Design Tool Encapsulation - All Problems Solved?

O. Schettler
Olav.Schettler@GMD.de

GMD, Sankt Augustin, Germany

Abstract Workstation technology:
Although a prime goal of CAD frameworks is to facilitate - Dataintegration:Advances in object-oriented database
cost effective, efficient, and seamless incorporation of technology (e.g. memory-mapped architectures) can ef-
tools into design systems little support is given to tool inte- f'ci€ntly handle the main memory data structures of de-

. sign tools.
grators. We present a new methodology called execution . . .
: : - Control integration:Recent operating system enhance-
protocols that allows to abstract tool integration from a

) .) ments provide direct support for broadcast messagin
particular framework or tool. The actual design step is (SUN’sptooI-taIk). PP ging

performed by an execution protocol engine that is guided _ presentation integrationEmbeddable extension lan-
by language and communication processors generated guages likeTcl and Schemgepowerful Ul toolkits like
from an abstract specification of the relevant information Tc|/Tk [Ousterhout91], versatile graph layout systems
content of data and start-up files. The execution protocol |ike edge graphedit or dot [Koutsofios93] and stand-
methodology may be regarded as a natural evolutionary ardization efforts likeCOSE make dedicated frame-
step from today’s wrapper encapsulation. work developments in this area obsolete.

- Process integrationProcess engines with open inter-
faces emergedCS[Milner89], Marvel [Kaiser88]) and
are likely to be more versatile than dedicated frame-

1. Introduction work developments.

One goal of CAD frameworks is to “facilitate cost effec- Framework supported, fine-grained design data handling
tive, efficient, seamless incorporation of tools into desigrdoes not seem feasible and, in fact, desirable for the fol-
systems”. Objectives to reach this goal are interoperabilitypwing two reasons:
interchangeability, abstraction, integration, and encapsula-Whereas design tools are centred around a specific and
tion of tools (CAD Framework Initiative, [UGO092]). An detailed understanding of the design objects they manip-
underlying assumption in CFI's work is thasingle, ulate a framework needs only a coarse-grained perspec-
standard framework architecture can be defined. This goaltive to provide execution contexts for its integrated tools.
may in fact not be reachable due to the dynamics in the‘Coarse-grained’ is not to be confused with ‘file-based’.
ECAD domain and in the workstation market: « Design tools are written to an up-to-date model of the de-
* Application domain sign objects they handle. In fact, all too often a particular
- Advances in design methodology and a temptation to design language dialect is exclusively defined by the sole
work on higher levels of abstraction (behavioural, ar- oo that works on it. A framework is always the second
chitectural) require a constant evolution of design lan- 1, come and will rarely have exactly the same model used
guages and their associated language processors. yhe tools it serves. Keeping the model up-to-date is ex-
- The advent of concurrent engineering has broadenedyosiye and hardly worth the effort. Rather than to de-
e sopeof desgn Syt o e ASIE 1 PCB L v i oo o
either low level or inflexible interfaces we advertise an

ated design language ‘standards’. ;
- New and broadened application domains require new approach based on software module generation that can

graphical presentation techniques (schematics, statef®act more flexibly to new requirements.

char_ts, time_ vs. frequency domain) and new forms ofp this paper we present a new methodology callestu-
tool interaction. tion protocolsthat allows to abstract tool integration from
a particular framework or tool. The actual design step is

* This research was supported in part by the commission of Ecperformed by aexecution protocol engine
under ESPRIT contract 7364

Permission to copy without fee all or part of this material is granted, provided that the copies are not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

