
Partial Scan with Pre-selected Scan Signals �

Peichen Pan and C. L. Liu

Department of Computer Science

University of Illinois at Urbana-Champaign

Urbana, IL 61801

Abstract { A partial scan approach proposed
recently selects scan signals without considering
the availability of the
ip-
ops (FFs). Such an
approach can greatly reduce the number of scan
signals since maximum freedom is allowed in scan
signal selection. To actually scan the selected sig-
nals, we, however, must make them FF-driving
signals. In this paper, we study the problem
of modifying and retiming a circuit to make a
pre-selected set of scan signals FF-driving sig-
nals while preserving the set of cycles being bro-
ken. We present a new approach for solving this
problem. Based on the new approach we design
an e�cient algorithm. Unlike a previous algo-
rithm which inherently has no control over the
area overhead incurred during the modi�cation,
our algorithm explicitly minimizes the area over-
head. The algorithm has been implemented and
encouraging results were obtained.

I. Introduction

Sequential circuits are hard to test mainly because
state signals in the feedback loops are di�cult to con-
trol and observe. Scan design has been proposed as a
design-for-testability technique for sequential circuits [1].
Due to the high area and performance penalty associated
with full scan, partial scan is often used in practice.

The main problem in partial scan design is to select
a set of scan signals. Several methods have been pro-
posed for this purpose [5, 6, 8, 11]. Among them, cycle-
breaking has been demonstrated to be a very e�ective
one [5, 6]. The goal of cycle-breaking is to select a small
set of signals such that their removal will simplify the
cycle structure of a circuit, or will break the cycles that
cause many of the hard-to-detect faults. In conventional

�This work was partially supported by the NSF under grant

MIP-9222408.

approaches, the positions of the FFs in a circuit are as-
sumed to be �xed. Therefore, scan signals cannot be
selected arbitrarily | they must be signals that drive
FFs. In this case, the cycle structure of a circuit can be
captured by a graph on the FFs, called S-graph. Break-
ing up the cycles in the circuit amounts to breaking up
the cycles in the S-graph. E�ective heuristics as well
as exact algorithms have been proposed for selecting a
minimumset of FFs to break up the cycles in an S-graph
[2, 3, 9].

A recent approach to partial scan selects a best possi-
ble set of cycle breaking signals (under certain criteria)
without considering the availability of the FFs. This
allows maximum freedom for scan signal selection. Of
course, to actually scan these pre-selected signals, each
of them must be made to drive a FF. Recently, Chakrad-
har and Dey [4] showed that through a combination of
retiming and logic replication, a desired FF con�gura-
tion in which each pre-selected signal drives a FF can be
obtained. They further proposed an iterative algorithm
for doing so. Their algorithm, however, inherently has
no control over the area overhead due to logic replica-
tion. Actually, it might introduce unnecessary replica-
tion. For example, because of the iterative nature of
the algorithm some logic might be replicated more than
once.

In this paper, we present a new approach to the prob-
lem of determining a FF con�guration in which the pre-
selected signals can actually be scanned. In our ap-
proach, the problem is transformed to that of determin-
ing a set of FF movements in the circuit, which, in turn,
is reduced to a problem of breaking up the cycles in a
special graph introduced in this paper. The FF move-
ments can be carried out with possible logic replication
to generate an equivalent circuit. It is guaranteed that
the modi�ed circuit has the same cycle structure as the
original circuit and the pre-selected signals break the
same set of cycles in both the original and the modi�ed
circuit. Since signals are made to drive FFs in a global
way in our approach, it is guaranteed that no logic is
replicated more than once. An algorithm based on the
new approach is proposed. The algorithm explicitlymin-
imizes the combinational and sequential area overheads
incurred due to logic replication.

The remainder of this paper is organized as follows:
In Section II we introduce some de�nitions and state the

32nd ACM/IEEE Design Automation Conference 
Permission to copy without fee all or part of this material is granted, provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.  1995 ACM 0-89791-756-1/95/0006 $3.50

problem we want to solve. In Section III we present our
new approach. In Section IV we present an algorithm
based on the new approach. Section V shows experi-
mental results. Finally, Section VI concludes this paper.

