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Abstract

This paper addresses the problem of formally ver-

ifying VHDL descriptions. More precisely, we check

the correctness of a VHDL architecture w.r.t. an-

other architecture of the same entity. Both of them

are translated into recursive functional forms, and the

proof of their equivalence is realized by means of the

Boyer-Moore theorem prover. Our methodology is il-

lustrated by a signi�cant example that has been pro-

posed by THOMSON. This benchmark presents inter-

esting characteristics and its proof is not obvious.

1 Introduction

Since the correctness of VLSI devices must be ef-

�ciently veri�ed before manufacturing, formal veri�-

cation is becoming an interesting alternative to simu-

lation. In the formal proof approach, the circuit im-

plementation and its expected behaviour (called be-

low its "speci�cation") are expressed using a math-

ematical model (propositional calculus, �rst-order or

higher-order logic, temporal logic, : : :) and appropri-

ate methods are applied to these representations. The

concept of formal veri�cation includes various aspects

[12], here we focus on verifying that a given realization

is functionaly equivalent to its speci�cation. To that

goal, we must be certain that the given speci�cation

itself is correct.

Our system PREVAIL, that is being developed in

cooperation with Imag/ Artemis, is a prototype proof

environment which includes a set of veri�cation tools

[3]. It takes as input VHDL descriptions [1] and veri-

�es the equivalence (or the implication) of two di�er-

ent architectures of the same entity (for instance an

implementation and its speci�cation, or two descrip-

tions given at di�erent abstraction levels, or a descrip-

tion and its optimization, : : :). To that goal, the most

appropriate veri�cation tool is selected with the help

of the designer, the original descriptions are automat-

ically translated into the formalism of this proof sys-

tem, which is �nally invoked. The VHDL descriptions

must be given using a particular language subset and

description style, both of them have been chosen such

that usual constructs (register transfers, �nite state

machines, ...) can be given a functionnal semantics

In the case where we have to compare an imple-

mentation and its speci�cation, both given as VHDL

architectures by the designer, we may need to verify

that the speci�cation includes no error, with respect

to the behaviour that it is supposed to express. In-

deed, it happens that the speci�cation is so close to

the realization that it is more easy to verify that they

are equivalent than to prove that the speci�cation is

correct. In this paper, we address this second issue on

the basis of a signi�cant case study. More precisely, we

verify the correctness of the complex speci�cation of a

circuit which inputs a bit vector and outputs the in-

dex of the �rst bit equal to '1', starting from the most

signi�cant bit. This benchmark has been proposed

by THOMSON in the framework of a JESSI project.

Since this proof requires a inductive technique, it will

be performed by means of the Boyer-Moore Theorem

Prover (Nqthm), which is one of the proof tools in-

cluded in PREVAIL.

The architecture "recursive" of entity "prem" in

Figure 1 below corresponds to the speci�cation that

is to be veri�ed. The algorithm expressed by function

"first rec" computes the index of the �rst bit equal

to '1' using a dichotomy-based technique. The archi-

tecture "iterative" of "prem" realizes the same com-

putation using an iterative function which simply goes

through the bit-vector and stops when a '1' is found.

The correctness of the architecture "recursive" will be

checked with respect to the architecture "iterative".

In other words, the veri�cation process consists in
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proving the equivalence of the functions "first loop2"

and "first rec". To that goal, we will :

� translate these VHDL descriptions into equivalent

recursive Boyer-Moore functions,

� use the induction principle of Nqthm to verify

their equivalence.

For the validation of combinational as well

as sequential VLSI devices, signi�cant BDD-based

methodologies have recently been developed [11], [13],

[8] ... However, the major drawbacks of these tech-

niques are :

� the size of the circuit must be �xed to 8, 16, 32 ...

bits, and the proof system veri�es the correctness

of each output independently,

� the "speci�cation" of the circuit must be another

implementation of the same arithmetical func-

tion, also considered at the boolean level.

Conversely, using the inductive methodology of the

Boyer-Moore prover brings several advantages :

� we no longer have to care about the size of the

device, we reason on n-bit architectures and we

prove generic properties,

� the speci�cation can be given at the "integer"

level, and we can use conversion functions be-

tween bit-vectors and integers. This feature is

very important for the hierarchical veri�cation of

large arithmetic devices built from interconnected

elementary modules.

