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Abstract
Apphcation Specific Instruction set Processors

(A SIPS) are field or mask programmable processors
of which the architecture and instruction set are opti-
mised to a speci’c application domain. ASIPS offer a
high degree of flexibility and are therefore increasingly

being used in competitive markets like telecommuni-

cations. However, adequate CAD techniques for the

design and programming of ASIPs are missing hith-

erto. In this paper, an interactive approach for the

definition of optimised microinstruction sets of A SIPS

is presented. A second issue is a method for instruc-
tion selection when generating code for a predefine

ASIP. A combined instruction set and data-path model
is generated, onto which the application is mapped.

1 Introduction
Application Specific Instruction set Processors

(ASIPs) are in between custom architectures and com-
mercial programmable DSP processors. They allow

field and mask programmability but are targeted to

a certain class of applications as to limit the amount

of hardware (area and power) needed. Consequently,

ASIPs are often the best choice for embedded applica-

tions. To increase performance of such an ASIP, cus-
tom hardware accelerator data-path(s) can be added,
which makes the ASIP a heterogeneous IC architec-
ture [6].

The small number of algorithms to be mapped on

an ASIP does not justify the effort of writing a com-
piler for each target architecture. In practice, assem-

bly code therefore is often written manually, which is
too high a cost. The solution is a retargetabie com-

piler, with as additional advantage that it supports

late changes on the instruction set.

This paper focusses on the instruction selection task
in such a retargetable compiler. A second part of the

paper shows how our instruction selection method can
be used together with an application analysis tool for
micro-instruction set definition. The techniques are
implemented as a part of the synthesis and code gen-

eration system “CHESS”.

2 Traditional instruction selection
An ASIP is usually specified by its instruction set

and an abstract description of its data-path. The de-

tailed description of the data-path with all connec-
tions is normally not available, nor is a description of

the controller or micro-sequencing logic.

Traditional instruction selection techniques use tree
pattern matching [1, chapter 9]. The set of template
patterns is (manually) extracted from the instruc-
tion set and the graph representing the intermediate
code of the application is covered by these patterns.

For machines with a set of interchangeable general-
purpose registers, tree pattern matching based on the

dynamic programming method ensures optimal code.

Several tools are available to perform this tree pat-

tern matching, iven an enumeration of the template

fpatterns (e.g. [5 ).

In contrast with early processors where each in-

struction resulted in one template pattern, horizon-
tally microcode processors and also recent (RISC)
processors have more orthogonal instruction sets with
parallelism in their instructions. In this case, using
template patterns which each cover a complete in-
struction, has several drawbacks. The resulting pat-

terns are rather large, which decreases the proba-
bility of matching; the number of possible patterns

also grows too high, which slows the pattern matcher

down. The traditional approach for microcode pro-

cessors therefore is to create a template pattern for
each processor activity. Tree pattern matching then

results in vertical microcode (without parallelism) and
parallelism is introduced in the code by compaction
(scheduling) al orithms, resulting in so-called horizon-

ftal microcode 7].

There are however some problems in directly ap-

plying these techniques to ASIPs :

● Most ASJPS are microcode processors with par-

allelism in their instructions. But how can a

processor activity, with the right granularity to

allow efficient pattern matching (not too big pat-
terns) and efficient compaction (not too small

patterns), be determined? Deriving good pat-
terns by hand is too much of an effort for a tar-

get architecture that will only be used to map a
few algorithms on.

● The dynamic programming method (and some

other traditional code generation methods) can

only generate optimal code for an architecture

which incorporates a general-purpose register-
set. Moreover patterns used in pattern match-

ing must be trees. For an ASIP this is often

not the case, especially if the application do-

main is real time DSP. These ASIPS have few
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registers which are distributed over the archi-
tecture. Re-convergent paths (or even cycles in-

corporating a pipeline register, e.g. for multiply-
accumulates) are no exception in ASIPs. This

means that graph pattern matching is in fact
needed rather than tree pattern matching. For
effective code generation, the connectivity be-
tween registers and functional units has to be
taken into account.

Recently, work has been done at e.g. BNR [11] to
extend the pattern matching techniques in order to

be applicable to ASIPs. We however propose another
technique.

3 Instruction selection by bundling

We will use the following terminology (which is
more extensively defined in [7]): Directly coupled
micro-operations are primitive processor activities
which pass data to each other through a transitory
data storage resource, e.g. through a wire or a latch.
A bundle is a maximal sequence of micro-operations in
which each micro-operation is directly coupled to its

neighbors. As a consequence (see section 3.1), a bun-
dle must match a complete group of functional units

(FUS that is directly connected to addressable regis-

(ters via direct wires, buses, tristate drivers, or mul-

tiplexer). Examples illustrating the bundle concept
will be given in section 3.2. Remark that a bundle can

contain a pipeline register which is non-addressable
and thus a transitory data storage resource.

