Cosimulation of Real-Time Control Systems

Juha-Pekka Soininen, Tuomo Huttunen, Kari Tiensyrja and Hannu Heusala
VTT Electronics, Oulu, Finland

Abstract

The behaviour of a real-time system can be
validated at the system level by means of a real-time
operating system model in a VHDL simulation
environment. The model consists of the real-time
operating system, hardware described in behavioural
VHDL andtask descriptions written in C. The real-time
operating system behaviour, HW/SW partitioning and
HW/SW interfacing can be analysed by studying the
simulation results.

1. Introduction

Technologies, methodmndtools related to both the
hardware andsoftware of real-time embeddeystems
have developed rapidly. ASI@&nd FPGA technologies
have become competitive implementation alternafivies
and greatprogresshas also been made with multi-
purpose, RISCand DSP processofg]. The target
architectures of theystemsareless obvioushan before,
because othe widervariety of possible technologies and
the more obscure boundaries betwd#®m. Anadvanced
application maycontain embedded processors, ASIC's,
FPGA's, real-time embedded software, etc.

Specification, partitioning and verification has
increased significantly in importancand mainsystem
properties, e.g. costs, performarared functionality, are
greatly affected when awperatingsystem is defined and
task-level HW/SWhpatrtitioning is performedSystem-
level validation requires modekhat can bemodified
rapidly and analysed with advanced validation methods
and environments.

HW/SW codesigrhas been widely recognised as a
solution to the new requirements of sys@esign[3], the

idea behind it being to validate design decisions against

system propertiesThe result is a better targststem
rather thanhighly optimised subsystemsthat do not
operate properly together.

An implementation-independent specification

is usually carried out branslating thespecification into
VHDL or C. StateChartp], Structured Analysis (SA¥]
and SpecChartge] are examples of graphicalource
languages.

Validation of the functionalityand performance of
HW/SW partitioning is crucial part ofany codesign
environment. Since no implementation platform
normally existaduring thesystem-level desigphase, the
partitioned specificatiomas to besxecuted or simulated
using a more or less artificial implementation platform.

In prototyping environmenis,8] embedded systems
are implemented usingrototype boardghat include
programmable circuits, standard components and
computer interfaces.

Several cosimulation approaches exist for the
validation of HW/SW partitioning. In VHDL-C
cosimulation the hardwangart is simulated in &HDL
simulator and theoftwarepartexecuted as a frogram.
VHDL-C cosimulation is used in COSMQC&hd Vulcan
cosynthesis systems, for exampte1o]. UNIX sockets
and HW/SW communication primitives ansed together
with Verilog simulation in[11], while a processor model
is used as an execution platform f@W/SW interaction
in [12. The Ptolemy framework uses aimulation
backplane to combine simulation environmdnts

The COSYMA system usesun-time analysis for
validation [14], whereas theTOSCA system uses
synthesis results faohe HW part and virtusdssembly
results for the SW part in architectuand performance
evaluation[15]. A coarse-grairHW/SW partitioning is
performed at theoftware task level ifue] andvalidated
in [17].

More software oriented approacte® thephysical
modelling of softwareand RT-OS [18] and software
simulation[19]. Monitoring tools have also been used to
measure the performance of HW/SW systErts

The validation method presented heoenbines the
cosimulationand software simulation approaches. The
processor model iWHDL simulation is replaced with a
real-time OS model. Thesoftware is executed as C
program controlled by the simulated OS model, which is

language is a basic requirement for codesign. Simulation created using VHDL and C.

2. Validation of HW/SW partitioning in
real-time embedded systems

Complex real-time embeddesystems consist of a
hardware part and softwarepart that runs under a real-
time operating systeniThe hardware padonsists of

functions,
processes.

e.g. assertion statementnd analysis

2.3 Real-time operating system modelling

In HW/SW cosimulation the software part is

microprocessors, which may be embedded in ASIC, and executedeither on a workstation or in the simulated

application-specific ~ hardware. The system-level
validation method has to support the modelling of all
parts of thesystem,including the behaviour of the real-
time software.

2.1 Definition of the problem

The validation methoébr the partitioned model has
to support functional validation, performance evaluation
and architecture evaluation. Theain problem is the
analysis of software behavioufhe hardware designer
cananalyse the functionalitgnd timing of hisdesign by
simulating the models, but in order tavoid the
integration problems, similar methodsd tools are
needed for softwarand systemdesign as well.This
requiresthat the actuabehaviour of thesoftware and
real-time operatingystemmust be visible tdhe system
designer during the partitioning phase.

