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Abstract
We describe methods for decomposing gates within a speed-

independent asynchronous design. The decomposition step is an
essential part of the library binding process, and is used both to
increase the granularity of the design for higher quality mapping
and to ensure that the design can be implemented. We present
algorithms for simple hazard-free gate decomposition, and show
results which indicate that we can decompose most of the gates in
our benchmark set by this simple method. We then extend these
algorithms to work for those cases in which no simple decomposi-
tion exists.

1. Introduction

Asynchronous design styles have been increasing in popularity
as device sizes shrink and concurrency is exploited to increase
system performance. However, asynchronous designs are difficult
to implement correctly because the presence ofhazards, which do
not affect the correctness of synchronous systems, can cause
improper circuit operation. Many asynchronous design styles,
together with accompanying automated synthesis systems, address
the issues of design complexity and correctness. Typically, these
synthesis systems take a high-level description of an asynchro-
nous system and produce logic-level equations that are hazard-
free for the given delay assumptions. For burst-mode asynchro-
nous designs ([11], [18], [4]), the designer can then automatically
translate this logic-level description into a technology-specific
implementation using the asynchronous technology mapper
described in [15]. However this technology mapper will not cor-
rectly map designs for speed-independent asynchronous design
styles, because the different delay assumptions change the types of
hazards that are of concern. In particular, the decomposition step
of traditional library binding is difficult to perform in a hazard-
free manner, requiring development of new theory and algorithms
for decomposition of large gates so the general library binding
problem can be addressed.

Several researchers have tackled gate-level synthesis of speed-
independent designs ([17], [1]), although the gates may not be
available in a particular library, due either to their complexity or
their size. Varshavsky [17] showed that an implementation using
n-input AND-OR-NOT gates or two-input NAND and NOR gates

(with limited fanout) can be derived from any speed-independent
signal transition graph (STG) without choice. These circuits are
larger and more complex than those produced by Beerel’s synthe-
sis procedure [1], which uses unlimited-fanout basic gates to pro-
duce a hazard-free speed-independent design. No method
addresses the general library binding problem, however. Because
Beerel’s style is more efficient and handles a wider range of speci-
fications, we use it as the starting point for library binding (also
calledtechnology mapping).

In this paper we tackle the problem of decomposition for
library binding of speed-independent designs. The decomposition
step is an essential component of the library binding problem
which splits each logic function into finer granularity base-func-
tions, both to insure that an implementation composed of elements
from the library exists and to improve the quality of the mapped
circuit. We first describe the speed-independent design style and
the hazards inherent in that design style. Next we analyze the
basic library binding procedure presented in [15] to demonstrate
its applicability to this design style. After showing that decompo-
sition is the difficult step, we present theory and algorithms for
hazard-free decomposition under the speed-independent delay
assumptions. We implemented these algorithms in a new tool, and
we ran the tool on some benchmark examples. The results demon-
strate both the usefulness and limitations of the decomposition
techniques, which must be combined with non-standard covering
algorithms to yield efficient mapped circuits.

2. Background and definitions

2.1  Design style

There are several popular asynchronous design styles that are
the subject of active research. In this paper we are interested in the
speed-independent asynchronous design style, in which wires are
assumed to have zero delay and gates can have unbounded but
finite delay. Each delay element is assumed to exhibitpure delay
properties [7]. Thus, glitches will not be filtered out by inertial
delays and any glitch can be propagated to the output of a gate.

Each gate is assumed to beatomic,and can be modeled as an
instantaneous Boolean function of its inputs with a single pure
delay on the output. The atomic gate assumption implies that each
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gate in the circuit either exists as a single CMOS gate in a library
or that a custom gate will be created for it. If a circuit is imple-
mented as an atomic gate, then given any input change the gate
will respond with a corresponding output change after some
(potentially unbounded) delay. Because of the delay assumptions,
the relative ordering of signal transitions on the inputs to a gate
will be preserved irrespective of the actual delays. This property
will be important later on.

Inherent in the speed-independent model is theisochronic
fork assumption [7], where an isochronic fork is a multi-fanout
point with a single delay. This implies that if the output of the
driving gate changes then the inputs to the driven gates will
change at the same time. In the physical implementation, the iso-
chronic fork assumption requires help from a block place-and-
route tool to balance path delays.