2 The Boyer-Moore system

2.1 Overview

We simply give a brief overview of the Boyer-Moore

theorem prover. For more details, see [14], [15]. This

prover is based on a quanti�er-free �rst-order logic

with equality. Its syntax is a Lisp-like syntax, combin-

ing functions and variable names in a pre�x notation.

In that logic, terms are variables or expressions of

the form (fa1 : : :an) where f is a n-ary function and

a1 : : : an are terms. There are two constants (true)

and (false) denoted T and F .

The main principles implemented in that prover

are :

entity prem is

generic (n : Natural; log N : Natural)

port (i : in UNSIGNED (N-1 downto 0);

o : out UNSIGNED (N-1 downto 0));

end prem;

architecture iterative of prem is

---------------------------------

function first loop2 (X: UNSIGNED) return NATURAL is

variable retour : NATURAL range 0 to X'length;

begin

retour := 0;

for i in X'range loop

retour := retour + 1;

if X (i) = '1' then return retour;

end if;

end loop;

return 0;

end;

begin

o <= CONV UNSIGNED (first loop2 (i), o'length);

end iterative;

architecture recursive of prem is

---------------------------------

function first rec (X: UNSIGNED) return NATURAL is

constant medium : NATURAL range X'low to X'high :=

(X'length / 2) + X'low;

constant half : NATURAL range X'low to X'high :=

X'length - (X'length / 2);

variable temp1, temp2 : NATURAL range X'low to X'high;

begin

if X'length = 1 then

if X (X'high) = '1' then return 1;

else return 0;

end if;

else

temp1 := first rec (X (X'high downto medium));

temp2 := first rec (X (medium-1 downto X'low));

if temp1 /= 0 then return temp1;

elsif temp2 /= 0 then return temp2 + half;

else return 0;

end if;

end if;

end;

begin

o <= CONV UNSIGNED (first rec (i), o'length);

end recursive;

Figure 1: Behavioral speci�cations of entity "prem"



� Shell principle : it allows to de�ne inductive

types. They are de�ned by a bottom object, a

constructor function, one or more destructor func-

tion(s) and a type recognizer predicate.

� De�nition principle : it allows to introduce new

recursive functions in the logic. Prior to accepting

a new recursive de�nition, the system veri�es that

it can �nd a measure which decreases according

to a well-founded relation.

� Induction principle : a property P is proved if

the proof checker succeeds in rewriting it into T .

To that goal, it uses various heuristics, among

them the structural induction. Roughly speaking,

proving P(x) consists in showing :

{ P(x) is true for the base case;

{ if d1 � � �dn are destructor functions for x, 8i=

di(x) and x have the same type, P(di(x)))

P(x).

2.2 Hardware veri�cation and Nqthm

The scope of the Boyer-Moore theorem prover

covers various areas. For instance, it has already

been involved in the veri�cation of theorems in the

�eld of theoretical computer science or mathematics

[10, 18, 4], and in the validation of algorithms [9].

Since 1985, signi�cant results have been obtained in

the framework of hardware veri�cation :

� Warren Hunt realized the mechanical proof of the

FM8501 microprocessor [17], and more recently

he veri�ed the ALU of the FM8502 [16],

� at Stanford University, a "String-Functional Se-

mantics" has been implemented in the Boyer-

Moore logic, and devices such as pipelined archi-

tectures have been veri�ed [2],

� at the University of Newcastle, this prover has

been included in a synthesis environment for DSP

devices, [6],

� at IMEC (Belgium), this system has been applied

to parameterized architectures described in Hilar-

ics [5].

In all these approaches, the Boyer-Moore code has

to be directly written by the designer. To avoid this

user-interaction with the prover, our system takes as

input VHDL circuit descriptions and translates them

automatically in the appropriate formalism.

2.3 The bit-vector shell

To represent bit-vectors in the Boyer-Moore logic,

we use the bit-vector shell de�ned by W.Hunt (see

[17]). This shell consists of :

� (btm) : the bottom object (empty bit vector);

� bitv : the two-arguments constructor function;

� bit : the one-argument destructor function return-

ing the �rst bit;

� vec : the one-argument destructor function re-

turning the end of the vector;

� bitvp : the recognizer function.

In the following, we will also use bit-vector func-

tions that have been given by W.Hunt : "all�zerosp"

which checks whether every bit of a bit vector equals

F , "v�append" which catenates two bit-vectors, "size"

which returns the length of a bit-vector.