The engine may be regarded as an advanced form aflvance, making it necessary to split generic design tools
wrapper that has access (up to some level of granularity) teith complex input/output relations into myriads of ‘activ-
the contents of design files. Guided by information passeities’, one for each combination of input/output files.
from the framework and additional information extracted Our approach replaces the simple wrappers with an en-
from affected design files the engine may request additiorgine that realizes an abstract machine for execution proto-
al design objects from the framework. For this, it must haveols. An execution protocol is comparable to a handshake
a certain understanding of the contents of the design filesfirotocol used in networking to define the state transitions
handles to determine the dependencies between describeidcommunicating agents. The next section introduces the
design entities. It is, however, not necessary for the engirggents in a simple design system.
to process design files down to the finest detail. Only th . .
actual design tools need this. The engine then prepar%:‘;1 A Simple Design System
start-up files, sets up the execution context for a design | designer
tool, runs the tool and finally collects and processes the re-
sults to pass back to the framework. selectDO

In section 2 we introduce execution protocols. Section 3 | ¢4
introduces design file processing in frameworks. Section 4

exp!ains how to generate Iangugge processors gseq by the r—— design tool
engine. We describe the execution protocol engine in sec- e
tion 5, and gi lusi d ideas for further refi offerActvy oorcity
ion 5, and give our conclusions and ideas for further refine- offerActh logActivity
. - startActivity accessDO
ments in the last section. starpcialy e s
- Sheckinbo

2. Execution Protocols operating notilyAGtENdS
Integration methodology in current framework approaches |_SYStem J
(e.g. [Kathofer92]) assumes the following, fixed execution
sequence to perform a design step:
1. The framework checks out a cell hierarchy into the file

system. Figure 1. Model of a simple design system

2. The framework invokes a wrapper shell-script, passing .) . o)
it environment variables and the name of a desiggﬁgure 1 gives an overview of the communicating objects
object as command line parameters. or ‘agents’ that send and receive messages in a simple exe-

i . cution protocol. Each of the agents implements a number
3. The wrapper preprocesses and copies the design f'leséf’methods:

appropriate places, sets additional environment varia-

bles, assembles a command line and invokes a design Designer
tool with it selectDO use any of the means offered by the frame-

work to select a design object
4. The design tool performs the actual design step, result- selectActivity select an activity to apply to the design object
ing in success or failure. 2. Framework

5. The wrapper checks this result to decide on a number- USer Interface

of post-processing alternatives, again processes and 00 offer a design object for manipulation
. h . . offerActivity offer an activity depending on the design
copies files and finally informs the framework of suc- object type

cess or failure of this particular design step. notifyActEnds present the result of the activity

6. The framework in turn checks in the resulting design - Design Data Handler o _ _
files and decides on their status depending on success checkOutDO check out a design object (flat/hierarchical)
into the file system

or failure of the deSign step. grantDO notify the availability of a design object
This sequence shows that most of the actions necessary to checkinDO check in a design object from the file system
start a design tool are performed in the wrapper. The art of~ 100l Server _
tool integration is reduced to tedious shell programming z:g::;i‘;’i'vity 2::: Z;O;C'ti‘\’/'it;c’vcirt‘sﬁ;ot;‘):'”'”g tool
like in the early days of UNIX. But there is another, more ,
important drawback of this simplistic approaétl. con- 3. Operating System
trol is on the side of the framewo®nce the wrapperis ~ Process M_anager

. . [* start/stop/signal tools */

started, no more design objects may be requested from the

: . . .= File System
tool side. Alsoall result files have to be determined in * store files hierarchically */

4. Design Tool

in the results and notifies the designer of activity comple-

- Activity tion.

requestDO ask for a designated design object . . .

logActivity write log about the activity: execution time, 3. Processing Design Files
execution environment, One of the foremost features of a framework-based, inte-
affected design objects ted desi . tis to offer desi t

accessDO read a design object extracting gra e_ esign env'ro_nmen IS 10 O er design manz_igemen
its information contents functions to the designer. Following the assumption that

activityEnds ~ signal successf/failure of the activity commercial design tools interface to design descriptions