A speed-independent implementation composed of combina-

tional logic and C-elements1 is used as input to the technology
mapper. This implementation may have been synthesized from a
semi-modular speed-independent signal transition graph or state
graph ([3], [10], [1]), or may have been derived by some other
means. Although the specification style is not important, knowl-
edge of the environment is necessary to perform library binding
for this design style. Figure 2.1 illustrates the synthesis flow start-
ing from an STG and ending in a gate-level implementation using
gates from a standard-cell or gate-array library.

There are several aspects of this specification and implemen-
tation style that impact library binding. First, since the gates in
the initial implementation can have arbitrarily large fan-in, some
of the gates produced by the synthesis method may not exist in
the given library. Therefore, the library binding algorithm must
be able to decompose these large gates into an interconnection of
smaller gates while preserving the speed-independence of the
design. Second, because of the speed-independent delay assump-
tions, relative signal ordering through each gate in the combina-
tional logic must be preserved in the final implementation or
hazards will result. This means that library binding must be done
in the context of the circuit’s environment, which has an impact
on how gates are decomposed.

1. A two-input Muller C-element is a single-output sequential element
with next-state equation C = AB + (A+B)C, where A and B are its
inputs, and C is its output. In examples presented later in this paper,
each C-element has one inverted input, implying that its output will
change when the two inputs change to be of opposite value.

Figure 2.1: Illustration of synthesis flow
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2.2  Hazards and gate decomposition

A hazard is an unwanted output glitch in response to a change
in some input(s). Hazards may cause a design to operate incor-
rectly. The initial design (the input to the library binding step) is
assumed to be hazard-free within the context of the environment
in which it operates. For the library binding problem, focusing on
the hazard behavior of the combinational logic is sufficient to
insure that the final implementation is still hazard-free.

There are two basic classes of combinational hazards:function
and logic hazards. Function hazards are a property of the logic
function, whereas logic hazards are purely a property of the
implementation. Although a function hazard cannot be elimi-
nated, it can be avoided by controlling the sequence of input
changes to the function. If a network has a function hazard for a
given transition, then it cannot also have a logic hazard for that
same transition. Each class of hazard includes bothstatic and
dynamic hazards. Given that a transition is being made between
two pointsα andβ in the input space, static hazards apply to tran-
sitions wheref(α) = f(β), and dynamic hazards apply to cases
where f(α) ≠ f(β). (More thorough treatment of hazards can be
found in [16] and [9].)

Because library binding must not introduce hazards, combina-
tional logic hazards cannot be tolerated in the design, as is the
case with burst-mode designs [15]. Logic transformations that
alter the order of signal propagation through the network can
cause additional hazards to be exercised in speed-independent
designs.

In addition to combinational hazards,sequential hazards can
occur as a result of the delay assumptions. The notion of
acknowledgment is key to the definition:

Definition 2.1An output transition on a gate isacknowledged if
one of the gates connected to its fanout cannot change until that
output transition reaches its input.[1]

Proposition 2.1 An unacknowledged transition on a gate
output can result in a sequential hazard in the circuit.

With the burst-mode design style we were able to take advan-
tage of delay assumptions in the feedback path to ignore these
types of hazards. However, speed-independent circuits have no
such simplifying assumptions. Improper decomposition can yield
unacknowledged transitions resulting in hazards.

3. Library binding

As in [15], we started with a synchronous mapping procedure
and examined each step to see its effect on the hazard behavior of
the design. We found the decomposition step to be the most trou-
blesome and, after briefly describing the overall library binding
procedure, we focus on the decomposition step for the remainder
of the paper. After characterizing the initial design, we show how
improper decomposition can lead to hazards, motivating the need
to characterize the circuit environment (a step that was not neces-
sary for library binding of other design styles). We then present
theorems supporting a simple hazard-free decomposition algo-



rithm which works for many gates. Finally, we extend the simple
procedure to handle cases where the simple procedure failed.

