothis purpose we can
use software development tools (SDTs) and
hardware debug and profile tools (HDPTSs).

<

Hardware

EVP

Figure 7.- The ECU Development System (EDS).

The following subsections presents a more
detailed description of the EDS toolset, paying
more attention to theHCB and HDPT
description becaus¢he SDSspecially the
SDT, was already presented in [4].

3.1. Hardware Configuration

In order to exploit the advantages provided by
this systems design approach, VHDL Virtual
Prototypes shall be generated easily and in a
user-friendly manner. This is the task assigned
to theHardware Configuration Builde(HCB).
This tool has two main features, figure 8:
Creating a hardware configuration and allowing
the rest of the EDS to analyze the hardware
configuration chosen by the systems designer.
The HCB can be considered as a layer on top of
a Hardware Configuration Library (HCL).

3.1.1. Hardware Configuration Library. In
hardware systemsconfiguration, the hardware
modelsare selectedcand instantiated taking into
account the rolethey play in the system.
Hardware components apeviously classified
according to their functionality. This
functionality has to beecognized at the time of
configuring a system. To configure the
hardware, some additional information about
the modules is required that is not usually
provided within their VHDL descriptions. This
information is stored in the HCL, which can be
viewed as an extension of a VHDL library, see
figure 8.

The HCL contains a catalog a@fll components,
their correspondingiewstogether with the path
to the actual data files. ThdCL has a HCL
Browser that allows to navigatethrough the
stored configurations or inside one of them.

The information regarding to the components is
provided by the HCL user/supplier. Each HCL
object is defined by a name and a set views:

. A VHDL view, that defines th&/HDL
model of the object. This view is the core view
to which the others views have been added.
Some times, a component can have associated
more than one VHDL viewi.e., behavioral,
synthesizable, gate level, etc.).

. A hierarchical hardware view, that
defines the subelements that integrate this
component and provides the meaning of the
object from the hardware point of view, such as
registers, bus sizes and so on. This view can be
considered the result of filtering theéHDL
information.

. A Testing view, that defines the test
environment of the object. Provides tWelDL
description corresponding to the test bench of
the component.

. A schematic view, that defines the
schematic symbol associated to the object. This
view can be used by a graphical entry and is
also linked to a structural VHDL description of
the component.

. A connection view, that defines the
connectivity properties of the object.
. An implementationview, that defines

implementation properties of thabject,such as
manufacturing technology frequency range,
area and so on. Thisiew could also be
decompose into several other views.

All hardware components have at leastHDL

. Hardware Configuration Buider Interface
view. This view is needed to provide a link with

the rest of the EDS tools, see figure 8.

In the HCL, the components are organize
according to their configuration properties witl
an object-oriented approach. A hardwar
component view can be a file belonging to

commercial database.

3.1.2. Hardware Configuration Creation.

3. Connection of the modules.

3.1.3. Hardware Configuration Analysis.
When required, the definition of a hardware
component or a complete hardware
configuration can be extracted from the HCL to
generate a VHDL description that s
downloaded into the VHDL Library. The
corresponding VHDL configuration will
constitute the EVP that can be analyzed by
means of the other tools of the EDS. As result
of this analysis, the configuration can be
validated or sent back to the HCB in order to
modify it in an iterative way.

3.2. The Extended VHDL Simulation

In order to supportsystem development, the
VHDL simulator has to bextended to interface
with the various domainmivolved in a system,
and to communicate with othertools in a
distributed environment.

In the EDS, threemain domains are handled,
figure 9: VHDL domain, hardware domain and
software domain. In addition, other domains
considered, such as the mechanical domain,
require special adapters to the VHDL domain.
In each domain, the user neddsls to analyze
the behavior of the entirgystem.This function

is typically assigned to debuggersd profilers.
Thus, we need aoftware debugger, lrardware
debugger and of course, a VHDL debugger.

T | —

| Create a Hardware Configuration |

| Analyze the Hardware Configuration |

Hardware alternatives are configured by creatinigigure 8.- The Configuration Creation and

configuration templatesand
modules inthe HCL. The process to create a
new configuration or a new module may
involve several steps:

1. Creation of a configuration template. A
configuration template is an incompletely
specified configuration, that can be further
specified in several ways to achieve different
versions with different properties.

2. Instantiation and configuration of the
modules in a configuration template.

instantiating theAnalysis Flow.

Hardware
Debugger

Software
Debugger

T

Software

Hardware

VHDL
Debugger

Mechanical

Mechanical |
| Adapter

Simulator

VHDL |

Figure 9.-The Functional Model Mapping

The internal structure of thextension of the
VHDL simulator (EDS Core) is shown in figure
10. It consists oftwo basic modules: the
Extended Simulation Module, consisting of the
Model Mapping (MM) and the Monitoring &
Observing,and theCommunication Modules,
consisting of the Communication Sengd the
Communication interface. he Communication
Module providesthe simulator with an IPC
mechanism. This extension includes a
communication servethat is able to manage
multiple requests from different tools (e.g.,
GDB, Mechanical simulator).

—(User IF)— Extended VHDL Simulator EDS Core
Z - Extended Simulator Module
Writing Output Data ——> " -
- Monitor & Observing
Evaluation
Kernel N Reading Output Data ——> | Model Mapping |
Elaboration
Communication Module
| Error Handler | | Communication Server |
| Closing procedure | | Communication IF |
Dynamic Library
HDL Sim API

0

Software Development System

Figure 10.-The VHDL Extended Simulator

The MM layer performs the mappirgetween
the hardware/softwareorlds and theelements

in the underlyingVHDL models, figure 10.
When a request involving hardware items
arrives to the MM, the request is transformed
into a request (or a set of requests) to the MO.
This request(s) are in terms of the underlying
VHDL model.