2.2 A Sample Execution Protocol

stored in files, in this section we introduce the necessary
steps to extract structural information and design object
representations from design files on import and to recon-

agent recipient messagé parametér strl_Jct va_lid design fil_eg on ex_port from th_e framework.
T o designer STerDo <eicD> | Using this approach it is possml_e to exploit the manage-
. ment features of a framework while at the same time being
2.|| designer fiw selectDO DO .)
. — - able to use commercial, file based tools.
3. flw designer | offerActivity set<activityp
4| designer fiw selectActivity activity 3.1 Exporting a Compound Design
5. fiw ofs’ startTool tool-path At certain points in a design process it is necessary to cre-
6. fiw tool startActivity | activity ate a textual image of the design managed by the frame-
0%'8”5 work. The most obvious such point is when an
5 oo o UesDO 50 encapsulated design tool is run that is not aware of the
' q placement framework but rather expects to find a certain arrangement
» flat/hierarchy of design files in the file system. Other occasions might be
8. fiw ols checkOutD® placement the export of (partial) designs to another design system or
9. w 00l grantDO DO the printogt of.a text version of the design. What is basi-
placement cally required is some kind of traversal through the com-
10 tool fiw logActivity DO position hierarchy managed by the framework, starting at
activity a selected design object, which might be an interface, a
11 tool ofs open/read/ DO-path configuration, or an implementation of a module. Depend-
write/close ing on the design language used or on the language
12 tool fiw activityEnds act'i?/% processing capabilities of the design tool invoked, the
traversal has to be bottom-up to emit sub-modules before
13 fiw ols checkinDO| placemen . .
) 7 iy 56 they are used as components. As the composition hierar-
w user noti H H H H H
ActivityEnds| activity chy is traversed, design representations are emitted into

Table 1. A sample execution protocol

a. framework

b. design object
C. operating system

design files, enclosed with any global text that was saved
on import. Depending on design tool requirements, single
design objects are placed in each emitted file, interfaces
are combined with their associated implementations and
configurations, or even a single large file is emitted.

The existence of configurations in a design hierarchy

Table 1 depicts a sample execution protocol. The framezomplicates matters. If a design description language is
work offers the designer a set of design objects through iigsed that supports configurations (like VHDL), the config-
user interface. After selecting, one out of a set of activitiegrations managed by the framework can be translated into
(methods of the selected object’s type) becomes availablgppropriate configuration declarations in the language and
The framework finds the design tool associated with themitted along with the selected interfaces and implementa-
selected activity, starts it if necessary and sends it thgons. When, however, the design language does not have a
request for the activity, passing the identifier of thenotion of “configuration” or the one supported by the lan-
selected design object as parameter. The tool requests tfigage grossly deviates from the notion used by the frame-
denoted design object from the framework, passing @ork, configurations have to be resolved and emitted as

desired placement in the file system. When the checkedtatic bindings between compound modules and their com-
out design object is granted and placed in the file systefonents.

the tool starts the requested activity, requesting additional
design objects when needed. On completion the frame-
work is notified of success/failure. The framework checks

3.2 Importing Designs Files complete design files later. In a compiler this text is
To import design files after a successful tool run, structural SOMetimes already resolved by a preprocessor and not

information has to be separated from design representa8V€N Seen by the actual compiler, or it serves as context
tion. The structural information is managed by the frame- information and is also translated to objects in an internal
work as a graph of typed objects and their relationships "¢Presentation.

according to a design management schema. We assu@@ Associating Binary Objects with Structural

that design representation is attached to nodes in this |nformation

graph but is otherwise left uninterpreted. The graph can hF

; . . he import and export mechanisms described above
:‘?asr?]eescs:jk and queried with the browsers offered by thz‘;e\ssume that design files have a well-defined structure and

Exactly which structural information can be extractedcom"’lIn a printable description of the design. Quite often,

S . . however, design tools produce and expect some kind of
from a set of design files, how it is organized and how de- ; . . L X