The approach to library binding for burst-mode asynchronous
designs taken in [15] was based on synchronous mapping proce-
dures ([6], [13], [8]). Since the general library binding problem is
known to be intractable, heuristic algorithms are used. First, the
initial network, which is represented as a directed acyclic graph
(DAG), is decomposed into a multi-level network composed of
simple gates (e.g., two-input AND/OR gates). The decomposi-
tion step is used both to ensure that the circuit is implementable
(the base functions are assumed to be in the technology library),
and to increase the size of the solution space for subsequent steps.
Next, the circuit is partitioned into sets of single-outputcones of
logic, where a cone of logic represents a subnetwork obtained by
cutting the network at points of multi-fanout. All possible
matches to library elements are then found for subnetworks
within each logic cone. Finally, an optimal set of matching
library elements is selected from the set of matches to realize the
network without introducing hazards. The procedure is outlined
below:

procedure bm-tmap(network, library) {
decomposed_network = tech_decomp(network);
cones = partition(decomposed_network);
foreach  output in  cones {

find_best_async_cover(output, library);
}

}

For speed-independent designs, the decomposition step
requires knowledge of the circuit environment as well as the ini-
tial technology-independent circuit description. The partitioning
and matching/covering algorithms described in [15] can be used
without modification to yield a correct implementation in the
given technology. Modifications to the covering routines to give
better quality results can be found in [14].

3.1  Initial design description

Although there are several synthesis procedures that produce
speed-independent logic, we chose to start with an initial unopti-
mized speed-independent sequential implementation produced by
SYN [1]. This initial design consists of C-elements and logic
blocks, where each logic block is modeled as a disjoint sum-of-
products (SOP) expression and can be equivalently represented
as a set of AND and OR gates. We discuss the SOP form for clar-
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Figure 3.1: Initial Implementation
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ity; the synthesis method can produce multilevel logic. The algo-
rithms can easily be extended to multi-level logic as well.

The circuit is first partitioned by breaking the circuit at the
outputs of the C-elements. This induces a partition into blocks of
circuitry which implement each primary output. From that,
“cones” of combinational logic that feed into the C-elements are
extracted and passed along to be further decomposed. We assume
that the two-input C-element exists in the library.

Definition 3.1 (Initial implementation) An initial
implementation of a speed-independent circuit consists of two-
input C-elements implementing the outputs of the design, and
blocks of combinational logic connected to each C-element input.

Definition 3.2 (Output logic block) An output logic block
consists of a two-input C-element along with the combinational
logic connected to each of its inputs. Each output logic block has
a single output, and its inputs are a subset of the design’s primary
inputs and outputs.

Figure 3.1 shows an example of the initial implementation of
a design, composed ofn output logic blocks. We can treat each
output logic block independently during decomposition.

3.2  How hazards can occur during decomposition

Before characterizing the behavior of the circuit’s environ-
ment, we will show through an example how knowledge of the
environment is necessary to do proper decomposition.This exam-
ple will illustrate how a static-0 hazard can occur in a speed-inde-
pendent design due to improper decomposition of a gate.

Figure 3.2a shows a gate implementing the functionf = wxy
and two different decompositions composed of cascaded connec-
tions of two-input AND gates. The input timing as derived from
the STG isy↓ followed byx↑, as shown, withw remaining con-
stant at 1. Because of the input signal ordering, the gate will take
the trajectory shown in the Karnaugh map, ensuring that the func-
tion hazard in the AND gate is avoided. Thus, the gate’s output
will remain at 0 during the transitions onx andy.

Now, suppose the gate is decomposed sow andy are placed in
a separate AND gate, as shown in Figure 3.2b. Wheny changes,
the intermediate AND gate will go low some time later. Before
that change has been seen by the final AND gate,x may have
gone high, resulting in a glitch on the output of the gate.

Figure 3.2c shows a decomposition wherew and x are con-
nected to the same gate, andy is connected to the AND gate clos-
est to the output. In this casey changes first, presenting a 0 on the
output of the final gate. The intermediate AND gate changes after
x changes, but the output of the network will not change, sincey
is guaranteed to be low before the change in the intermediate
AND gate reachesq, keeping the final AND gate low.

In this example, there is a multi-input change on the inputs to
the AND gate, and proper signal ordering is required to avoid the
static-0 hazard. For the decomposition in Figure 3.2b, the relative
order between the two signals is not maintained, resulting in the
hazard. In Figure 3.2c, the critical signal ordering is maintained,
and the decomposed circuit is hazard-free.



This example suggests that circuit transformations must pre-
serve the ordering of certain signals through internal combina-
tional logic of any decomposed gates. These transformations are
dependent upon the specification, which defines the signal order-
ing.

3.3  Characterization of the circuit’s environment

As we have shown, knowledge of signal transition ordering is
essential to be able to decompose the circuit in a hazard-free way.
Therefore, we cannot do the decomposition without knowledge
of the signal ordering—we must use information from the speci-
fication (i.e., the STG or state graph) to drive the decomposition.

Definition 3.3 An input burst is an unordered set of input
transitions that can appear at the input to an output logic block.