2.2 VHDL platform

The analysis oBystem behaviourequiresthat the
system specification is executed in some execution
platform. In casethe specification is done with an
implementation-independent specification language, the
execution platform should be an ideal machin&HDL
simulator is agoodcandidate for such machife1], and
was chosen in our method for the following reasons:

Parallel execution. The VHDL has parallel
structures, i.eprocesseand signals. Thileal parallel
machine can be used as a target architecture.

Control of timing features. Two separate time
concepts exists irthe VHDL simulator environment,
simulation time andexecution time.This makes it
possible to modetiming independently of the actual
execution times in the simulation environment.

Use of foreign languagesThe foreign kernel
interface in VHDL'93 provides avay ofimporting
algorithms written in languages othdévan VHDL into
the simulation.

Possibility to use graphical front-end toolgHDL
can easily be generated from system-level descriptions.

Debugging and analysis featuregHDL simulators
offer excellent debuggingndanalysis features compared
with almost any othesystem.The VHDL language itself
hasmany constructshat help in thedesign of analysis

microprocessor model. The first approach is fast, but
important data on the timinigehaviour of thesoftware
modelare lost. The send approach is practicabbaly
when interface operations are being studied in detail.
Otherwise the simulation is too slow.

Workstation

VHDL Platform Object code

execution

HW model
(VHDL)

HW model
(VHDL)

HW model
©

Software model

Task model

©

Task model

©

RT-0S
model

Task
models

HW model
(VHDL)

J l

Figure 1. Architecture of the simulation model

In our approach therocessor model is replaced
with a reusable operatingystem modelRigure 1). The
software is executed on a workstation, the execution
is controlled by the operatirgystem modelled iWHDL.
Communication betweethe operatingystemand the
tasks occurs ithe VHDL simulator, which carherefore
monitor the interrupts, messages, switchingwifning
tasks, task waiting times, etc. The simulation times are
shorter than when using processor models as the
execution platform. Some overhead occurs as compared
with executing pure software on a workstatibecause
of communication betweethe VHDL simulator and the
software model.

The approach can also besed for real-time
operating system design and taskallocation. The
operating system modelcan beeasily modified and
optimised for the application being designed, and
simulation of thesystem also allowsapid evaluation of
the software architecture.

3. VHDL-based cosimulation of a
partitioned system

Cosimulation of a partitionedystem modeéntails
simulating the hardware armbftware models together in

order to study howvthe complete system operateshat
the effects ofthe chosen partitioning aendwhether the
algorithms of

system fulfils its requirements.
tasks in task model
C or VHDL in SA/IC
task model
in SA/C
operating system

task model i
SA/VHDL
simulation

structure of
software in
SA

software
simulation

system

; external
functions

events

hardware
functions

simulation

Figure 2. Structure of the simulation

The VHDL-based cosimulation approach is
presented in Figure 2. The real-tinsgstem model is
described byhe SA/VHDL method[22], and thesystem
structure using the SA hierarchy. Thgstem functions
are modelled by writing the algorithmic behaviour in
VHDL or C. The partddescribed in Gare linked to the
VHDL simulation via the foreign kernel interface of the
simulator. The elements communicate with each other by
token passing.

The system model consists biardware,software
and operatingystem modelsThe operatingystem and
software are tightly linked, sincexecution of the
software tasks is completely controlled thye operating
system and the software tasks and hardware
communicate via the operatirgystem.The use of C or
VHDL is not limited by the location of thg&stem
function, and both SW and HWfunctions can be
described in either VHDL or C.

3.1 Operating system model

The main operatingystem functionare mdelled
as data transformations, which are tidescribed in C or
VHDL, utilizing the parallel features of the later. Timers,
for example,can bemodelled as simple processes, and
the actual implementation problenassociated with
software timers can be ignored.

The main emphasis iplaced on task scheduling,
since thishas the greatesffect on behaviour. The
scheduling function provides processing time for the
tasks. The structure of the model (Figure 3dsed on
the operatingsystem, in which each tagkas afixed
priority. The key elements are the task list, containing
the states ddll tasksand timer 1which acts as aystem
clock. Taskscan be inserted into the list when called up
by an external interrupt or running task. Toentrol
scheduling parselects which task is executadxt, the
selection being based dhe priorities. It alssemoves

finished tasks from the task list.

interrupt gx

N
scheduling
requests Y
of tasks

data in — > data out

Figure 3. Structure of the scheduler
3.2 Software model

The software inthe real-time contradystems is
organised in form of taskghat communicate via
messages. In cosimulation, the model has to simulate this
structureand behaviour. TheSA/VHDL-based method
involves modelling of the tasks as SA data
transformations, which argpecified in detail with C. In
order to simulate the actual behaviobgwever some
changes have to be made to the task descriptions
concerning state behaviour and execution control.