. N L . opaque, intermediate design description. Examples for this
sign representation is attached to it, is of course highly d

q{ind of files are results from VHDL analysers, simulation

pendent on the design description language used. In facfésults, or schematics in undocumented, proprietary for-

the parsing and analysis of design files is very similar to thr%ats. When no specification of the lexical and syntactical

initial parsing phase of a compiler for that particular des'gntructure of such opague descriptions is available to the

s P
g;ﬁ;g?}igg_languag& There are, however, also S|gn|f|cart1(t)0| integrator the files containing these descriptions can

only be manipulated as a whole. If such files can be associ-

* The lexical and syntax analysis in a compiler tries to d"ated with a specific design object in a composition hierar-

gest every sir_]gle detail of a design description 1o be at_)lghy, their contents can be attached to this object and will
.) L "Se imported and exported together with it. If it cannot be
formation content of the design description as thorouth%ssociated with a specific design object it has to be

as possible. For the purpose of design tool encapsulatlogttached to the root object of the composition hierarchy

?nly_ a Tmla” part olf_de5|gn flltes need_ to tl)et;dnallzl_sedgow nd imported and exported whenever a sub-module of the
0 single Iexems. Large parts can simply be Skipped ang, ,, object is imported or exported.
regarded as design representation, uninterpreted as far as

design management is concerned. 4. A Specification Format for Language

A large part of the lexical and syntax analysis phase of a Processors

compiler is concerned with error detection and recoveryrhe execution protocol engine needs to read design files to
As this tedious work is already performed by desigrextract dependencies between design objects contained
tools, we can rely on a design description being syntactinerein. Traditionally this is accomplished by any of the
cally correct. following alternatives, ranging from little coding effort
Another big effort in the initial phase of a compiler is thewith only crude recognition capabilities and high probabil-
construction and maintenance of a symbol table for sety of failure due to small syntactic variations in the proc-
mantic analysis. We are, however, not interested in thingsssed design files to prohibitively high coding effort with
like data or control flow and can therefore greatly reducejetailed recognition capabilities but with high dependence
the effort of symbol handling. We also store extracted inon fine-grained detail of the processed syntax.

formation directly in a framework with versatile querying
facilities, so manually constructing a symbol table is no
required.

On the other hand, there are also requirements in the realzr'n
of tool encapsulation that are not an issue with ordinary- Yaccgenerated parser
compiler technology: 4. yaccgenerated parser enhanced with semantic actions
« All text that is considered design representation does not to resolve references

need to be interpreted in any way, but it must be savef{e have defined a language to facilitate the specification
completely for later perusal. Once an ordinary compilelyf design language processors used by the execution pro-
has built an internal representation of the input read it cag) g engine. The language combines syntax specification
safely forget about the exact textual representation, mayaaiyres of scanner and parser generators and is geared
be with the exception of line numbers for error messagegoyards the construction of an abstract syntax tree that is

* Global text that neither belongs to structural informationeasily queried and traversed from within execution proto-
nor is associated with single design representatiogols. The design is tailored to meet the following require-
chunks needs to be preserved to be able to reconstrygents.

t1. combination of UNIX tools likesed/awkor more in
vogue,perl

lex generated lexical scanner

R1 Provide a single, coherent notation for both lexical and Lexical and syntactical features are specified in a single
syntactical features. file (1). While this is more a convenience feature for fixed

R2 Allow to process a design file at varying granularity. tokens like “entity” or “;”, the possibility to define ranges
Certain regions may be processed down to single lex-and scanner states is a key feature of the language. Range
ems whereas other regions may simply be skipped. definitions follow the keywordangewhich may be qual-

R3 Register information loss. Design objects which only ified by properties-inclusive -ignored, or -nested A
partly read should be recognizable as such. range is defined by giving its name, optionally a scanner

R4 Manipulate multiple files with single or multiple syn- state in which the range should be recognized, and two
taxes. Often tool start-up files have to be consulted to regular expressions for its start and end. The lexical dec-
derive the expected physical location of design objects larations section also allows to declare comment formats,
denoted in a design file. which are in fact just special ranges that are invisible to

R5 Allow arbitrary semantic processing (queries and syntax recognition.
traversal) on an explicit parse tree. Since much infors Syntax rules may reference other rules, primitive tokens,
mation in the input will simply be skipped, the ease in or ranges on their right hand side, using an EBNF-like no-
formulating semantic actions by far outweighs the cost {44ion.