II. Preliminaries

A (synchronous) sequential circuit consists of combi-
national logic separated by FFs. FFs are assumed to be
edge-triggered D-type
ip-
ops and are synchronized by
a global clock. A sequential circuit can be modeled as an
edge weighted directed (multi-)graph. The vertices are
the primary inputs (PIs), the primary outputs (POs),
and the logic gates. The edges are the interconnections.
There is an edge from u (head) to v (tail) with weight
t if the output of u, after passing through t FFs, is an
input to v. We will use w(e) to denote the weight of edge
e. An edge corresponds to a signal | the signal passing
through the corresponding interconnection in the circuit.

Retiming is the process of repositioning the FFs with-
out modifying the structure of a circuit [10]. A retiming
r of a circuit is a mapping from the vertices to the in-
tegers such that r(v) = 0 for a PI or PO v. r(v) = t
means that t FFs are removed from each outgoing edge
of v, and t FFs are added to each incoming edge of v.
Thus, in the circuit retimed by r, the weight of edge
e = (u; v), denoted wr(e), becomes w(e) + r(v) � r(u).
The functionality of the circuit will not be changed by
retiming. However, to be physically realizable it is re-
quired that the edges in the retimed circuit have nonneg-
ative weights. Such a retiming is called a legal retiming.
For now on, when we say retiming, we always mean legal
retiming.

In practice, the FFs on the outgoing edges of a vertex
can be shared. As a result, the number of FFs on the
outgoing edges of a vertex is the maximum of the num-
bers of FFs on the edges instead of their sum. Similarly,
if we want to scan several outgoing edges of a vertex,
only one scan FF is needed. In our graph model of a
circuit, we do not explicitly model FF sharing because
retiming can change the FF count on an edge. However,
in counting the FFs as well as the scan FFs, we assume
that sharing is employed implicitly.

Unlike retiming which does not modify the structure
of a circuit, duplicating, on the other hand, is a process
that structurally modi�es a circuit while preserving its
functionality. Informally, duplicating a vertex means to
create a copy of the vertex and move some of the outgo-
ing edges to the copy. Here we give the formal de�nition
for duplicating a vertex v: Suppose the outgoing edges
of v are divided into two groups, E1 and E2. A copy of
v (which has the same functionality as v), denoted v0,
is added. For each edge e = (x; v) a copy (x; v0) with
weight w(e) is added. For each edge (v; y) 2 E2 it is
changed to (v0; y) with the weight unchanged. Figure 1
illustrates the process.

To satisfy an edge, we mean to position a FF on the
edge. The problem addressed in this paper can be for-
mally de�ned as follows: Given a circuit and a set of

E1

E1

E2
E2

v

v

v,

Figure 1: duplicating a vertex.

edges, S, in the circuit, structurally modify the circuit
using duplicating and retiming such that the edges in
S are satis�ed while the cycles broken by the edges in
S are preserved. We call such a modi�ed circuit an S-
con�guration of the original circuit. The edges in S will
be referred to as the S-edges. Our primary objective is
to �nd an S-con�guration with a small number of du-
plicated vertices. A secondary objective is to reduce the
number of FFs in the S-con�guration.

In general, retiming alone is not able to satisfy all the
S-edges.

Theorem 1 There is a retiming that can satisfy all the
S-edges i� (1) For each path from a PI to a PO, the

number of S-edges does not exceed the number of FFs,

and (2) For each cycle, the number of S-edges does not
exceed the number of FFs.

An S-con�guration cannot be obtained through re-
timing alone when some cycles and/or paths (from PIs
to POs) contains too many S-edges. However, as far as
cycle-breaking is concerned, each cycle needs to contain
only one satis�ed S-edge while a path from a PI to a PO
does not need to contain any at all.

g1
g2 g3

i2

g4

i3 i4

o1

o2

2f
1f

3f

1i

g1 g3
g2

g4 o2

o1

i3 i4

i2
g2

1i
s

,

g1 g3
g2

g4 o2

o1

i3 i4

i2
g2

1i

s

(a)

(b) (c)

s

,

Figure 2: An example of using duplicating and retiming
to obtain an S-con�guration

We now use an example to illustrate how duplication
can be used to obtain an S-con�guration for a circuit
violating the conditions in Theorem 1. Consider the cir-
cuit in Figure 2(a) with s being the only S-edge. Here, s
breaks two cycles: one containing f1 and the other con-
taining f2. Retiming cannot position a FF on s. The

reason is that s is also on paths g1g2g3 and i2g2g3, and
neither of them contains a FF. Notice that since these
two paths are not in any cycle, there is no need to put a
FF on s for these two paths. Therefore, we duplicate g2
as shown in Figure 2(b). We then retime g2 by 1 in the
duplicated circuit as shown in Figure 2(c). Now there
is a FF on s. Note that s cuts the same set of cycles
in both circuits in Figure 2(a) and (c). Therefore, the
circuit in Figure 2(c) is an S-con�guration of the circuit
in Figure 2(a). As is evident from this example, duplica-
tion can facilitate retiming because a vertex and its copy
can be retimed di�erently in the duplicated circuit.