We believe that a bundle has the right granularity
to split the problem of instruction selection.

●

●

3.1

A first subtask, called bundling, consists in
grouping all data flow operations of a complete

application in a minimal number of bund~es.
Each of the resulting bundles must be part of
a processor instruction later on and thus fit in

an instruction format. Data routing (register
allocation) then changes the bundles into reg-

ister transfers by annotating them with multi-

plexer settings, bus-driver settings and register

addresses [10].

The second subtask of instruction selection con-
sists in putting the control flow operations and
the bundles together into micro-instructions.
This will be done during scheduling which means
that the scheduler must know about the instruc-

tion formats and about some pipeline aspects
which cause restrictions in the ordering of in-
structions.

A combined instruction set and data-

path model
The approach followed in this paper is to use a com-

bined instruction set and data-path model of the ASIP
for instruction selection rather than a set of template
pat terns. This model does not necessarily correspond
to the real ASIP data-path.

An example specification of an ASIP data-path is

shown in figure 1 and its instruction set for arithmetic
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Figure 1: Data-path specification for the example.
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opcode operand addresses

00: + @alu I 00: AX I O: AY

1: – @alu 1: <1 @lshift

format 2
format I oDcode I oDerand addresses

00: * @mult, + @as

1: “l”

~‘mat ‘:’ ‘~’

Table 1: Instruction set specification for the example.

operations is given in table 1. A more complete in-

struction set would also contain (conditional) jump
operations for implementation of the control flow and

load/store operations for data storage in memory.

The data-path allows all combinations of operations

on the ALU, the shifter, the multiplier and the adder-
subtractor but the instruction set only encodes very

few of them, using three instruction formats. The
remaining combinations are not allowed because of
encoding restrictions. Encoding restrictions are in-
troduced to limit the number of bits in the instruc-
tion word, in this case to 7 bits, register addresses
included. Allowing parallelism between the ALU and
the multiply-accumulate structure would cost a lot of
bits and would only rarely be used because of the in-
terconnection (bus conflicts!). One or two load/store
operations can usually occur in parallel with the arith-

metic operations.

The instruction set is specified by the user in the

nML language [4, 2]. In nML an instruction set is hi-
erarchically described as an attributed grammar. The
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Figure 2: Combined instruction set and data-path model for the example of figure 1. Inside a rectangle different

terminal symbols are used to represent connections : equal symbols are on the same net.

attributes belonging to a part of an instruction de-

scribe e.g. its associated actions (with in our case also
the used hardware resources), its binary encoding, its

assembly mnemonics,. . .

From the nML description the combined instruction

set and data-path model is generated. For the example

it is depicted in figure 2. It is generated as follows :

●

●

●

b

A node is generated for each FU in the data-
path. Two nodes are generated for each register;
one for a read action and one for a write action.
These nodes are the solid rectangles in figure 2.

The direct interconnections between the FUS are
added.

The FU nodes are annotated with the operations
they can perform and the associated instruction

settings. This information is found in the in-

struction set description.

Abstraction is made of the physical implemen-
tation of the connections between FUS and

registers. These connections are modelled by
simple point to point connections which pass
through “register-select-blocks” (dashed rectan-
gles). Such a block contains the instruction set-
tings that enable the connection. A lot of regis-
ter connections are missing in this example be-
cause the load/store instructions are left out.

A bundle is simply a path between register-select-
bloclcs. A register transfer is a path from (a) regis-

ter(s) on the top of the model to a register on the bot-
tom, thus including register-select-blocks. However,
while searching a path in the model, the compatibility

of the instruction settings on the path must be checked
(see example in section 3.2).

3.2 The bundling technique
Our bundling technique is an extension of the map-

ping technique described in [8, 9]. Before bundling the

application is translated in a control data flow graph
(CDFG) - see section 4. In the CDFG each opera-
tion node is annotated with all FUS from the com-
bined instruction set and data-path model it can be

executed on. If the model allows two nodes to be di-
rectly coupled (there is a path between them without

conflicting instruction settings), the edge connecting

these nodes is annotated with that combination. This
is shown in figure 3 for a small data flow graph. The

first add-operation can be performed on the ALU or
on the adder-subtracter and for each there are two

possible instruction settings. The >> l-operation can
be mapped onto the shifter, also with two possible

instruction settings. In the combined instruction set
and data-path model, it can be seen that an add->>1
bundle can be mapped on the ALU and shift FUS. In-
deed, there is a connection between the two FUS and

the intersection of their instruction settings needed for
both operations of the bundle is not empty.

