
A Time Abstraction Method for Efficient Verification
of Communicating Systems

Eric Verlind, Tilman Kolks, Gjalt de Jong, Bill Lin and Hugo De Man

IMEC, Kapeldreef 75, B-3001 Leuven, Belgium

Abstract — An important practical approach to automatic verifi-
cation of finite state concurrent systems is temporal logic model
checking. However, a major barrier towards wider application of
such methods is the state explosion problem that often occurs during
the composition of complex communicating systems. In addition to
being large, many systems have very deep state spaces as well.

In this paper, we propose an abstraction method based on time
abstraction which can significantly reduce both the size as well as the
depth of the state space that must be explored during model check-
ing. It is especially suited for applications involving systems that
are loosely coupled in the sense that communication activity is rela-
tively sparse, such as applications involving DSPs, which have large
intervals of autonomous processing, with communication activity in
between. All properties expressible with the temporal logic CTL� or
CTL�-X are strongly preserved under the proposed abstraction. In
particular, we give a method that can replace a chain of states by a
single state with a time label. The abstracted model is represented by
means of a timed label transition system model. We give a composi-
tion algorithm for composing the individually time abstracted models
to form a global model that can be converted back to a conventional,
but potentially much reduced,state space suitable for model checking.
Furthermore, a similar approach can be followed in dealing with wait
states in which a system is idling while waiting for an escape signal.
For many cases, our approach is successful in alleviating the state
explosion problem that often arises in composition of communicating
systems.

I Introduction
Verification of communicating digital hardware is an essential task
in the development of correctly working complex systems. Today,
simulation is still the principal method of design validation, but it
is known to be a very time consuming task, not feasible to check
exhaustively for realistic cases. Formal verification based on formal
property checking is an alternative approach to this problem that can
potentially offer more confidence than simulation. An important and
practically feasible approach to automatic verification of finite state
concurrent systems is temporal logic model checking. However, a
major barrier for such methods is the state explosion problem that
often occurs when composing complex communicating systems. In
addition to being enormous, many systems often have very deep state
spaces as well. While symbolic methods based on Binary Decisions
Diagrams (BDDs) have enabled much progress, they have mainly
been successful in tackling state explosion due to data paths and
arithmetic computations where the state space is relatively regular
and shallow [5, 4, 7, 11, 13].

Alternatively, researchers have investigated into abstraction meth-
ods to reduce state space complexity. Abstraction methods such as
those proposed by [6, 10, 2, 12] are conservative in the sense that
false-negatives can occur. That is, the verifier may report that an error
may occur in the abstracted model where in fact the error will never
occur in the original system. For a number of verification tasks, these
conservation approaches may not lead to meaningful results.

In today’s applications such as those found in mobile radio, sys-
tems of various nature cooperate in executing an overall highly com-
plex functionality. In such a heterogeneous system, individual DSP
processors perform subtasks, executing algorithms requiring a sub-
stantial number of computation cycles in each computation frame due
to the complexity of the calculation. During the computation, there
is no interaction with the environment, as only before and after such

a processing phase communication occurs. Therefore, such systems
are characterized by relatively sparse communication activity sepa-
rating long time intervals during which no externally visible activity
occurs.

Hence, for such loosely coupled data processing systems, repre-
senting these long chains of "uninteresting" states more efficiently
will significantly reduce the number of items in the systems in a
natural way. Procedures such as reachability analysis will seriously
benefit from our approach, as the depth of the search space of the
abstract representation will potentially be drastically reduced.

This paper proposes an abstraction method based on time abstrac-
tion which can significantly reduce both the size and the depth of
the state space. The method is strongly preserving in the sense that
a property holds in the abstracted model if and only if it holds in
the original system. We propose a method of representation which
represents these chains more efficiently by replacing each chain by a
single so-called timed state, in which a delay value equal to the length
of the chain is associated. We formalize this into a simple abstraction
model called a timed label transition system (TLTS). Although there
are more powerful and elaborate time automata models (e.g. [1]),
the goal of our model is different – it is intended to provide a means
for abstraction and efficient verification, not to address timing issues
per se.

The abstraction method can be applied to a system of communi-
cating modules by abstracting each module to its timed abstracted
form before composition. We give a composition algorithm for com-
posing these timed abstracted modules together to form a global state
space that can be converted back to a conventional state space, but
one that may be substantially smaller and much less deep than the
original global state space without abstraction. In some cases, the
representation can be several orders of magnitude smaller than the
original one.