The Monitoring & Observing supports the
control and theobservation ofthe virtual
prototype execution. Athis layer, the virtual
prototype is seen froitine VHDL point of view.
The services provided by this layare similar to
those at the MM, but at dower level of
abstraction: Access tothe values of VHDL
objects; Access to C or VHDL routingbat

implement specific unit services; VHDL
breakpoint services; Collection of profile
information.

The EDS Core interfaces with the simulator by
means of the application procedural interface
(API). Most commercial simulators provide an
API to link C programs to th&HDL models.
Although this interface isisually designed to
allow mixed simulation o%/HDL modelsand C

models, we have decided to use it for a different
purpose: to extend the functionality of the
simulator.

A discussion aboute kind of supponprovided

for the these features by several commercial
VHDL simulators can be found in [2-3].

3.3. The Software Development System

The SDS consists of a complete set of software

development tools (compilers for various

languages, assemblemnd a linkersAders,
debuggers, and profiing tools, [10])
integrated into the EDS. In tHeCU project
we are extending these tools to take advantage
of virtual prototyping. The extensions are of
two types:(a) improved support of existing
functionality; (b) new functionalitythat is
possible wherthe software is executed in a
virtual prototype.

SDTs need the addition epecific software to
control and observe the execution of the
application software on the target
(local/remote) hardware. This specific
software is executed ke target along with
the applicatiorsoftware. Sincéhe platform is
shared, the execution of tlseftware must be
interrupted to attend debugging acti@msl to
collect information to be postprocesdater on.
This is thetypical intrusive software debugging
approach.
In a virtual target, thedevelopment-support
software ispart of theextended simulator (EDS
Core) instead of an extension of the application
software. This approachallows to control and
observethe execution of theoftware on the
virtual prototype in a non-intrusive manner, [4].

3.4. Hardware Debug & Profile

The Hardware Debug & Profile (HDPT)
provides a hardware model dhe virtual
prototype which abstracthe designer from the
details of theVHDL description. The hardware
model is defined upon configuration by the
HCB.
The HDPT, through the extendedvHDL
simulator, provides the following services:
 Access tothe values of hardware
signals, register contentsiemory contents, etc.
These are mapped at théger into thevalues of
the VHDL objects ofthe VHDL description of
the virtual prototype.

» Access to specific servicestok virtual
prototype modules. These services are
commonly used to set a module tgarticular
hardware state (e.g., reset stat@hey are
implemented by C routines attached to the
virtual prototype components.

 Control of the execution by setting
breakpoints based on hardware conditions.

The HDPT isthe debugger/profiler interface for
the hardware domain. The hardware designer is
allowed to controlnd observethe execution of
the Virtual Prototype fromthe point ofview of

the hardware of the system.

4. Conclusions

The use of VHDL forprototyping represents a
expansion oveits original goalsthatallows an
effective system development methodoloblyis
methodology is today possible duettie market
acceptance of the IEE&andard, the enhanced
performance ofVHDL based toolgsimulators,
synthesizers, etc.)and intrinsicdescription
capabilities of the language (abstract dgtees,
support for different description styles at
different abstraction levels, design library
management and maintenance,design
parameterization, etc.).

The execution performance obtained, [2], is
sufficient to allowthe integration o$oftware
and hardware for light software tasks.

This approach isased onthe availability of
system components (VHDLhardware and
software) librariesand theextension of the
existing tools in eachdomain to create the
needed ESDA (Electronic Systems Design
Automation) tools.

With this approach, an effective environment for
developing systems based on VHDlirtual
Prototyping has been presented.

References

[1] IEEE Standard VHDL Language Reference
Manual, IEEE Standard 1076-1993, The IEEE,
New York, NY,1993.

[2] S. Olcoz, L. Entrena, L. Berrojo, J. Goicolea,
"Reinvented Prototyping on VHDL". VIUF
Spring Conference. San Diego. April 1995.

[3] S. Olcoz, L. Entrena, L. Berrojo, J. Goicolea.
"Prototyping: the Bottom Line d¥HDL System
Simulation". Proc. Workshop on Libraries,
Component Modelling and Quality Assurance.
Nantes (France). April, 1995.

[4] S. Olcoz, L. Entrena, L. Berrojo. "VHDL Virtual
Prototyping". 6th IEEE Int'| Workshop on Rapid
System Prototyping. Chapel Hill, NC, June 1995.

[5] S. Olcoz, L. Entrena, L. Berrojo. "A/HDL
Virtual Prototyping Technique for Mechatronic
Systems Design". International Conference in
Recent Advances in Mechatronics. Istambul,
August 1995.

[6] "SPARC Architecture". SPARC
Inc, Prentice Hall, 1991.

[7] S. Olcoz, J. GoicoledVHDL modeling SPARC
Architecture, EuroSPARC-92, Madrid, October,
1992,

[8] R. Usselmann. "MicroSPARC Instruction Set
Architecture Test Suite Manual".SPARC
International, Inc. Rev. 2.0. March, 1993.

[9] J. Goicolea, R. Guzman, M. A. Salas, S. Olcoz,
D. Navarro, A. Roy, System Designers
Approach to the Development of Embedded
Systems based on VHDIProc. of theAPCHDL-

94, pp. 135-138, Toyohashi, Japan, October,
1994,
[L0]GNU User's Guide. Cygnus Support 1992.

International

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