In a larger example some edges may have been an-
notated with several coupling alternatives. In select-
ing a coupling alternative, other alternatives on neigh-
boring edges can be deleted. So clever heuristics
have then to be applied to select the right alterna-
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Figure 3: DFG annotated with mapping possibilities.

t ive. These heuristics are an extension of the ones
described in [8, 9]. In this way the algorithm z’ncre-
mentally combines operation nodes into sets of cou-

pled micro-operations until the eventual bundles are
obtained.

For our example the bundles are : [+, >>1 : alu-

~ 1

shift O1OOXXX , [– : alu(OOOlxxx, Ollxxxx)] and [>>2 :

shift 11xxO1O . These bundles are then extended by
the ata routing tool to complete register transfers.

In our example the re ister transfers could be : [AR
= (AX + AY) >1: ~0100000)], [AR= AR - AY ,
(0001010)] and [AR = AR >2: (1101010)].

3.3 Advantages of our approach
Using the bundling technique with a combined in-

struction set and data-path model instead of using the
more traditional pattern matching techniques has fol-
lowing advantages :

●

●

●

●

3.4

The patterns must not be enumerated in ad-
vance, but are generated while performing the

bundling.

The matched patterns need not to be trees. All

graph patterns are possible. See [8, 9].

The bundling algorithm allows matched patterns

to cross basic block boundaries (loop and con-
dition boundaries) and performs the necessary
operation duplications [8, 9].

The model reflects both the instruction encod-
ing and the connectivity between FUS and regis-
ters. Consequently it can be adopted by all tools

in the retargetable code generator, not onl the

rbundling tool but also the data-routing [10 and
scheduling tool.

Similar approaches
The idea of crea~~ng a data-path model which incor-

porates all instruction restrictions was found by com-
bining some ideas of the group working on the CBC
compiler [4] and the group working on the MSSQ com-
piler [12, 13].

In the CBC approach nML is compiled into a com-

bined instruction set and data-path model similar to

the one explained above. As they do not use a data-
path description as input, the compilation is more

complex [2]. Their approach however differs from ours
in the fact that they subsequently derive all possible
patterns from that model and use the tree pattern
matching tool described in [5]. Some heuristics are

implemented to be able to handle graphs [3].
In the MSSQ compiler the combined instruction set

and data-path model is derived from a detailed data-
path description which also contains the controller and
decoder description of the ASIP. The instruction an-
notations in the model are called I-nodes. Operations

i

on I-nodes and-ing and or-ing) are represented by I-

trees [12]. n application is mapped on a statement
by statement basis onto that model, each time directly

generating complete transfers.

4 Instruction set definition

Because the tools in our retargetable compiler work
on a combined instruction set and data-path model we
can perform instruction set definition for a new ASIP
at the data-path level. This is done in an interactive
way, based on statistics obtained from an analysis tooi
and the bundling tool.

To define the instruction set of an ASIP intended
for use in a certain application class, representative

application parts are first selected. Then initial data-

path parts are selected out of a library, based on the
statistics obtained from the analysis tool. These parts

are then iteratively updated — with as most impor-
tant criteria area/performance trade-offs — and fi-
nally instruction encodings are defined.

This will be explained by a case study. Suppose
that we want to define the instruction set for an ASIP
in the application domain of speech recognition. One
of the algorithms to be performed can then be the
Pitch Extraction algorithm described in [14]. As ex-

ample we will take the “sieve detection” function of
that algorithm.

4.1 Initial data-path parts

We have developed a tool called anaiyse that ex-

tracts statistical design information from the CDFG

description. Analyse can be called at multiple levels
in the design trajectory. Initially anaiyse gives us an
overview of all operations in the application, together
with some frequently occurring operation sequences,
which are good candidates to be directly coupled. This
output is summarised in table 2. Based on this table
we define the data-path parts of figure 4: The mul-

tiplication (by a constant) and the division will be
expanded into add/sub/shift operations on a prede-
fine data-path part. The sequence “add-e q”, which
is part of the implementation of the loop counters and

address calculation, has a very high occurrence so we
decide to define a data-path part for it. Now all oper-
ations in the input algorithm can be expanded by our
expansion tool in order to fit on the data-path parts.
After expansion, analyse is called again to refine the
statistics. For brevity, we only list the statistics on
operation sequences in table 3.

At this point the bundling tool (see section 3) can

be called. The data-path parts in figure 4 will not be
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operation I word- I occur- I candidate

length rence FUS

addition 6 2600 full adder

12 640

16 320

mult Const 16 1920 I multiplier

I I I adder-shifter,
equality 6 2280 comparator, full adder

grtEq (M 8 40 comparator, full adder

16 960

grt (>) 16 640 comparator, full adder

division 5 40 adder_shifter

[ sequences Occ.
J

add - eq 2280

Table 2: Output of analyse for input description.

for expanded for expanded dwision for loop counters and
multiplication address calculation

Figure 4: Initial data-path parts.

interconnected without an intermediate (addressable)
register so no bundle will occupy more than one data-
path part. No encoding restrictions are defined yet.
The bundling tool gives the following statistics. Every
pair of adjacent operations that is directly coupled, is
printed in a list with its number of occurrences. An-
other list cent ains pairs of adj scent operations that are
not (directly) coupled because of the data-path parts.