We will illustrate our approach by means of a simple example
involving composition of two communicating processors P1 and P2
as depicted by figure 1. Both processors execute a signal processing
algorithm, as shown by figure 2: P1 calculates a weighted average
of the 8 latest samples, while P2 computes an approximation of the
natural logarithm of its input. The bracketed figures at the end of
a line indicate the number of required execution cycles. The only
relevant signal for communication is the write signal which signals
to P2 that data can be picked up. The state graphs that correspond
with the system are shown by figure 3. A useful correctness check
expressed in CTL [8, 3] on the system would be:

AG (write) (state P2 = id)):

This property states that wheneverP1 is issuing a write, P2 is always
at the idle state id waiting to accept the data. This is in fact a safety
property. In this case, we see that this is always true becauseP1 has
over 100 cycles to perform between writes whereasP2 has only about
30 cycles between reads, and therefore P2 will always be in time to
accept the next data.

In this example, both processors contain a chain, a linear sequence
of states in which no decisions are taken, nor external output labels
change. For P1, it is due to the for-loop, and for P2, it is due to the
computation in the routine LN approx. In both cases, the compu-
tations are internal. These chains are candidates for abstraction.

In [12], a conservative reduction method was propose for replacing
such chains, or counter structures, by a self-looping state that non-
deterministically repeats. Though it has been shown to be useful

Processor
P
1

Processor
P
2

write

Figure 1: Time abstraction example schematic

process P1 f

forever f
p = (p + 1) MOD 8; a[p] = read; (1)
f = 0; (1)
for q = 0 to 7

f = f + w[q] � a[(p � q) MOD 8]; (13)
write (f >> 3); (1)

g

g

process P2 f

forever f
do nop while !write;
a = read; (1)
sa = LN approx(a); (30)
write sa; (1)

g

g

Figure 2: Processing in P1 and P2

for other types of verification tasks, this type of reduction would
not allow us to get a meaningful answer to the question posed by
the aforementioned CTL formula. This results from the fact that
the added but un-present behavior causes the model check to produce
false negatives. On the other hand, our method would find the system
to operate correctly. Figure 3 shows P̂1 and P̂2 being the abstracted
systems, in which each of the chains is represented as a single timed
state with a time label corresponding to the length of the chain.
The chain of P1 contains 106 operations whereas P2 contains 32
operations. The time abstracted model can then be composed together
to form a global model using a composition algorithm for this time
model. The composed model is shown in figure 3; its size is over
two orders of magnitude smaller than that of the untimed composed
system. Moreover, its depth is also over two orders of magnitude
shorter, which is an important consideration for BDD-based implicit
enumeration methods.

To avoid false negatives in verification, taking account of timing
information is crucial for composition in many cases. As already
illustrated with the example, our method strongly preserves the prop-
erties of CTL� [3], hence it is meaningful to perform model checking
on the timed system description obtained by composition. However,
properties to be checked on the composed machine are usually qual-
itative and can therefore be formulated in a temporal logic without
using the next operator, such as CTL�-X or CTL-X . Therefore,
after application of our composition procedure, the composed system
can be converted back to an ordinary untimed system description by
disregarding the time labeling. This description can then be checked
using a model checker such as smv [11] for FairCTL, which contains
CTL-X .

The sections to follow elaborate the approach outlined above.
Section II gives the definition of timed label transition systems. The
subject of section III is the composition of timed label transition
systems. Section IV treats the strong property preserving character
of our method. To show the feasibility of our approach, section V
discusses the application of the proposed techniques to two design
examples. Finally, section VI concludes on the approach.

r

c1

c2

c105

w

write

id

r

c1

c2

c30

write

write

write

write

write
106

32

u

v

y

z

106

32

74

(u,y)

(v,y)

(u,z)

(u,y)

write

P P1 2

P1 P2

P1 P2

w

Figure 3: State graphs

106

(v,y)

(u,z)

write

Figure 4: Maximally reduced timed composed machine

II Timed label transition systems
A Definitions
A finite state system has a number of signal names, some are input,
other are output. We assume that we select subsets I and O of input
and output signals which we consider relevant for communication or
model checking.

Definition 1 LetW be a set of unique signal namesw1; :::;wn. The
set of symbols S(W) over W is defined to be the set of minterms
overW .

Definition 2 A label transition system (LTS) is a structure

M = (S; I;O; R)

� S is the set of states;
� I is a set of input signal names;
� O is a set of output signal names;
� R � S � S(I [O)� S is the transition relation.