Input bursts are denoted as signal transitions separated by ver-
tical bars enclosed within curly braces, for example {xi↓ || xj↑ ||

xk↑}. They represent a concurrent portion of a state graph, where

the transitions may occur in any order. A degenerate burst con-
sists of a single signal transition.

Definition 3.4 An input sequenceis an ordered set of input
bursts.

Input sequences are denoted as input bursts separated by com-
mas enclosed within parentheses. An example of an input
sequence is (xi↑, xj↓, xk↑), where the signals are all inputs to the

output logic block.

Definition 3.5A context signal is a signal that remains constant
during a given input sequence and is one of the inputs to an
output logic block. Furthermore, thecontextfor a given sequence
is the set of context signals for that input sequence.

Proposition 3.1 The input-output behavior of an output logic
block for output xi is completely characterized by the set of
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Figure 3.2: Example of AND decompositions

possible (input sequence; context) tuples extracted from the STG
for each instance of xi↑[xi↓], where the starting point of each

sequence is the state immediately following the preceding
downward [upward] transition on xi, and the context for that

sequence are the variables that don’t change during that
sequence.

3.4  Decomposition

Having characterized the initial implementation and circuit’s
environment, we can now tackle the decomposition step. We first
show that the sequential portions of the circuit can be separated
from the combinational portions of the circuit. Next, we show
that each cone of logic can be treated independently, and further-
more, that each AND gate within a cone of logic also operates
independently—i.e., that the inputs to the OR gate in the imple-
mentation of an SOP expression operate disjointly. We then for-
mulate legal decompositions of each gate for each type of input-
output behavior that the gate may experience (inputs
change⇒output rises; inputs change⇒output falls; inputs
change⇒output does not change). We propose a simple algorithm
for doing a hazard-free decomposition, and present results show-
ing where it succeeds and fails. Finally we extend this algorithm
to insert wire forks to eliminate sequential hazards, and show
results of applying this algorithm to the cases that failed on the
simple algorithm. We present theorems without proof; proofs can
be found in [14].

Theorem 3.1 Given the implementation of an output logic
block as in Definition 3.2, each input to the C-element makes a
monotonic transition before the C-element’s output changes.
Furthermore, the inputs to the C-element can change in any
order, and we can therefore treat each combinational logic block
feeding into the C-element independently.

Corollary 3.1.1 During an input sequence, each input to the C-
element in an output logic block will change exactly once.
Additionally, the inputs will change in opposite directions.

Now, let us take a look at the hazard-behavior of the individ-
ual output logic blocks.

Theorem 3.2 Given a block of logic that consists of an AND-
OR implementation of a sum-of-products expression, the OR gate
can be decomposed according to the associative law, independent
of signal ordering, and the resulting decomposed network will
still be hazard-free.

Corollary 3.2.1 Given a block of logic that consists of an AND-
OR implementation of a sum-of-products expression, and a set of
(input sequence; context) tuples that completely describe the
behavior of the block of logic, the OR gate will only see single-
input changes.

Corollary 3.2.1, coupled with Theorem 3.2, allows us to
decompose each AND gate independently. We do so by partition-
ing the input sequences for each AND gate into three sets: one
resulting in a falling transition of the AND gate, another resulting
in a rising transition of the AND gate, and another resulting in no
transition of the AND gate. Any decompositions that are valid for



all three sequence types are valid decompositions. Note that for all
cases we only consider disjoint decompositions (i.e., where none
of the input variables are replicated).

Theorem 3.3 (Falling Transition of an AND gate)Given an
atomic AND gate with inputs X, a set of (input sequence; context)
tuples resulting in a falling transition on its output, and a
decomposition of the gate into two cascaded AND gates, where
the inputs to the intermediate AND gate are XA ⊂ X, the output of

the intermediate AND gate is a new signal q, and the inputs to the
final AND gate are XB ∪ q, where XB = X - XA, then this

decomposition is hazard-free for this set of input sequence;
context) tuples if and only if a transition on q for a given input
sequence implies that no transition can occur on the inputs in XB,

and a transition on one or more inputs in XB for a given input

sequence implies that no transition can occur on q.