In the next section, we will present a systematic way
to identify a sub-circuit for duplication in order to obtain
an S-con�guration of a circuit.

III. A New Approach

In this section, we propose a new approach to the
problem of determining an S-con�guration of a circuit.
Our algorithm presented in the next section is based on
a re�nement of the ideas presented here.

We view the S-edges as demands and the FFs as re-
sources. The ultimate question is how to utilize the re-
sources to meet the demands. In our approach, we di-
rectly determine the FF movements in order to satisfy
the S-edges. First, we examine how to carry out a single
FF movement. Suppose s is an S-edge and f is a FF. We
want to move f onto s. Let As and Af denote the sets
of cycles passing through s and f , respectively. Let Cs;f

denote the set of vertices on the paths from the head of
s to the tail of the edge containing f . (See Figure 3(a).)
To move f onto s, Cs;f is duplicated as Cs;f and C0

s;f ,

and then the vertices in Cs;f are retimed by 1 as shown
in Figure 3(b). Obviously, the set of cycles cut by the
FF on s in Figure 3(b) is As;f = As\Af . Therefore, the
problem of determining an S-con�guration becomes that
of selecting a set of FF movements such that [As;f (over
all selected FF movements) contains all the cycles cut by
the edges in S. The combinational area overhead is de-
termined by [Cs;f . From Figure 3(b) it is also clear that
the sequential area overhead (FFs) is determined by the
vertices outside of [Cs;f which connect to one or more
vertices inside of [Cs;f .

Cs,f

Cs,f

Cs,f

s

f
s

,

(b)(a)

Figure 3: Using duplicating and retiming to carry out a
single FF movement.

We now determine what kind of FF movements are
good for reducing area overheads. Suppose there is a

cycle that contains both s and f . Let p be the path
from s to f in the cycle. If there is another S-edge s1
in p, obviously, Cs1;f � Cs;f . To reduce combinational
area overhead, it is desirable to move f onto s1 instead
of s. For a similar reason, if there is a FF f1 on p, it is
desirable to move f1 instead of f onto s. In summary, f
is moved onto s to cut a cycle only if there is no other
S-edges or FFs on the path from s to f in the cycle.

We de�ne a directed graph called the M-graph which
is introduced to identify (i) all possible FF movements,
and (ii) all the cycles in C that are cut by the S-edges.
Let F denote the set of FFs in the circuit. The vertex
set of the M-graph is S [F . There are three types of
edges in the M-graph: from S-edges to FFs, from S-
edges to S-edges, and from FFs to S-edges. The edges
from S-edges to FFs are referred to as M-edges which are
introduced to denote the possible FF movements. There
is an M-edge from s 2 S to f 2 F if there is a path in
C from s to f containing no other element in S [F .
All other edges are introduced to identify the cycles cut
by the S-edges in the circuit. There is an edge from
s1 2 S to s2 2 S if there is a path in C from s1 to s2
containing no other element in S [F , and there is an
edge from f 2 F to s 2 S if there is path in C from f
to s containing no other element in S. Note that there
is no edge among the vertices in F in the M-graph. As
an example, for the circuit in Figure 4(a), Figure 4(b)
shows its M-graph.

1s

1f 2f

s2 3f

g1
1i g2 g3

g4
s2

1s
i2

1f

2f

o1

3f

g2 g4
s2

1s

o1
2f1f

3f
i2

(a)

(b) (c)

Figure 4: (a) A sequential circuit, (b) the corresponding
M-graph, (c) the sub-circuit of a cover.

Lemma 2 For each cycle containing one or more S-
edges in C, there is a unique corresponding cycle con-

taining at least one M-edge in the M-graph.

As an example, for a cycle in C as shown in Fig-
ure 5(a), there is a corresponding cycle in the M-graph
as shown in Figure 5(b). On the other hand, a cycle in C
containing no S-edge has no counterpart in the M-graph.