Each task has thresctive states, i.e. ready, waiting
and running, the transitionsetween these states being
controlled by the operatingystem. In addition to the
states, the algorithmic behaviour atsms to benodelled.
The algorithms ardescribed using C o¥HDL, but the
problem with algorithm descriptioand simulation is
that the simulation andxecution timesre different, so
that the datavalues used in an algorithmay not be
valid, since they may have beehanged bysomeother,
parallel activity. This can beavoided by dividing the
algorithm into phases according to the data inputs and
outputs (Figure 4). Execution of the algoritldaring
the simulation is suspended when the communication
point is reached, until enough simulation time has
elapsed, after which it proceeds with updated dalaes.

The outputs of the algorithm are semtly after the
simulation time has elapsed.
datain

datain
Simulation
time incremented

by simulator
data out o

(calculated in
phase 2)

Task algorithm
parts executed on
workstation

dataout <

(calculated in
phase 1)

Figure 4. Structure of the
algorithmic behaviour of a task

The taskmodels written in Care linked to the
VHDL simulator via its foreign kernel interface (FKI), in
which theobject code othe algorithm is linked to the
simulator with a process descriptiohe algorithm
consists of twoparts, the first, which igxecuted only
once during the simulation, describing the input and
output signaland memory allocations, whiléhe second
part is theexecutablelgorithm, which isexecuted when
there is an event or transaction in any of thput
signals. The algorithm itself can be written with standard
C. The VHDL/C interface is implementedusing
simulator kernel functions.

Communication betweetthe tasks constitutes an
important part of thesoftware model. In real-time
operating systemsthis communication takeplace via
control and status messages. The most common control
messages deal with the startengd stopping of the tasks,
which ask the operatingystem for services byeans of
status messages. Thmessagesare modelled as data
flows, which are therconverted to VHDLsignals when
the model is translated into VHDL.

3.3 Modelling of hardware

The hardware model is an abstract functional
specification written in SA/VHDL. The structural
information contained in it presents the functional
structure of thesystemand not itphysical structure. The
descriptions of the algorithmic behaviour of the
functional units can also beery abstract, since the idea
is to validate the behaviouand not tadesign the
structural implementation.

3.4 Simulation

The original model was created using 8#&/VHDL
method extended with minispecifications written in C.
The SA structure can be translated automatically into
VHDL with the Velvet tool p2]. The C descriptions are
translated int@wbject codewhich is automatically linked
to the simulation model by the simulator. Thi&lDL
simulator and themodelling practices adopted give full
control and observabilitywith respect to the actions of
the operatingystemandsoftware tasks, e.g. scheduling,
the task list andnessage passirgan be monitorefrom
waveform displays.

4. Experiment: the Ethernet bridge

The approaclwas tested witthe Ethernet bridge
example[23], the function of which is to transmit data
packages from one segment to another. In order to
minimise the net load, the briddgeas acapability for
learning thenetwork structure. When the bridgeceives
a package from a segment, it updates its database by
linking the source address the segment information. It
thenchecks whethethe target address is in the database
and thepacket is either filtered or sent to specific
segment or to all segments. Optimisationopkration
requiresthat the bridge should have some buffering
capacity.

4.1 Bridge architecture

The architecture of the implementation consists of
three Ethernet cardgonnected to an 8051 micro-
controller. It is not the intention here to optimise the
features of the reabystem but todemonstrate the
cosimulation method. The physical transmission and
buffering of data packets is handled by the Ethernet
cards, while the forwardingnd filteringfunctions of the
bridge are implemented in the 8051sadtware tasks in
RMX operating system.

4.2 Partitioned model

The partitioned modelvas created bthe extended
SA/VHDL method, in which the software part was
divided in two:the operatingystem modeand thetask
model (Figure 5). The complete model consists of 17 data
transformations described MHDL and l1ltasksand 6
subfunctions described in Ohe simulated description
consists of 7000 lines &fHDL codeand1000 lines of C
code.