of malntalnlr?g an gpr|C|t pa}rse treg. o * Lexical states may be switched anywhere on the right-

R6 A.Ilow to easily split/recombine design files into/from a | 5hd-side of a rule (2). A shorthand notation is available
glaesrizrﬁ?go?fnfgy r;isheitmdr} fﬁgfegfgenﬁﬁg;ﬁggstgi to allow prefixing arange reference with a ' to switch

design objects in a single design file. to its a§SOC|ateq lexical sFate. When_ a rule is completely

i) recognized, lexical state is automatically switched back

We assume that in most cases a grammar for a design lang, the initial state. Care has to be taken that state switch-

guage is contained in its definition and will be taken as the jng does not interfere with the generated parser's look-
basis for the specification of processors for this language. gnead symbol.

The lexical properties and syntax of a design language a .
invariant to the task of tool encapsulation and can be feﬁ%e example d(_Jes nqt show Ianguag_e constrl_Jcts to main-
into conventional scanner and parser generators to gen gin a stack of input files for processing multiple design
ate a scanner and parser for the language. The extracti S .

of design objects and their dependencies, however, does e have mple_mer_nted a ge_n_erat_or that translates such a
depend on the specific encapsulation task to be accomyntax spem_flcatlon into specmcatlpns for yacc/lex and a
plished. Whereas the lexical and syntax processing is peWOdUIE’T that implements the execution protocol _statemen_ts
formed by a compiled module, the extraction steps arEo manlpglate an abstract syntax tree of the design desc_rlp-
performed in execution protocols and are to be interpreteréon' Design files are processed in two phases. The first

by the execution protocol engine. phase constructs an in-core representation of_ the abstract
syntax tree. The tree is constructed from generic nodes that
token identifier -pattern [_a-zA-Z][_a-zA-Z0-9]* are associated with the originating symbol as node type, the
range body -inclusive -lexstate begin \ start and end offsets of its associated text region, and refer-
“from "begin” -to "end"[]" ences to children rsp. list elements
range is -lexstate is\ P- . ’ .
from *is” -to “end’[*]*":” The second phase consists of execution protocol state-
range cl -ignore -from “--" -to “\n” ments to query and traverse this syntax tree. As the tree is
range c2 -ignore -from “(*" -to **)” built during the language parsing by automatically generat-
e entity declarati (ed code, it contains much detail that is irrelevant to an exe-
rule entity declaration . .
“entity” lis identifier is cution protocol run. The execution protocol statements
} >~ therefore are defined so that they allow to only look at “in-
rule architecture_body { \ teresting” nodes. Two statements are defined:
architecture” identifier 1. node all -type node-type -var var code-block

“of” identifier “is” architecture_declarative_part ! body 5 node one -type node-type
} .

Figure 2. Excerpt from a language specification for VHDL Statemen'gs (1) execubede-blockior every node of type
node-typen the tree rooted atode The node currently

e L . looked at is available in the variable named within
A syntax specification in our specification language 'Scode-blockCode-bIoclmay contairbreak andcontinue
structured into lexical declarations and syntax rules. Fig

>+ © Istatements to break out of the traversal completely rsp. to
ure 2 shows an excerpt from such a language specificatio

: ; Continue with a sibling of the current node. Statement (2)
This example demonstrates the following features of th?raverses the tree rootedreddeand breaks at the first
specification language (numbers refer to figure 2).

node of typenode-typeor fails if no such node exists.