3 De�nitions

3.1 VHDL functions translated in Nqthm

The de�nition of the function "first rec" is recur-

sive. Thus, its translation in Boyer-Moore is rather

straightforward. Conversely, the iterative form of

"first loop2" must be transformed into a "pseudo-

iterative" function, i.e. a recursive function with an

accumulator. To that goal, the "for" loop is replaced

by recursion and retour becomes the accumulator.

Remarks :
� We have seen that the bit-vector shell encodes bit-

vectors as lists of booleans. We will consider that

the �rst element of the list represents the most

signi�cant bit;

� Bit-vectors are implicitly normalized in our

representation, i.e. x'low = 0 and x'high =

x'length-1 . In particular, this is the reason why

medium corresponds to x'length/2 instead of

x'length/2 + x'low .

3.1.1 �rst loop2

As mentioned above, the iterative de�nition becomes

recursive with an accumulating parameter which cor-

responds to the variable retour of the VHDL descrip-

tion. This de�nition is given in Figure 2.



�rst loop2(x,retour)

= if (bitvp(x) and x 6= (btm)) then
if bit(x) then (retour + 1)

else �rst loop2(vec(x),(retour + 1))

else 0

Figure 2: De�nition of first loop2

3.1.2 �rst rec

Here, the Boyer-Moore de�nition faithfully translates

the VHDL description. However, since they depend

on x, the constants half and medium are transformed

into functions :

medium(x) half(x)

= quotient(size(x), 2) = size(x) - medium(x)

The dichotomy-based algorithm splits the bit vec-

tor x into two parts :

x[x0high downto medium] and x[medium �

1 downto x0low]. In order to represent in the Boyer-

Moore system the expressions mentioned above, we

use two functions that we have de�ned and stored in

a hardware veri�cation-oriented package. These func-

tions are :

� MSB(x; n) which extracts the n most signi�cant

bits of the vector x;

� LSB(x; n) which gives the vector x without its n

most signi�cant bits.

Their Boyer-Moore de�nitions are :

MSB(x,n)

= if bitvp(x) then

if (n = 0) then (btm)
else bitv(bit(x),MSB(vec(x),(n-1)))

else (btm)

LSB(x,n)

= if bitvp(x) then

if (n = 0) then x
else LSB(vec(x),(n-1))

else (btm)

Thus, we have the following correspondences be-

tween Boyer-Moore expressions and VHDL terms :

� MSB(x; size(x)�medium(x)) �
x[x0high downto medium];

� LSB(x; size(x)�medium(x)) �

x[medium � 1 downto x0low].

�rst rec(x)

= if (bitvp(x) and x 6= (btm)) then
if (size(x)=1) then

if bit(x) then 1

else 0
else

if �rst rec(MSB(x,size(x)-medium(x))) 6=0

then �rst rec(MSB(x,size(x)-medium(x)))
else

if �rst rec(LSB(x,size(x)-medium(x)))6=0

then �rst rec(LSB(x,size(x)-medium(x)))+half(x)
else 0

else 0

Figure 3: De�nition of first rec

The Boyer-Moore de�nition of first rec, given by

Figure 3, uses the expressions mentionned above.

3.2 Function acceptance

In the de�nition of first loop2, it is clear that the

measure of x decreases, since x becomes vec(x) (i.e.

the bit-vector without its most signi�cant bit) in the

recursive call. Therefore, this de�nition is directly ac-

cepted by the Boyer-Moore system.

As far as the de�nition of first rec is concerned,

the system does not accept it unless we give the hint

(lessp (size x)) at the end of the de�nition. This hint

means that the measure which decreases is size(x).

The system veri�es this assertion using the following

lemmas, already proved and stored with the de�ni-

tions of LSB and MSB :

(�) n < size(x)) size(MSB(x; n)) < size(x)

(�)
n < size(x)

n 6= 0

�
) size(LSB(x;n)) < size(x)

4 Formal proof

4.1 Strategy

r(x)

= if (bitvp(x) and x 6= (btm)) then

if all-zerosp(x) then 0

if bit(x) then 1

else (r(vec (x)) + 1)

else 0

else 0

Figure 4: De�nition of flr

Once the de�nitions have been accepted, we can

verify the equivalence between the two speci�cations,

that is :



(1) bitvp(x)) first rec(x) = first loop2(x;0)

This problem is particularly interesting because it

combines two di�culties :

� one of the functions involves an accumulator and

the other one does not;

� they do not recurse according the same scheme.