The modellingwas done on &un Sparcstation 2,
the translation fromSA/VHDL/C into VHDL/C with

Velvet taking about oneminute, the analysis with
VHDL2000 about 10 minutesand simulation of the
transfer of one packet to another segmabbut 5
minutes.

prototyping environment, because simulation is
independent of the execution environment. The analysis
features of the VHDL simulataraneffectively be used to
studythe behaviour of theoftware system. Possible uses
are the design of operating systems, prioritisation of tasks
and analysis of HW/SW partitioning.

Table 1. Comparison of cosimulation

approaches
Functional Software Operating
processor execution on| System
:dda model workstation | model
Send2 Simulation | very long short moderate
senet time
s Model RT/pin level | depends on | functional
— accuracy workstation | level
Hardware MP based not needed | not needed
Figure 5. Software part of the SA/VHDL model model model for uP for uP
Software compiled executable | behavioural
4.3 Results model code code model

The modelwas tested with simulations, a typical
simulation result of which is presented in Figure 6. The
figure shows asituation where a data packetreseived
(first marker)and therfiltered (secondnarker). Finally
it is transmitted and the buffer is released (third marker).

The experiment demonstratedat it is relatively
easy tomodel the operation of thRT-OS commonly
used in real-time embedded controllérhis RT-OS can
be separated from the contrebftware and reused in
other designs.

The RT-OS modelling approach is compared with
the use of functional processor modalsd standard
VHDL-C cosimulation in Table 1Functional processor
models can beused for veryaccurate system-level
validation when simulation time is not criticahd when
a target processorand software exist. VHDL-C
cosimulation is a quickway toanalyse HW/SW
partitioned descriptions providinghat an executable
code existand that the targd®T-OScan be emulated in
a workstation environment. Thé&kT-OS modelling
approach presented here is a comprorttise provides
accurate results with a reasonably short simulation time.
The possibility for analysinghe model without having
completed the system description also extends the
usability of cosimulation during system-level
partitioning.

The modelling approach can also Umed as a fast
prototyping method. If the execution times of tasks in the

real target environment can be estimated properly, the Research Action).

method even exceedthe features of a traditional

The current approach neverthelesgs some
limitations. It is difficult to model data-dependent
execution times for tasksgnd theextent of external
communication of tasks also affe¢cktse simulation time.
At the same time theomplexity ofthe operatingystem
influences the efficiency of the simulation.

5. Conclusions

This paperdescribes a method for modelling and
validating HW/SW partitioned real-time embedded
control systemsThe methodises a real-time operating
system model to controthe execution of real-time
control software.The system model is describagsing
the SA/VHDL specificationlanguage extended with C,
and the system is validated usiigIDL as a technology-
independent implementation platform. All the debugging
andanalysis features of théHDL environment familiar
to the hardware designer are availdblethe analysis of
the behaviour of the real-time contrebftware. The
method is suitable fothe validation obystem-level
HW/SW partitioning andfor the development of small
real-time operating systems and control software.

6. Acknowledgements

This work wascarried out within the ESPRIbasic
research project EP8135 (COBRA, Codesigasic
Thework was supported by
Technology Development Centre of Finland, TEKES.

T 4 -
st _dO/ sendlenum FALSE
st _dOo/ send2enum FALSE FALSE
st _do/ send3enum FALSE =
r unni ngt askj nt TT T 4){& 15 [T
task_11ist_sjnt <3 T
S/ buf fers_5j nt = 1TA7a8364& T O
t at es. t asklenum DCL(:}(‘ idli e ‘
tates. task4enum T dl e runni ng T dl e
t at es. t askSenum T dl e XX runni ng Tdl e
tates. t ask6enum i dlr e runni ng i dlr e
t at es. t ask7enum idle Tdl e
tates. t ask8enum i dlr e read runni ng i dre
t at es. t ask9enum idl e
at es_ t ask10enum Wai Ting
ates. taskllenum X runni ng i dl e
at es. t ask12enum idl e
at es. t ask13enum Tdl e
T
VHDL 2000 !

Figure 6. Simulation results

References

[12] Kumar, S.Aylor, J. H., Johnson B.W. and Wulf, Wm.

A.: A Framework for Hardware/Software CodesiftEE

(1]

[2]

(3]
[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

Gupta, R K. Coelho, C. N. and De Michel;.: Program
implementation schemes for hardware-software systems,
Computervol. 27(1), 1994, pp. 48-55.

Franke, D.W. and Purvis, M.K.: HardwéBeftware
Codesign: A perspective,3th Int. Conf. onSoftware
Engineering IEEE CSPress,Los Alamitos, California,
1991, pp. 344-352.