Let us now apply Theorem 3.3 to one of our previous exam-
ples. In Figure 3.4 we have one (input sequence; context) tuple for
f↓: (w↓, y↓; x=1). We partition the gate such thatXA={w, x} andXB

= {y}, where q is the output of the intermediate AND gate. We
observe that there is a transition onw, leading to a transition onq,
along with a transition ony. Therefore the decomposition is
invalid. In Figure 3.4b,XA={w, y}, andXB = {x}. Sincex is a con-

text signal, it does not change during the input sequence and this is
a valid decomposition for that sequence.

Corollary 3.3.1 Given a hazard-free decomposition of AND
gates as defined by Theorem 3.3, and a set of (input sequence;
context) tuples that result in falling transitions of the final AND
gate, then the only valid decompositions for a given (input
sequence; context) tuple in that set are those in which the signals
that change in the input sequence are connected to a single gate
(i.e., either X− {context signals}⊆ XB or X − {context signals}⊆
XA).

Again, referring to Figure 3.4b we can see thatX - {context sig-
nals} = {w, x, y} - {x} = {w,y} = XA, satisfying the corollary.

For the rising transition of an AND gate, there are several
important points to consider. First, the AND gate will change
when the last arriving signal goes to 1. This means that all inter-
mediate nodes will need to be 1 before the AND gate can change,
and therefore there can be no unacknowledged signals. Second, it
is possible for a subset of signals to change during a given input
sequence so they would cause an intermediate AND gate to expe-
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Figure 3.3: Illustration of Theorem 3.3
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rience a dynamic function hazard. This second point is the critical
point for the decomposition, since without that we could decom-
pose the AND gate in any logic-hazard-free way. In other words,
we need to break up the gate so intermediate gates change mono-
tonically during an input sequence.

Theorem 3.4 (Rising Transition of AND)A decomposition of
an atomic AND gate into two cascaded AND gates is hazard-free
with respect to its set of rising (input sequence; context) tuples if
and only if for each (input sequence; context) tuple in the set, the
output of the intermediate AND gate of the decomposed circuit
makes at most a single monotonic transition.

Corollary 3.4.1 Given the above assumptions on the AND gate,
if the transitions on the inputs of all intermediate AND gates are
monotonic then the decomposition is hazard-free for rising
transitions of the AND gate.

Given a proposed decomposition, for each input sequence
where the output of the gate rises we must look at the signals
within the input sequence to tell whether the decomposition is
valid. If each signal that is connected to the intermediate AND
gate makes a single monotonic transition, then the intermediate
AND gate will in turn make a single monotonic transition and the
theorem will be satisfied. However, if a signal feeding an inter-
mediate AND gate changes non-monotonically, the gate can tran-
sition high and then low before settling at its final value, leading
to a hazard.

In the decomposition of AND4 shown in the inset of Figure
3.5, for sequence 1 the output of the intermediate AND gate is
high at the beginning of the sequence, and then transitions to low
whenpeack goes low. Finally, it goes high again whensmsg goes
low. Therefore, this decomposition is invalid since a hazard on
the intermediate AND gate is exercised. In this situation both
peack andsmsg changed non-monotonically, leading to the haz-
ard. This suggests the following corollary:

Corollary 3.4.2 Given the assumptions in Theorem 3.4, any
decomposition which has all non-context signals connected to a
single gate is hazard-free for the rising transition of the AND.

The final situation we must examine is when there are a set of
transitions on the inputs to the AND gate, but the AND gate
remains low. In this situation, splitting up the gate incorrectly
may lead to a static 0-hazard on the output of an intermediate
gate.

Theorem 3.5 (AND gate remains stable)A decomposition of
an atomic AND gate into two cascaded AND gates is hazard-free
with respect to the set of (input sequence; context) tuples where
its output remains stationary if for each (input sequence; context)
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tuple where the AND gate does not change, the intermediate
AND gate does not change.

We can now combine these three conditions together to come
up with conditions for valid decompositions for all input
sequences.

Theorem 3.6 Decomposition of an AND gate in accordance
with the constraints imposed by Corollary 3.3.1 and Theorems
3.4 and 3.5 is hazard-free.

Having established the key theorems for decomposition of
AND gates, we can now analyze the set of (input sequence; con-
text) tuples for a given output to determine whether the AND
gate can be decomposed. Any conflict in the constraints imposed
by the theorems implies that the gate cannot be decomposed in a
simple manner.