The number of directly coupled edges, the number of
non-coupled edges and their ratios to the total number

sequences Occ. expansions of :

seauences of 2 o~erations

add - eq 2280 I “

shift - add 1280 multiplication

shift - sub 640

add - sub 960 mnlt./add - grt/grtEq

sub - sub 640 multiplication - .grt/.grtEq

sequences of 3 operations

shift - add - sub 640 I multiplication - grt/grtEq

shift - sub - sub 640

Table 3: Operation sequences after expansion, for initial

directly coupled edges

sequence occurrence

add - ea I 2280 I
L 1 ,

non-coupled edges

seauences I occurrence ex~ansions of :. I ,

shift - add 1280 I multiplication

shift - sub 640

add - sub 960 multConst/add - grt/grtEq

sub - sub 640 multConst - grt/grtEq

Table 4: Feedback of bundling for initial data-path parts.

of edges considered during bundling are also printed.

A part of the statistics is summarised in table 4.

With these data-path parts 6040 edges (or 50.2 %)
are directly coupled and 6000 edges (or 49.8 Yo) are
not coupled. If a full cross bar interconnection scheme
with register files of unlimited size is assumed between
the data-path structures, the CDFG can be scheduled

in 6241 cycles.

4.2 Improvement of the data-path parts

Table 4- shows that the operations resulting from
the expansion of the multiplications are not coupled.
If we want to achieve this, the shifter should be placed
before the adder. With this done, the ratio of coupled
edges increases to 66 ‘ZO and the schedule length de-
creases to 4961 cycles.

Table 3 also contains some sequences of 3 opera-

tions. In these sequences the last subtraction comes

from the relational operations > and z (compare with

table 2). If we incorporate a comparator into the left-

hand data-path part of figure 4, we obtain the data-

path part of figure 5. We now have to perform a new
expansion of the original application algorithm on the

new data-path parts. The ratio of coupled edges then
becomes 91 % and the schedule length 3961 cycles.

4.3 Combining the data-path parts into

an instruction set

When analyse is given a scheduled graph as input,

it provides occupation ratios and a table with the oc-

cupation patterns for each FU. Figure 6 shows the

occupation patterns for the adder-subtracter in each
of the data-path parts. When examining occupation

patterns for all FUS we see that there is only a small

overlap between the occupation patterns of the divi-
sion data-path part and the other ones. In fact, to save
area, the division and multiplication data-path parts
can be combined into the one depicted (on the left) in

figure 7. The operations from the multiplication and

data-path parts. Figure 5: Shift-Add-Comp data-path part.
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loop/add-subtracter [Xxxxxx. x . . . . . . . ..x. ..x . . ..l

multiplic./add-subtractor [. XX. XX. X. . . . . . . . . . . . . ..x. xI

division/add-subtracter [...... . .x . Xxxxxxxxxxxx . . . . 1
(Ilxll : resource is occupied ; “ .“ : resource is free)

Figure 6: Occupation patterns for each add-subtracter
in data-path parts.

for expanded multiplication & division;
additions & relaticmal operations

u
for loop countars and
address calculation

Figure 7: Final proposal for data-path parts.

the division expansion will thus be coded in different
micro-instructions. Performing bundling on the parts
of figure 7 gives the same results as previously. The
two remaining data-path parts should not be merged
any further because they are heavily used in parallel.

Out of these observations we can derive two in-
struction formats needed to control the data-path

parts of figure 7 for this CDFG. The first for-

mat contains two orthogonal parts, controlling simple
shifts/additions/subtractions (e.g. expanded multipli-

cation) and the address/counter operations respec-
tively. The second format controls the expansion of
the division. At this point we have made a specifica-
tion as in figure 1 and table 1.

The last additional encoding restrictions did not
affect the total schedule length, which is still 3961 cy-
cles. Performing the changes of this section on the

parts without the comparator (less area) is also possi-

ble (schedule length :4921 cycles).

5 Conclusions and future work

We have shown how instruction selection for ASIPs
can be done by generating a combined instruction set
and data-path model from the instruction set and an
abstract data-path and performing operation bundling
on that model.

We also demonstrated a method to iteratively de-
fine a data-path and an instruction set for an ASIP.
Each run of the analysis and bundling tools gives sta-
tistical information for that purpose.

First versions of the analysis, bundling, data rout-
ing and scheduling tools are currently available. Some
future work will consist of further implementing these

ideas and experimenting with some preprocessing of
the model. This preprocessing would allow faster path
searching in the model. The heuristics in the bundling
algorithm also have to be refined and tested.
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