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Abstract
Although a prime goal of CAD frameworks is to facilitate
cost effective, efficient, and seamless incorporation of
tools into design systems little support is given to tool inte-
grators. We present a new methodology called execution
protocols that allows to abstract tool integration from a
particular framework or tool. The actual design step is
performed by an execution protocol engine that is guided
by language and communication processors generated
from an abstract specification of the relevant information
content of data and start-up files. The execution protocol
methodology may be regarded as a natural evolutionary
step from today’s wrapper encapsulation.

1. Introduction
One goal of CAD frameworks is to “facilitate cost effec-
tive, efficient, seamless incorporation of tools into design
systems”. Objectives to reach this goal are interoperability,
interchangeability, abstraction, integration, and encapsula-
tion of tools (CAD Framework Initiative, [UGO092]). An
underlying assumption in CFI’s work is that asingle,
standard framework architecture can be defined. This goal
may in fact not be reachable due to the dynamics in the
ECAD domain and in the workstation market:
• Application domain

- Advances in design methodology and a temptation to
work on higher levels of abstraction (behavioural, ar-
chitectural) require a constant evolution of design lan-
guages and their associated language processors.

- The advent of concurrent engineering has broadened
the scope of design systems from pure ASIC or PCB
design to e.g. mechatronic systems design with associ-
ated design language ‘standards’.

- New and broadened application domains require new
graphical presentation techniques (schematics, state
charts, time vs. frequency domain) and new forms of
tool interaction.

• Workstation technology:
- Data integration:Advances in object-oriented database

technology (e.g. memory-mapped architectures) can ef-
ficiently handle the main memory data structures of de-
sign tools.

- Control integration:Recent operating system enhance-
ments provide direct support for broadcast messaging
(SUN’s tool-talk).

- Presentation integration:Embeddable extension lan-
guages likeTcl andScheme, powerful UI toolkits like
Tcl/Tk [Ousterhout91], versatile graph layout systems
like edge, graphedit, or dot [Koutsofios93] and stand-
ardization efforts likeCOSE make dedicated frame-
work developments in this area obsolete.

- Process integration: Process engines with open inter-
faces emerge (CCS[Milner89], Marvel [Kaiser88]) and
are likely to be more versatile than dedicated frame-
work developments.

Framework supported, fine-grained design data handling
does not seem feasible and, in fact, desirable for the fol-
lowing two reasons:
• Whereas design tools are centred around a specific and

detailed understanding of the design objects they manip-
ulate a framework needs only a coarse-grained perspec-
tive to provide execution contexts for its integrated tools.
‘Coarse-grained’ is not to be confused with ‘file-based’.

• Design tools are written to an up-to-date model of the de-
sign objects they handle. In fact, all too often a particular
design language dialect is exclusively defined by the sole
tool that works on it. A framework is always the second
to come and will rarely have exactly the same model used
by the tools it serves. Keeping the model up-to-date is ex-
pensive, and hardly worth the effort. Rather than to de-
fine an omnipotent framework with general purpose but
either low level or inflexible interfaces we advertise an
approach based on software module generation that can
react more flexibly to new requirements.

In this paper we present a new methodology calledexecu-
tion protocols that allows to abstract tool integration from
a particular framework or tool. The actual design step is
performed by anexecution protocol engine.
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The engine may be regarded as an advanced form of
wrapper that has access (up to some level of granularity) to
the contents of design files. Guided by information passed
from the framework and additional information extracted
from affected design files the engine may request addition-
al design objects from the framework. For this, it must have
a certain understanding of the contents of the design files it
handles to determine the dependencies between described
design entities. It is, however, not necessary for the engine
to process design files down to the finest detail. Only the
actual design tools need this. The engine then prepares
start-up files, sets up the execution context for a design
tool, runs the tool and finally collects and processes the re-
sults to pass back to the framework.

In section 2 we introduce execution protocols. Section 3
introduces design file processing in frameworks. Section 4
explains how to generate language processors used by the
engine. We describe the execution protocol engine in sec-
tion 5, and give our conclusions and ideas for further refine-
ments in the last section.

2. Execution Protocols
Integration methodology in current framework approaches
(e.g. [Kathöfer92]) assumes the following, fixed execution
sequence to perform a design step:

1. The framework checks out a cell hierarchy into the file
system.

2. The framework invokes a wrapper shell-script, passing
it environment variables and the name of a design
object as command line parameters.