We will now illustrate the use of these theorems in the exam-
ple we used previously, shown in Figure 3.5. This example is
taken from thepe-rcv-ifc circuit, a circuit that was part of a real
design done at Hewlett-Packard [5]. Let us try to decompose the
instance AND5, since it is the most difficult. For y2↓, AND5 will
stay low during sequence 3, and will transition low for sequences
1 and 2. By Corollary 3.3.1, we know that {peack, woq, treq,
tack} must be placed in the same gate (from sequence 2), and
{ peack, smsg, treq, tack} must be placed in the same gate (from
sequence 1). These two partitions overlap, and therefore we must
include the signals {peack, woq, treq, tack, smsg} in the same
gate, which means we cannot split up that gate. We do not need to
look at any other input sequences at this point.

Instance AND3 may be easier to decompose. Instance AND3
falls during sequence 3. From Corollary 3.3.1, only {peack,
smsg} must be placed in the same gate. This leads to the only
possible decomposition (modulo permutations) shown in the
inset in Figure 3.5. Instance AND3 rises during input sequence 5.
Since the changes on the inputs are monotonic during that

Figure 3.5: Decomposition for rising transition

(Input sequence; context signal) tuples:

y2↓:
1. (peack↓, smsg↑, {treq↓ || peack↑}, {tack↓ || smsg↓}; woq’)
2. (peack↓, woq↑, treq↓, tack↓, peack↑, woq↓; smsg’)
3. (peack↑, smsg↓; woq’, treq’, tack’)

y2↑:
4. (peack↓, woq↑, treq↑, tack↑, peack↑, woq↓; smsg’)
5. (peack↓, smsg↑; woq’, tack’, treq’)
6. ({peack↓ || treq↑}, tack↑, treq↓, tack↓, woq↑, treq↑, tack↑,
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sequence, any decomposition will work (by Theorem 3.4), so the
decomposition shown also works for the rising transition. AND3
stays low during sequences 1, 2, 4 and 6. Unfortunately, if we
look at sequence 1, we see that the intermediate AND gate will
undergo a non-monotonic transition, so we cannot decompose
AND3 either.

Finally, let us take a look at instance AND4. For this gate,
when y2↑, AND4 falls. By Theorem 3.3, we see that, from
sequence 4, {peack, woq, tack} must be in the same gate. From
sequence 5, we must include {peack, smsg} in the same gate. So
we know that the gate cannot be decomposed further. From this
example we see that we cannot decompose any of the gates in a
simple manner. This motivates us to look for ways in which we
can eliminate some of the hazards introduced by the decomposi-
tions, which will be the topic of subsection 3.6.

3.5  Basic decomposition algorithm

Our basic decomposition algorithm is as follows:

decompose( sequences, logic ):

foreach  output {
foreach  block of combinational logic {

foreach  gate in  block {
if  (gate == AND) { /* AND gate */

(fallingSeqs, risingSeqs, stationarySeqs) =
partition(sequences,inputs(gate));

falling = decompFalling(gate, fallingSeqs);
rising = decompRising(gate, risingSeqs);
stationary = decompNo(gate,stationarySeqs);

decompositions = falling ∩ rising ∩ stationary;
}
else  { /* OR gate */

decompositions = fundmodeDecomp (gate);
}

}
}

}

The input sequences which are one of the inputs to the decom-
position procedure are derived from the STG via a state graph.
Although the number of distinct input sequences for any STG is
finite, it can be quite large for an entire design. However, since
the number of distinct input sequences for any given output logic
block and gate is small, by extracting the sequences for the indi-
vidual gates the procedure becomes quite efficient.

3.5.1 Results from simple decomposition procedure

We ran the above procedure on a number of examples from
the asynchronous community, as shown in Table 1. Over half the
AND3 gates and all but one of the AND4 gates in the designs
were decomposable. Thus, using library of AND gates with three
or fewer inputs, we were able to decompose over 95% of the
designs. For about half the designs we were also able to decom-
pose all of the AND3 gates. Although this doesn’t affect the
implementability of the designs, this has a positive impact on the
quality of the final mapped circuit. By decomposing the gates into
gates of finer granularity, we can find a better quality cover of the
design during the matching/covering step.

The only design that we could not decompose for gates of size



four or more waspe-rcv-ifc. The next section examines the
source of the failures, and presents a method for successful
decomposition of these gates.

3.6  Extensions to enforce sequencing

As we saw from our previous results, there were several large
gates we could not decompose. There are two situations we need
to address, assuming we have avoided introducing any logic haz-
ards. One is where the decomposition no longer preserves the
ordering of the signals in the circuit’s internal logic, and thus
exercises a function hazard on an intermediate gate within the
space of an input sequence. The second situation, which is of
more interest, is where there is a hazard due to the sequential
nature of the circuit; i.e., an unacknowledged transition. The sec-
ond situation is the one we address.