De Micheli, G.: Computer-Aided Hardware-Software
CodesignJEEE Micro, Aug. 1994, pp. 10-16.

Harel,D.: StateCharts: AVisual Formalismfor Complex
Systems Science of Computer Programmingol. 8,
1987, pp. 231-274.

Ward, P.T. and Mellor, S.J.: Structured Development for
Real-Time Systems, Yourddtressyol. 1-3,Englewood
Cliffs, N. J, 1985.

Narayan, S., Vahid, F. and Gajsk).: Translating
System Specification tdHDL, Proc. of European Conf.
on Design Automation ConflEEE CSPress 1991, pp.
390-394.

Koch, G., Kebschull, U. and Rosenstigl.: A
Prototyping Environment for Hardware/Software
Codesign in CobraProc. of 3rd Int. Workshop on
Hardware/Software CodesignEEE CS Press, Sept.
1994, pp. 10-16.

Buchenrieder, K. and Veith,C.: A Prototyping
Environment for Control-Oriented HW/SW Systems
Using State-Charts, Activity-Charts and FPGARocC.

of European Design Automation ConferenteEE CS
Press, Grenoble,France, Sept. 1994, pp. 60-65.

Ismail, T. B., Abib, M. and Jerrayd.: COSMOS, A
CoDesign Approach for Communicating Systefsoc.

of the 3rd Int. Workshop on Hardware/Software
Codesign IEEE CSPress, Grenoble, France, Sept. 1994,
pp. 17-24.

Gupta, R. and De MicheliG.: Hardware/Software
Cosynthesis for Digital SystemdEEE Design & Test of
ComputersSept. 1993, pp. 29-41.

Thomas, D.E., Adams, J.K. and Schmit, H.: A Model and
Methodology for Hardware-Software CodesigiEE
Design & Test of ComputerSept. 1993yol. 10, No. 3,
pp. 6-15.

[13]

[14]

[15]

[18]

[19]

[20]

[21]

[22]

[23]

Computer Dec. 1993, pp. 39-45.

Kalavade, A. and LeeE.A.. A Hardware-Software
Codesign Methodology for DSP ApplicationgEE
Design & Test of Computergol. 10, 1993.

Ernst, R., Henkel, J. and Benn@&r; Hardware-Software
Cosynthesis for MicrocontrollertlEEE Design & Test of
ComputersVol. 10, No. 4, Dec. 1993, pp. 64-75.
Antoniazi, S., Balboni, A. andrornaciari W. andsciuto
D.: A Methodology for Control-Dominated Systems
Codesign, Proc. of the 3rd Int. Workshop on
Hardware/Software CodesighEEE CSPress, Grenoble
France, Sept. 1994, pp. 2-9.

D'Amrosio, J. G.and HuX.. Configuration-Level
Hardware/Software Partitioning for Real-Time
Embedded System®roc. of the 3rdint. Workshop on
Hardware/Software CodesighEEE CSPress, Grenoble
France, Septemper , 1994, pp. 34-41.

Sipola, M., Soininen, J-P. And Kiveld, J.: Systems Real-
Time Analysis withVHDL Generated From Graphical
SA-VHDL, Proc. of 2nd European Conf. oWHDL
Methods, EUROASIC'91, Stockholm,Sweden, Sept.
1991.

Alonso, A., Elmstrem,R., Pezzé, M. AndPulli, P.:
Outline of thePhysical Model, IPTES-project EP5570
Report, 1993, 32 pages.

Leskeld, J, Salmelayl., Heikkinen, M. andHyvérinen,
J.: Visualisation of Real-Time Software in Host-Based
Simulation Environmentzuromicro Workshop on Real-
Time System®dense, Denmark, June 1995.

Kalinsky, D. and AvnurA.: Computer Aided Real-Time
Design, 3rd Israel Conf. on Computer Systems and
Software Engineerindl988,pp. 4-13.

IEEE Standard VHDL Language Referenbtanual,
IEEE Std 1076-198MNew York, USA, March, 1988.
Kauppi, M.J. and Soininen, J-P.: Functional Specification
and Verification of Digital System by UsingvHDL
Combined with Graphical Structured Analysipc. of
2nd European Conf. on VHDL Methed8UROASIC'91,
Stockholm, Sweden, Sept. 1991.

Backes, F.: Transparent bridgéw interconnection of
IEEE 802 lanslEEE NetworkVol. 2, No. 1, 1988.

	EURO-DAC 95
	Front Matter
	Table of Contents
	Session Index
	Author Index