3. The wrapper preprocesses and copies the design files to
appropriate places, sets additional environment varia-
bles, assembles a command line and invokes a design
tool with it.

4. The design tool performs the actual design step, result-
ing in success or failure.

5. The wrapper checks this result to decide on a number
of post-processing alternatives, again processes and
copies files and finally informs the framework of suc-
cess or failure of this particular design step.

6. The framework in turn checks in the resulting design
files and decides on their status depending on success
or failure of the design step.

This sequence shows that most of the actions necessary to
start a design tool are performed in the wrapper. The art of
tool integration is reduced to tedious shell programming
like in the early days of UNIX. But there is another, more
important drawback of this simplistic approach.All con-
trol is on the side of the framework.Once the wrapper is
started, no more design objects may be requested from the
tool side. Also,all result files have to be determined in

advance, making it necessary to split generic design tools
with complex input/output relations into myriads of ‘activ-
ities’, one for each combination of input/output files.

Our approach replaces the simple wrappers with an en-
gine that realizes an abstract machine for execution proto-
cols. An execution protocol is comparable to a handshake
protocol used in networking to define the state transitions
of communicating agents. The next section introduces the
agents in a simple design system.

2.1 A Simple Design System

Figure 1 gives an overview of the communicating objects
or ‘agents’ that send and receive messages in a simple exe-
cution protocol. Each of the agents implements a number
of methods:

1. Designer
selectDO use any of the means offered by the frame-

work to select a design object
selectActivity select an activity to apply to the design object

2. Framework
- User Interface

offerDO offer a design object for manipulation
offerActivity offer an activity depending on the design

object type
notifyActEnds present the result of the activity

- Design Data Handler
checkOutDO check out a design object (flat/hierarchical)

into the file system
grantDO notify the availability of a design object
checkInDO check in a design object from the file system

- Tool Server
startTool start a tool or connect to running tool
startActivity start an activity within a tool

3. Operating System
- Process Manager

/* start/stop/signal tools */
- File System

/* store files hierarchically */

Figure 1. Model of a simple design system
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4. Design Tool
- Activity

requestDO ask for a designated design object
logActivity write log about the activity: execution time,

execution environment,
affected design objects

accessDO read a design object extracting
its information contents

activityEnds signal success/failure of the activity

2.2 A Sample Execution Protocol

Table 1 depicts a sample execution protocol. The frame-
work offers the designer a set of design objects through its
user interface. After selecting, one out of a set of activities
(methods of the selected object’s type) becomes available.
The framework finds the design tool associated with the
selected activity, starts it if necessary and sends it the
request for the activity, passing the identifier of the
selected design object as parameter. The tool requests the
denoted design object from the framework, passing a
desired placement in the file system. When the checked-
out design object is granted and placed in the file system
the tool starts the requested activity, requesting additional
design objects when needed. On completion the frame-
work is notified of success/failure. The framework checks

a. framework

b. design object

c. operating system

agent recipient message parameters

1. f/wa designer offerDO set<DOb>

2. designer f/w selectDO DO

3. f/w designer offerActivity set<activity>

4. designer f/w selectActivity activity

5. f/w o/sc startTool tool-path

6. f/w tool startActivity activity
options

DO

7. tool f/w requestDO DO
placement

flat/hierarchy

8. f/w o/s checkOutDO placement

9. f/w tool grantDO DO
placement

10. tool f/w logActivity DO
activity

11. tool o/s open/read/
write/close

DO-path

12. tool f/w activityEnds DO
activity

13. f/w o/s checkInDO placement

14. f/w user notify
ActivityEnds

DO
activity

Table 1. A sample execution protocol

in the results and notifies the designer of activity comple-
tion.

3. Processing Design Files
One of the foremost features of a framework-based, inte-
grated design environment is to offer design management
functions to the designer. Following the assumption that
commercial design tools interface to design descriptions
stored in files, in this section we introduce the necessary
steps to extract structural information and design object
representations from design files on import and to recon-
struct valid design files on export from the framework.
Using this approach it is possible to exploit the manage-
ment features of a framework while at the same time being
able to use commercial, file based tools.