5. The Execution Protocol Engine 6. Conclusions
As a descendent of shell wrappers the execution protocdlithough powerful frameworks have emerged in the

engine must be able to perform the following tasks: ECAD arena, even loosely coupled tool encapsulation is
 Process parameters passed by the framework to deteitill tedious, resulting in inflexible and hardly comprehen-
mine affected design objects sible solutions. The flexibility lost is all too often an

« Establish an initial execution context, e.g. by creating £xcuse to neglect the merits a framework has to offer to
temporary directory and creating invariant tool start-uphe designer but rather stick to traditional means of tool
scripts invocation and manual version handling and configuration

« Request affected design objects from the framework ~Management. S

- Traverse the composition hierarchy of selected design Y& have presented a new methodology that simplifies
objects into the file system, requesting additional desigi'€ Process of design tool integration by (1) reusable exe-
objects on the way to construct valid design files cution protocols, (2) abstract specification of relevant in-

« Finalize the execution context by creating/modifyingLorma'"gnI m(;:iesllgn f'lzs'l and f) Easy-lt_o—use ggn?ratclior of
start-up scripts and setting up the environment emand-ioadable modules which realiz€ Specialized lan-

. . . uage processing or communication primitives.
« Assemble a command line and invoke the design tool guage p 9 P

« Establish a message connection to an already runningis methodology was evaluated by creating language
tool; invoke an activity in it processors for VHDL design files, symbol libraries, and

« Collect created/modified design files start-up files and, using these, incorporating selected tools

« Extract additional information from the result files to getfrom the Synopsys synthesis and simulation tool suite into

a more detailed notion of design step status (success a framework providing check-infcheck-out of design files

failure) and general design management facilities. Generated lan-
» Check-in result files into the framework and update deduage erpcessors were T“a'”'y used to de”V? sysFem
sign management information related to them models” i.e. dependencies between the various files

. manipulated by the design tools. The resulting system
* Inform the frameyvork ab_out the design step status models were more detailed than the ones produced with
* Close down running design tools ~thesimdependsool provided by Synopsys because our
+ Clean up execution context: remove temporary files/digenerated language processors can consult more relevant

rectories, free other system resources like displays, plofnformation than what seems to be usedioydepends
ters, etc.

As can be seen from this list, a great deal of flexibility isiziirr;g?ces
required by t.he exgcutlon protocol engine. We have Chdﬁ Kaiser, G.E.; Feiler, P.H.; Popovich, S‘$elligent Assist-
sen to base its design on an embeddable language kernel) y
. ance for Software Development and Maintenance

[Ousterhout91] that already provides constructs for CON- |EEE Software, Dp.40-49, May 1988.
trol statements, modules, procedures, data types, and Vagk'athdferQZ]
ables. This kerm_al is ex_tended W|tr_1 demand—loadabl Th. Kathofer, J. Miller“The JESSI-COMMON-FRAME-
modules that realize dedicated functionality. The core of \york Project - Subproject Developmentid: T. Rhyne
each module is generated from a data schema and createseq., Electronic Design Automation Frameworks, Elsevier
and maintains objects. Some object methods invoke com- Science Publishers B.V. (North-Holland), 1992
munication primitives to exchange messages with th@coutsofios93]
framework or design tool. Other methods are generated Eleftherios Koutsofios, Stephen C. NottBrawing graphs
from language processor specifications to allow design file with dot”, dot User’s Manual, AT&T Bell Laboratories,
manipulations. Murray Hill, NJ, June 22, 1993

Execution protocols are implemented on this engine by URL=ftp://research.att.com/dist/drawdag/dotdoc.ps.Z
writing scripts comprising of kernel language constructgMilner89]
and commands that invoke functionality residing in a de- Milner, R.,“Communication and Concurrency”
mand-loadable module. In standard cases where similar Prentice Hall, 1989
tools or execution protocols have already been realized, H@usterhout91]
compilation is necessary to completely integrate a design John OusterhoutAn X11 Toolkit Based on the Tcl Lan-
tool by implementing a new execution protocol. Only in ~ 9uage’, Proc. USENIX Winter Conferencganuary 1991
cases where either new communication primitives or a new URL=ftp-//sprite.berkeley.edu/tcl/tkUsenix91.ps
design language dialect have to be supported a new modutE0092]

CAD Framework Initiative, Architecture TCCAD Frame-
has to be generated from a data schema and a language e .
specificatio?] guag work - Users, Goals, and Objectived/ersion 0.92, 1990

	Main Page
	EURO_DAC94
	Front Matter
	Table of Contents
	Author Index