Suppose that we have a transition that is not acknowledged by
a gate in the output logic block. If we can ensure that it is
acknowledged somewhere else in the circuitbefore the output
change, then we can enforce the ordering requirement we had
previously. Beerel refers to such connections asacknowledgment
wire-forks [1], and proposed their use during decomposition in
[2].

Recall that in our earlier example we were unable to decom-
pose the two larger gates because of the requirements of Theorem
3.3 for the falling transition of an AND gate. In these cases, we
encountered a sequential hazard which prevented us from decom-
posing the gate.

Our general decomposition procedure must change to accom-

Design # of gates
# of AND gates

(≥ 3 inputs)
can decompose

# of AND gates
(≥ 3 inputs)

cannot decompose
a_to_d_controller 6 2 AND3 0
atod 6 2 AND3 0
chu133 6 2 AND3 0
chu150 7 0 2 AND3
converta 13 0 2 AND3
dff 6 2 AND3 0
ebergen 9 0 2 AND3
half 6 0 1 AND3
hazard 6 2 AND3 0
mp-forward-pkt 10 2 AND4 0
nak-pa 10 0 1 AND3
nowick 11 2 AND3 0
pe-rcv-ifc 36 5 AND3, 2 AND4 4 AND3, 1 AND4,

2 AND5
qr42 9 0 2 AND3
ram-read-sbuf 11 2 AND3 0
rcv-setup 3 1 AND4 0
rpdft 4 1 AND3, 3 AND4 0
sbuf-ram-write 11 3 AND3 1 AND3
sbuf-send-pkt2 13 2 AND3 1 AND3
two_phase_fifo 7 0 2 AND3
vbe5b 6 0 1 AND3
vbe5c 4 0 1 AND3

TABLE 1. Results from simple decomp procedure

modate addition of wire-forks. Recall that an output logic block
has a two-input C-element driven by separate blocks of combina-
tional logic. During any input sequence we have one block of
combinational logic that is rising and one that is falling.

Theorem 3.7 Given a decomposed AND gate within the
combinational portion of an output logic block that satisfies the
conditions of Theorems 3.4 and 3.5, the falling transitions of the
intermediate AND gate can be acknowledged by adding an
inverted input to one or more AND gates in the complementary
output logic block and the resulting circuit will be hazard-free.

Now that we have shown the cases in which we can add a con-
nection, we want to modify our decomposition procedure to take
advantage of these situations in case we cannot decompose it by
the simpler methods presented in the previous section.

3.6.1 Extended decomposition procedure

if  (decompositions == NULL) {
gates2do = undecomposable gates;
foreach gate in gates2do

if  (gate ∉ library)
extendedDecomp(gate,decomps,seqs);

}
}
procedure extendedDecomp(gate, decomps, seqs) {

gateDecomps = findAllFHFDecomps(gate);
foreach  intermedGate in  gateDecomps {

hazardousSeqs = findHazards (intermedGate,
fallingSeqs);

ackingGates = findRisingGates(hazardousSeqs);
connect (intermedGate, ackingGates);
/* Must check to see if we have exceeded fanin

of rising gates by adding connection */
foreach ackingGate in  ackingGates {

if  (ackingGate ∉ library)
gates2do += ackingGate;

}
}

}

With this extended decomposition procedure we can then
decompose the AND5 gates in the design at the penalty of adding
a few wire interconnections to the intermediate gate. However,
since the fanout of the intermediate gates we added during the
decomposition are small to begin with, this does not pose much of
a problem.

Figure 3.6 shows how we used a decomposed AND4 and
AND5 to mutually acknowledge falling transitions through addi-
tion of wire forks. (See [14] for more details.) The final decom-
posedpe-rcv-ifc design had 14 AND3s and two AND4s and many
AND2s.
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Figure 3.6: Decomposition using AND5 to
acknowledge the decomposed AND4



The algorithms we described were implemented in approxi-
mately 5000 lines of C code, using Tcl and Tk as the user-inter-
face [12]. All examples ran in a few seconds on an HP 9000/730
workstation.