3.1 Exporting a Compound Design

At certain points in a design process it is necessary to cre-
ate a textual image of the design managed by the frame-
work.  The most  obvious such point  is  when an
encapsulated design tool is run that is not aware of the
framework but rather expects to find a certain arrangement
of design files in the file system. Other occasions might be
the export of (partial) designs to another design system or
the printout of a text version of the design. What is basi-
cally required is some kind of traversal through the com-
position hierarchy managed by the framework, starting at
a selected design object, which might be an interface, a
configuration, or an implementation of a module. Depend-
ing on the design language used or on the language
processing capabilities of the design tool invoked, the
traversal has to be bottom-up to emit sub-modules before
they are used as components. As the composition hierar-
chy is traversed, design representations are emitted into
design files, enclosed with any global text that was saved
on import. Depending on design tool requirements, single
design objects are placed in each emitted file, interfaces
are combined with their associated implementations and
configurations, or even a single large file is emitted.

The existence of configurations in a design hierarchy
complicates matters. If a design description language is
used that supports configurations (like VHDL), the config-
urations managed by the framework can be translated into
appropriate configuration declarations in the language and
emitted along with the selected interfaces and implementa-
tions. When, however, the design language does not have a
notion of “configuration” or the one supported by the lan-
guage grossly deviates from the notion used by the frame-
work, configurations have to be resolved and emitted as
static bindings between compound modules and their com-
ponents.



3.2 Importing Designs Files

To import design files after a successful tool run, structural
information has to be separated from design representa-
tion. The structural information is managed by the frame-
work as a graph of typed objects and their relationships
according to a design management schema. We assume
that design representation is attached to nodes in this
graph but is otherwise left uninterpreted. The graph can be
inspected and queried with the browsers offered by the
framework.

Exactly which structural information can be extracted
from a set of design files, how it is organized and how de-
sign representation is attached to it, is of course highly de-
pendent on the design description language used. In fact,
the parsing and analysis of design files is very similar to the
initial parsing phase of a compiler for that particular design
description language. There are, however, also significant
differences:
• The lexical and syntax analysis in a compiler tries to di-

gest every single detail of a design description to be able
to derive an internal representation that matches the in-
formation content of the design description as thoroughly
as possible. For the purpose of design tool encapsulation,
only a small part of design files need to be analysed down
to single lexems. Large parts can simply be skipped and
regarded as design representation, uninterpreted as far as
design management is concerned.

• A large part of the lexical and syntax analysis phase of a
compiler is concerned with error detection and recovery.
As this tedious work is already performed by design
tools, we can rely on a design description being syntacti-
cally correct.

• Another big effort in the initial phase of a compiler is the
construction and maintenance of a symbol table for se-
mantic analysis. We are, however, not interested in things
like data or control flow and can therefore greatly reduce
the effort of symbol handling. We also store extracted in-
formation directly in a framework with versatile querying
facilities, so manually constructing a symbol table is not
required.

On the other hand, there are also requirements in the realm
of tool encapsulation that are not an issue with ordinary
compiler technology:
• All text that is considered design representation does not

need to be interpreted in any way, but it must be saved
completely for later perusal. Once an ordinary compiler
has built an internal representation of the input read it can
safely forget about the exact textual representation, may-
be with the exception of line numbers for error messages.

• Global text that neither belongs to structural information
nor is associated with single design representation
chunks needs to be preserved to be able to reconstruct

complete design files later. In a compiler this text is
sometimes already resolved by a preprocessor and not
even seen by the actual compiler, or it serves as context
information and is also translated to objects in an internal
representation.

3.3 Associating Binary Objects with Structural
Information

The import and export mechanisms described above
assume that design files have a well-defined structure and
contain a printable description of the design. Quite often,
however, design tools produce and expect some kind of
opaque, intermediate design description. Examples for this
kind of files are results from VHDL analysers, simulation
results, or schematics in undocumented, proprietary for-
mats. When no specification of the lexical and syntactical
structure of such opaque descriptions is available to the
tool integrator the files containing these descriptions can
only be manipulated as a whole. If such files can be associ-
ated with a specific design object in a composition hierar-
chy, their contents can be attached to this object and will
be imported and exported together with it. If it cannot be
associated with a specific design object it has to be
attached to the root object of the composition hierarchy
and imported and exported whenever a sub-module of the
root object is imported or exported.