If FF f is to be moved onto S-edge s, the logic be-
tween s and f may be duplicated so that the cycles and
paths that contain s but not f can \bypass" all the FFs

1s

f2

1f

1s
1f

(a)

s
f

s

2
3

3

s
f

s

2
3

3

(b)

Figure 5: (a) Sketch of a cycle (dotted lines are paths
containing no FF or S-edge), (b) the corresponding cycle
in the M-graph.

introduced by moving f onto s. (See Figure 3.) The
associated sub-circuit of an M-edge (s; f) consists of all
gates (together with their interconnections) on the paths
from s to f which contains no other element in S [F in
the circuit. The inputs to the sub-circuit are the edges
that come from a gate (or PI) not in the sub-circuit and
the outputs are the edges that go to a gate (or PO) not
in the sub-circuit. As a result, s is one of the inputs to
the sub-circuit. As a convention, f is also included in
the sub-circuit. The edge that f is on is, of course, an
output of the sub-circuit. Similarly, we de�ne the asso-
ciated sub-circuit of a set of M-edges to be the union of
the associated sub-circuits of all the M-edges in the set.
Again, The inputs are the edges that come from a gate
(or PI) not in the sub-circuit and the outputs are the
edges that go to a gate (or PO) not in the sub-circuit.

A set of M-edges is called a cover if the removal of the
edges in the set breaks all the cycles in the M-graph. In
other words, a cover is a set of FF movements which, if
carried out, guarantee that all the cycles passing through
one or more S-edges contain at least one satis�ed S-edge.
For example, for the cycle in Figure 5(a), we can either
move f1 onto s1 or move f3 onto s2. In terms of covers,
either (s1; f1) or (s2; f3) must be included in a cover in
order to break the corresponding cycle in the M-graph
in Figure 5(b).

LetM be a cover and C1 be its associated sub-circuit.
See Figure 6(a). We introduce a copy of C1, C

0
1
, and move

the edges without FFs to C0
1
as shown in Figure 6(b).

This circuit is, then, retimed by moving the FFs onto
the input edges of C1 as shown in Figure 6(c). Let CM
denote the �nal circuit in Figure 6(c). Note that the
S-edges that are inputs to C1 drive FFs in CM.

Theorem 3 CM is an S-con�guration of C.

As an example, for the circuit in Figure 2(a), its
M-graph is shown in Figure 7(a) and edges (s; f1) and
(s; f2) form a cover. Figure 7(b) shows the sub-circuit
associated with the cover. The S-con�guration produced
by our approach is exactly the one in Figure 2(c). No-
tice that our approach automatically detects that it is
unnecessary to move f3 onto s. As another example, for

C1

...
... ...

...
...

C1C -

C1

...
...

...

. . .

...

...
...

C1C -

C1
,

C1

...
...

...

. . .

...

...
...

C1C -

C1
,

(a)

(b) (c)

s

s s

Figure 6: (a) Circuit C, (b) C after duplication, (c) CM.

1f 2f

3f

g2

2f1f

i2s

(a) (b)

s

Figure 7: (a) M-graph, (b) sub-circuit associated with a
cover.

the circuit in Figure 4(a), the only cover in the M-graph
in Figure 4(b) is the set consisting of all M-edges. Fig-
ure 4(c) shows the sub-circuit associated with this cover
and Figure 8 shows the corresponding S-con�guration.

g1
1i g2

i2

g3
g4

o1

s2
1s

g g4
,

2
,

Figure 8: S-con�guration of the circuit in Figure 4.

IV. An Algorithm

We now present an algorithm for determining an S-
con�guration based on �nding a cover with small asso-
ciated sub-circuit. Figure 9 is a high-level description of
the algorithm. The main steps are described as follows:

Input: A circuit C and a set of edges S.
Output: An S-con�guration of C.

1. Determine an initial FF con�guration by
retiming the circuit twice;

2. Compute a cover with small associated sub-
circuit in the M-graph of the retimed circuit;

3. Simultaneously identify the logic to be
duplicated and minimize the number of
FFs in the resultant S-con�guration
by another retiming;

4. Generate the S-con�guration.

Figure 9: Algorithm for determining an S-con�guration.