4. Conclusions

We have characterized the problem of decomposing gates in a
speed-independent design in the context of library binding for
speed-independent designs. Given a technology-independent
netlist for a speed-independent design, environmental informa-
tion, and a logic-hazard-free library, we can decompose the gates
into smaller gates. The decomposition is done both for feasibility
and to expand the solution space during the matching/covering
step of technology mapping. Building on the basic decomposition
algorithm, we also showed how to introduce extra circuit connec-
tions to remove hazards in a decomposed design.

We implemented the decomposition algorithms as part of a
new technology mapper. We ran the routines on asynchronous
benchmarks and showed that we could decompose most of the
gates with the simple algorithm, but for larger gates we had to
rely on the extended algorithm for a successful decomposition.

In this paper we have only addressed decomposition algo-
rithms for library binding. New matching/covering algorithms
can be used to take advantage of sharing across logic blocks,
given that the granularity of the decomposed design is coarser
than with synchronous or burst-mode designs.

5. Acknowledgments

We are indebted to Peter Beerel and Prof. David Dill for
insightful discussions and helpful comments on this paper. Prof.
Luciano Lavagno also gave us valuable criticisms which we
incorporated into our work. This work was supported under SRC
contract 93-DJ-205 and under ARPA/NSF contract MIP
9115432.

6. References

[1] P. Beerel and T. H.-Y. Meng, “Automatic gate-level synthesis of
speed-independent circuits,” inICCAD, Proceedings of the Interna-
tional Conference on Computer-Aided Design, pages 581–586, Nov.
1992.

[2] P. Beerel and T. H.-Y. Meng, “Logic transformations and observ-
ability don’t cares in speed-independent circuits,” inTAU, Aug.
1993.

[3] T.-A. Chu, “Synthesis of self-timed VLSI circuits from graph-theo-
retic specifications,” Technical Report MIT-LCS-TR-393, MIT,
1987.

[4] W. S. Coates, A. L. Davis, and K. S. Stevens, “Automatic synthesis
of fast compact self-timed control circuits,” inIFIP Workshop on
Asynchronous Circuits, Manchester, UK, 1993.

[5] W. S. Coates, A. L. Davis, and K. S. Stevens, “The post office expe-
rience: Designing a large asynchronous chip,”INTEGRATION, the
VLSI journal, 15(4):341–366, 1993.

[6] K. Keutzer, “DAGON: Technology binding and local optimization
by DAG matching,” in24th Design Automation Conference, pages
341–347, IEEE/ACM, 1987.

[7] L. Lavagno and A. Sangiovanni-Vincentelli,Algorithms for Synthe-
sis and Testing of Asynchronous Circuits, Kluwer Academic Pub-
lishers, 1993.

[8] F. Mailhot and G. De Micheli, “Algorithms for technology mapping
based on binary decision diagrams and on boolean operations,”IEEE
Transactions on CAD/ICAS, pages 599–620, May 1993.

[9] E. J. McCluskey,Logic Design Principles With Emphasis on Test-
able Semicustom Circuits, Prentice-Hall, 1986.

[10] T. H. Meng,Synchronization Design for Digital Systems, Kluwer
Academic, 1990.

[11] S. M. Nowick and D. L. Dill, “Synthesis of asynchronous state ma-
chines using a local clock,” inICCD, Proceedings of the Internation-
al Conference on Computer Design, pages 192–197, IEEE Computer
Society Press, 1991.

[12] J. K. Ousterhout,Tcl and the Tk Toolkit, Addison Wesley, 1993.

[13] R. Rudell,Logic Synthesis for VLSI Design, PhD thesis, U. C. Ber-
keley, Apr. 1989, Memorandum UCB/ERL M89/49.

[14] P. Siegel,Technology Mapping for Asynchronous Designs, PhD the-
sis, Stanford University, 1994.

[15] P. Siegel, G. De Micheli, and D. Dill, “Automatic technology map-
ping for generalized fundamental-mode asynchronous designs,” in
DAC, Proceedings of the Design Automation Conference, pages 61–
67, June 1993.

[16] S. H. Unger,Asynchronous Sequential Switching Circuits, New
York: Wiley-Interscience, 1969.

[17] V. I. Varshavsky, editor,Self-Timed Control of Concurrent Process-
es, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[18] K. Yun and D. Dill, “Automatic synthesis of 3D asynchronous fi-
nite-state machines,” inICCAD, Proceedings of the International
Conference on Computer-Aided Design, pages 576–580, Nov. 1992.


	Main Page
	ICCAD94
	Front Matter
	Table of Contents
	Author Index