Our strategy consists in splitting the problem in

two sub-problems, by introducing an intermediate

function which avoids the �rst di�culty. To elimi-

nate the problem of having to deal with an accumu-

lating parameter, the solution consists in producing

an equivalent pure recursive de�nition. This is a well-

known technique, in particular signi�cant results have

been proposed in [7].This new function is flr given in

Figure 4.

Then, the new sub-goals to be veri�ed are :

(2) bitvp(x)) first loop2(x;0) = flr(x)

(3) bitvp(x)) first rec(x) = flr(x)

4.2 Proof

Subgoal (2) can not be directly proved. We verify

the corresponding generalized form :

(4)

bitvp(x)

numberp(n)

�
)

if all�zerosp(x) then flr(x) = first loop2(x;n)
else flr(x) + n = first loop2(x;n)

That proof is immediate and does not require any

sub-lemma . Proposition (2) is clearly obtained from

(4) where n equals 0.

The proof of (3) is less obvious. Three subgoals

have to be veri�ed to achieve this proof. They are

directly related to the three subcases which appear in

the de�nition of "first rec" :

(5)

bitvp(x)
first rec(MSB(x; size(x)�medium(x))) 6= 0

flr(MSB(x; size(x)�medium(x)))=

first rec(MSB(x; size(x)�medium(x)))
(induction hypothesis)

9>>>=
>>>;

) first rec(x) = flr(x)

(6)

bitvp(x)
first rec(MSB(x; size(x)�medium(x))) = 0

first rec(MSB(x; size(x)�medium(x))) 6= 0

flr(MSB(x; size(x)�medium(x)))=
first rec(MSB(x; size(x)�medium(x)))

flr(LSB(x; size(x)�medium(x)))=

first rec(LSB(x; size(x)�medium(x)))
(induction hypotheses)

9>>>>>>>>=
>>>>>>>>;

) first rec(x) = flr(x)

(7)
first rec(MSB(x; size(x)�medium(x))) = 0

first rec(LSB(x; size(x)�medium(x))) = 0
flr(MSB(x; size(x)�medium(x)))=

first rec(MSB(x; size(x)�medium(x)))

flr(LSB(x; size(x)�medium(x)))=
first rec(LSB(x; size(x)�medium(x)))

(induction hypotheses)

9>>>>>>=
>>>>>>;

) first rec(x) = 0

In fact, in order to guide the prover in using the

induction hypotheses, we prove the following proper-

ties :

(8)
first rec(MSB(x; size(x)�medium(x))) 6= 0
) flr(x)=flr(MSB(x; size(x)�medium(x)))

(9)

first rec(MSB(x; size(x)�medium(x))) = 0
first rec(LSB(x; size(x)�medium(x))) 6= 0

�

) flr(x)=flr(LSB(x; size(x)�medium(x)))

+size(x)�medium(x)

(10)

first rec(MSB(x; size(x)�medium(x))) = 0
first rec(LSB(x; size(x)�medium(x))) = 0

�

) flr(x) = 0

Once again, the proof of each of these propositions

has to be decomposed into sub-proofs. For instance,

proving the two theorems below is su�cient for de-

ducing (8). A similar reasoning is used for (9) and

(10).

(11)

bitvp(x)

bitvp(y)

�
) flr(v�append(x; y)) =�������

if (not(all�zerosp(x))) then flr(x)

else

if (not(all�zerosp(y))) then size(x)+flr(y)
else 0

(12) first rec(x) 6= 0) (not(all�zerosp(x)))

From (8) and the de�nition of "first rec", the sys-

tem deduces (5).

5 Results - Conclusion

We have demonstrated that validating VHDL spec-

i�cations is not straightforward but is feasible and

can be mechanized using an automatic theorem

prover.The statistics of this benchmark are summa-

rized in the table below :

number of de�nitions 5

number of intermediate lemmas 8

total CPU time (in seconds) 48.5

The CPU times have been measured on a SPARC

station 10. The number of de�nitions and lemmas



corresponds to the functions and theorems devoted to

the benchmark. General ones are not considered.

One of the main interests of this benchmark is that

it combines two di�culties :

� comparing a pseudo-iterative function with a pure

recursive one;

� dealing with two di�erent recursion schemes.

We have shown that decomposing the problem by

introducing a well-chosen intermediate function can be

a satisfying solution. Future work will aim at re-using

this methodology in other comparable cases :

� hardware veri�cation problems speci�ed in terms

of bit-vectors;

� proofs of programs (algorithms for sorting,

searching, ...).
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