Determine an initial FF con�guration: Di�er-
ent initial FF con�gurations result in di�erent M-graphs.
The initial FF con�guration also a�ects the sub-circuits
associated with the covers. Intuitively, the closer the
FFs to the S-edges, the smaller the sub-circuits associ-
ated with the covers will be. We determine an initial FF
con�guration by retiming C twice. The purpose of the
�rst retiming is to satisfy as many S-edges as possible.
The purpose of the second retiming is to move the FFs
toward the unsatis�ed S-edges as much as possible while
preserving the satis�ed ones.
Compute a cover in the M-graph: To determine

a cover in an M-graph, we construct another directed
graph called SM-graph. The vertices in the SM-graph
are the M-edges. There is an edge from an M-edge u to
an M-edge v in the SM-graph if there is a path containing
no other M-edge from u to v in the M-graph. It can be
easily veri�ed that a cover in the M-graph corresponds
to a feedback vertex set in the corresponding MS-graph
and vice versa. To solve the problem optimally is costly
since the minimum feedback vertex set problem (which
is known to be NP-hard) is obviously a special case of
this problem. We, therefore, resort to heuristics. Our
heuristic algorithm is similar to many of the heuristics
used for determining a minimum feed-back vertex set.
Simultaneously identify the logic to be dupli-

cated and minimize the number of FFs: In this
step, we determine a retiming of C aiming at minimiz-
ing the number of FFs in the resultant S-con�guration
and possibly further reducing logic duplication. Refer to
Figure 6(c). The FFs on the outputs of C1 are moved
onto the inputs of C1 in the S-con�guration. There-
fore, in order to minimize the number of FFs in the
S-con�guration, we only need to minimize the number
of FFs in the remaining part of C. In the meantime, the
FFs currently on the outputs of C1 are retained. This
retiming can, again, be determined by solving an inte-
ger linear program which is the dual of a min-cost
ow
problem. Let r3 be the retiming. r3 is applied to C.

V. Experimental Results

The algorithm proposed in this paper was imple-

mented in C. To test our algorithm, we also imple-
mented an algorithm for selecting the scan FFs called
SELECT FF, and an algorithm for selecting the scan
signals called SELECT SIGNAL

We �rst brie
y describe the algorithms used in SE-
LECT FF and SELECT SIGNAL. SELECT FF
implements the heuristic for cutting the cycles except
self-loops in an S-graph described in [9]. When no graph
transformation can be applied, the vertex with the max-
imum sum of in-degree and out-degree is picked. SE-
LECT SIGNAL implements a heuristic for selecting a
set of edges to cut the cycles in a circuit. It is almost the
same as the heuristic in SELECT FF. The di�erence
is that in SELECT SIGNAL, the algorithm stops if
the S-graph of the remainder of the circuit contains no
cycle except self-loops.

The three programs are integrated into one package,
which will be referred to as Pspss. The input to Pspss
is a circuit in blif format [12]. The outputs are the the
S-con�guration (again in blif format) determined by our
algorithm as well as the scan FFs of the S-con�guration
determined by SELECT FF.

We tested Pspss on several LSW'91 sequential multi-
level benchmark circuits [12]. The results are summa-
rized in Table I. In Table I, under the column initial
we list the number of literals (lits), the number of FFs
(FF), and the optimal number of scan FFs (scan) quoted
from [3] for each initial circuit; under the column �nal,
we list the corresponding values for the S-con�guration
produced by Pspss. Note that for the �nal circuits, the
numbers of scan FFs are determined by SELECT FF,
which is a heuristic. The column time lists the total
computation time of the integrated package for each cir-
cuit on a SPARCstation 10. Overall, our method was
able to reduce the number of scan FFs signi�cantly with
moderate increase in area as measured by the number of
literals and the number of FFs. As an example, for cir-
cuit s9234, the initial circuit has 7971 literals, 211 FFs,
and 53 scan FFs (optimal), Pspss produced an equiva-
lent circuit with 8022 literals, 226 FFs, and 32 scan FFs
(SELECT FF). As another example, for circuit s38417,
the initial circuit has 32246 literals, 1636 FFs, and 374
scan FFs (optimal), Pspss produced an equivalent cir-
cuit with 32250 literals, 1618 FFs, and 135 scan FFs
(SELECT FF).