4. A Specification Format for Language
Processors

The execution protocol engine needs to read design files to
extract dependencies between design objects contained
therein. Traditionally this is accomplished by any of the
following alternatives, ranging from little coding effort
with only crude recognition capabilities and high probabil-
ity of failure due to small syntactic variations in the proc-
essed design files to prohibitively high coding effort with
detailed recognition capabilities but with high dependence
on fine-grained detail of the processed syntax.

1. combination of UNIX tools likesed/awk, or more in
vogue,perl

2. lex generated lexical scanner

3. yacc generated parser

4. yacc generated parser enhanced with semantic actions
to resolve references

We have defined a language to facilitate the specification
of design language processors used by the execution pro-
tocol engine. The language combines syntax specification
features of scanner and parser generators and is geared
towards the construction of an abstract syntax tree that is
easily queried and traversed from within execution proto-
cols. The design is tailored to meet the following require-
ments.



R1 Provide a single, coherent notation for both lexical and
syntactical features.

R2 Allow to process a design file at varying granularity.
Certain regions may be processed down to single lex-
ems whereas other regions may simply be skipped.

R3 Register information loss. Design objects which only
partly read should be recognizable as such.

R4 Manipulate multiple files with single or multiple syn-
taxes. Often tool start-up files have to be consulted to
derive the expected physical location of design objects
denoted in a design file.

R5 Allow arbitrary semantic processing (queries and
traversal) on an explicit parse tree. Since much infor-
mation in the input will simply be skipped, the ease in
formulating semantic actions by far outweighs the cost
of maintaining an explicit parse tree.

R6 Allow to easily split/recombine design files into/from a
hierarchy of chunks. Both the framework and the
design tool may expect different combinations of
design objects in a single design file.

We assume that in most cases a grammar for a design lan-
guage is contained in its definition and will be taken as the
basis for the specification of processors for this language.
The lexical properties and syntax of a design language are
invariant to the task of tool encapsulation and can be fed
into conventional scanner and parser generators to gener-
ate a scanner and parser for the language. The extraction
of design objects and their dependencies, however, does
depend on the specific encapsulation task to be accom-
plished. Whereas the lexical and syntax processing is per-
formed by a compiled module, the extraction steps are
performed in execution protocols and are to be interpreted
by the execution protocol engine.

A syntax specification in our specification language is
structured into lexical declarations and syntax rules. Fig-
ure 2 shows an excerpt from such a language specification.
This example demonstrates the following features of the
specification language (numbers refer to figure 2).

token  identifier -pattern  [_a-zA-Z][_a-zA-Z0-9]*
range  body -inclusive -lexstate  begin \

-from  “begin” -to  “end”[^;]*”;”
range  is -lexstate  is \

-from  “is” -to  “end”[^;]*”;”
range  c1 -ignore -from  “--” -to  “\n”
range  c2 -ignore -from  “(*” -to  “*)”
...
rule  entity_declaration {

“entity” !is identifier is
}
rule  architecture_body {

“architecture” identifier
“of” identifier “is” architecture_declarative_part ! body

}

Figure 2. Excerpt from a language specification for VHDL
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• Lexical and syntactical features are specified in a single
file (1). While this is more a convenience feature for fixed
tokens like “entity” or “;”, the possibility to define ranges
and scanner states is a key feature of the language. Range
definitions follow the keywordrange which may be qual-
ified by properties-inclusive, -ignored, or -nested. A
range is defined by giving its name, optionally a scanner
state in which the range should be recognized, and two
regular expressions for its start and end. The lexical dec-
larations section also allows to declare comment formats,
which are in fact just special ranges that are invisible to
syntax recognition.

• Syntax rules may reference other rules, primitive tokens,
or ranges on their right hand side, using an EBNF-like no-
tation.

• Lexical states may be switched anywhere on the right-
hand-side of a rule (2). A shorthand notation is available
to allow prefixing a range reference with a “!” to switch
to its associated lexical state. When a rule is completely
recognized, lexical state is automatically switched back
to the initial state. Care has to be taken that state switch-
ing does not interfere with the generated parser’s look-
ahead symbol.

The example does not show language constructs to main-
tain a stack of input files for processing multiple design
files.