Table II compares the increases in literals and FFs
in the equivalent circuits produced by the algorithm in
[4] (Props) with that produced by our package (Pspss)
for four large benchmark circuits . As can be seen, the
area increases for the equivalent circuits produced by our
method are much less. For example, for circuit s9234, in
the equivalent circuit produced by Props the numbers
of literals and FFs are increased by 207 and 48, respec-
tively. However, in the circuit produced by Pspss the
respective increases are 51 and 15. It should be noted
that Props and Pspss may use di�erent scan signals for
s9234 and s38417.

TABLE I

Experimental Results

circuit Initial Final time
lits FF scan lits FF scan sec.

s344 269 15 5 269 17 4 0.4
s349 273 15 5 273 17 4 0.4
s382 306 21 9 306 22 3 0.5
s400 352 21 9 352 22 3 0.6
s444 320 21 9 320 22 3 0.5
s1423 1164 74 21 1164 86 8 5.4
s9234 7971 211 53 8022 226 32 158.6
s13207� 11234 638 58 11333 489 35 233.0
s15850� 13658 534 88 13767 572 41 374.6
s38417 32246 1636 374 32250 1618 135 2680.6

�For this circuit we use the scan signals provided by Chakradhar and Dey.

TABLE II

Comparison between Props [4] and Pspss

circuit lits incr. FF incr.
Props Pspss Props Pspss

s9234 207 51 48 15
s13207 206 99 -51 -149
s15850 253 109 35 38
s38417 31 4 -80 -18

VI. Conclusions

In this paper, we study the problem of structurally
modifying a circuit to make a pre-selected set of signals
FF-driving signals so that they can be scanned while
preserving the set of cycles being broken. We present
a new approach for solving this problem. Based on the
new approach we design an e�cient algorithm. Our al-
gorithm explicitly minimizes the area overhead. The al-
gorithm has been implemented and encouraging results
were obtained.

Acknowledgment

We thank Drs. Chakradhar and Dey of NEC USA for
providing their scan signals for some benchmark circuits.
We thank Prof. Goldberg at Stanford University for
permitting us to use his min-cost
ow program.

References

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,

\Digital Systems Testing and Testable Design," Com-

puter Science Press, New York, 1990.

[2] P. Ashar and S. Malik, \Implicit computation of

minimum-cost feedback-vertex sets for partial scan and

other applications," in Proc. 31st ACM/IEEE Design

Automation Conf., 1994, pp. 77{80.

[3] S. T. Chakradhar, A. Balakrishnan, and V. D. Agrawal,

\An exact algorithm for determining partial scan
ip-

ops," in Proc. 31st ACM/IEEE Design Automation

Conf., 1994, pp. 81{86.

[4] S. T. Chakradhar and S. Dey, \Resynthesis and retiming

for optimum partial scan," in Proc. 31st ACM/IEEE

Design Automation Conf., 1994, pp. 87{93.

[5] K. T. Cheng and V. D. Agrawal, \A partial scan method

for sequential circuits with feedback," in IEEE Trans. on

Computers, vol. 39, no. 4, pp. 544-548, 1990.

[6] V. Chickermane and J. H. Patel, \A fault oriented par-

tial scan design approach," in Digest Int'l. Conf. on

Computer-Aided Design, 1991, pp. 400-403.

[7] D. Kagaris and S. Tragoudas, \Partial scan with re-

timing," in Proc. 30th ACM/IEEE Design Automation

Conf., 1993, pp. 249-254.

[8] K. S. Kim and C. R. Kime, \Partial scan by use of em-

pirical testability," in Digest Int'l. Conf. on Computer-

Aided Design, 1990, pp. 314-317.

[9] D. H. Lee and S. M. Reddy, \On determining scan
ip-

ops in partial-scan designs," in Digest Int'l. Conf. on

Computer-Aided Design, 1990, pp. 322-325.

[10] C. E. Leiserson, F. M. Rose, and J. B. Saxe, \Optimizing

synchronous circuitry by retiming," in Proc. 3rd Caltech

Conf. on VLSI, 1983, pp. 87-116.

[11] P. S. Parikh and M. Abramovici, \A cost-based ap-

proach to partial scan," in Proc. 30th ACM/IEEE De-

sign Automation Conf., 1993, pp. 255-259.

[12] S. Yang, \Logic synthesis and optimization benchmarks

user guide, version 3.0", MCNC Technical Report, Jan,

1991.

	DAC95
	Front Matter
	Table of Contents
	Session Index
	Author Index