We have implemented a generator that translates such a
syntax specification into specifications for yacc/lex and a
module that implements the execution protocol statements
to manipulate an abstract syntax tree of the design descrip-
tion. Design files are processed in two phases. The first
phase constructs an in-core representation of the abstract
syntax tree. The tree is constructed from generic nodes that
are associated with the originating symbol as node type, the
start and end offsets of its associated text region, and refer-
ences to children rsp. list elements.

The second phase consists of execution protocol state-
ments to query and traverse this syntax tree. As the tree is
built during the language parsing by automatically generat-
ed code, it contains much detail that is irrelevant to an exe-
cution protocol run. The execution protocol statements
therefore are defined so that they allow to only look at “in-
teresting” nodes. Two statements are defined:

1. node all -type  node-type -var  var code-block
2. node one -type  node-type

Statements (1) executecode-block for every node of type
node-type in the tree rooted atnode. The node currently
looked at is available in the variable namedvar within
code-block. Code-block may containbreak andcontinue
statements to break out of the traversal completely rsp. to
continue with a sibling of the current node. Statement (2)
traverses the tree rooted atnode and breaks at the first
node of typenode-type or fails if no such node exists.



5. The Execution Protocol Engine
As a descendent of shell wrappers the execution protocol
engine must be able to perform the following tasks:
• Process parameters passed by the framework to deter-

mine affected design objects
• Establish an initial execution context, e.g. by creating a

temporary directory and creating invariant tool start-up
scripts

• Request affected design objects from the framework
• Traverse the composition hierarchy of selected design

objects into the file system, requesting additional design
objects on the way to construct valid design files

• Finalize the execution context by creating/modifying
start-up scripts and setting up the environment

• Assemble a command line and invoke the design tool
• Establish a message connection to an already running

tool; invoke an activity in it
• Collect created/modified design files
• Extract additional information from the result files to get

a more detailed notion of design step status (success ...
failure)

• Check-in result files into the framework and update de-
sign management information related to them

• Inform the framework about the design step status
• Close down running design tools
• Clean up execution context: remove temporary files/di-

rectories, free other system resources like displays, plot-
ters, etc.

As can be seen from this list, a great deal of flexibility is
required by the execution protocol engine. We have cho-
sen to base its design on an embeddable language kernel
[Ousterhout91] that already provides constructs for con-
trol statements, modules, procedures, data types, and vari-
ables. This kernel is extended with demand-loadable
modules that realize dedicated functionality. The core of
each module is generated from a data schema and creates
and maintains objects. Some object methods invoke com-
munication primitives to exchange messages with the
framework or design tool. Other methods are generated
from language processor specifications to allow design file
manipulations.

Execution protocols are implemented on this engine by
writing scripts comprising of kernel language constructs
and commands that invoke functionality residing in a de-
mand-loadable module. In standard cases where similar
tools or execution protocols have already been realized, no
compilation is necessary to completely integrate a design
tool by implementing a new execution protocol. Only in
cases where either new communication primitives or a new
design language dialect have to be supported a new module
has to be generated from a data schema and a language
specification.

6. Conclusions
Although powerful frameworks have emerged in the
ECAD arena, even loosely coupled tool encapsulation is
still tedious, resulting in inflexible and hardly comprehen-
sible solutions. The flexibility lost is all too often an
excuse to neglect the merits a framework has to offer to
the designer but rather stick to traditional means of tool
invocation and manual version handling and configuration
management.

We have presented a new methodology that simplifies
the process of design tool integration by (1) reusable exe-
cution protocols, (2) abstract specification of relevant in-
formation in design files, and (3) easy-to-use generation of
demand-loadable modules which realize specialized lan-
guage processing or communication primitives.

This methodology was evaluated by creating language
processors for VHDL design files, symbol libraries, and
start-up files and, using these, incorporating selected tools
from the Synopsys synthesis and simulation tool suite into
a framework providing check-in/check-out of design files
and general design management facilities. Generated lan-
guage processors were mainly used to derive “system
models” i.e. dependencies between the various files
manipulated by the design tools. The resulting system
models were more detailed than the ones produced with
the simdepends tool provided by Synopsys because our
generated language processors can consult more relevant
information than what seems to be used bysimdepends.
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