A = S(I [O) is the alphabet of M . In this definition, we make
a distinction between input and output signals, as this is important
in composition of systems, described later. We use a Moore ma-
chine model, therefore all outgoing edges of a particular state s have
identical output labels.

In the following the notation � denotes a symbol in an alphabet
S(I [O), �in 2 S(I) an input symbol and �out 2 S(O) an output
symbol.

Definition 3 Given an LTS M . A partial chain c is a sequence of
states � = s1; s2; :::; sn, with si 2 S, such that:

� For all i; 1 � i < n; (si; �; s
0) 2 R) (s0 = si+1).

� For all i; 1 < i � n; (s0; �; si+1) 2 R) (s0 = si).
� There exists exactly one output symbol �out;c 2 S(O)

such that: 8si 2 �:8�in 2 S(I):
[(si; �in � �out; s

0) 2 R) (�out = �out;c)].
� Given �out;c as above, 8�in 2 S(I):8(si; si+1) 2 �:
[(si; �in � �out;c; si+1) 2 R].

The delay of a partial chain c, �(c), is equal to its length n. first(c)
and last(c) denote the first, resp. the last state of partial chain c.

Definition 4 Given an LTSM . A maximum chain or simply chain
c is a partial chain c which is not strictly contained in any partial
chain c0.

Definition 5 Given an LTS M . A nontrivial chain c is a chain c,
for which �(c) � 2. A trivial chain is a chain c, for which �(c) = 1
(this is a single state).

Definition 6 A timed label transition system (TLTS) is a structure

T = (S; I;O;R; �)

� S is the set of timed states;
� I is a set of input signal names;
� O is a set of output signal names;
� R � S � S(I [O)� S is the transition relation;
� � : S ! N+ associates a delay with every state.

A = S(I [O) is the alphabet of the TLTS.

The states s 2 S represent either trivial chains, in which case
�(s) = 1, or nontrivial chains, in which case �(s) � 2.

Definition 7 Given a TLTS T , consider the set of simple states
Q = S �N+ = fq = (s; t) j s 2 S ^ 1 � t � �(s)g. One can see
these as the states implicitly represented by the timed states.

Consider a simple state q = (s; t). There are two cases to be consid-
ered for the setQn(q) of next simple states:

Qn(q) =
n
f(s; t+ 1)g if t < �(s)
f(s0; 1) j (s; a; s0) 2 Rg if t = �(s)

The first case corresponds to a transition internal to a chain, the
second case to transitions from the last simple state of a chain to
the first simple state of a chain. Performing a reachability analysis
does not require an explicit traversal at the level of the simple states.
Instead, the traversal is possible on the higher level of the timed
states: after entering a chain structure at its first state (s; 1), one can
skip over the internal states and proceed in the next step with the
state(s) reachable from its last state, (s; �(s)).

Definition 8 Given an LTS M and the set C of all chains in M .
� : S ! C is the function which associates with each s 2 S the
chain ci 2 C to which it belongs.

Definition 9 Given M and C as in definition 8 and Ŝ , jŜj � jCj

a set of state markings. 's : C ! Ŝ is defined to be the bijective
function which maps each chain ci 2 C to an ŝ 2 Ŝ.

Definition 10 Given M the class of possible LTSs and T the class
of possible TLTSs, � and 's. The time abstraction function Φ :
M ! T maps a given LTS M as follows to TLTS T = Φ(M) =
(Ŝ; I;O; R̂; �̂), with

� Ŝ = fŝ j 9s 2 S:ŝ = 's(�(s))g;
� R̂ � Ŝ � S(I [O)� Ŝ =
f('s(�(s));�; 's(�(sn))) j R(s; �;sn) ^ �(s) 6= �(sn)g;

� �̂ : Ŝ ! N+:�̂(ŝ) = �('�1
s (ŝ)).

III Composition
A Introduction
This section discusses the synchronous composition of two (timed)
label transition systems. The technique can be generalized straight-
forwardly to the composition of n > 2 systems; it suffices to discuss
the two-system case for ease of description. Composition of label
transition systems is the subject of the first part of this section. The
latter part of it is devoted to describing an algorithm which takes
advantage of the explicit timing information present in the descrip-
tion of the constituent TLTSs, for determination of the synchronous
product in an efficient way.

B Composition of label transition systems

Definition 11 The synchronous product M = M 0

 M 00, with
M 0 = (S0; I 0;O0;R0) and M 00 = (S00; I 00;O00;R00) label transition
systems, is defined as follows:

M = (S; I;O; R)

�S � S0 � S00;
�I = (I 0 [I 00) n (O0

[O00);
�O = O0

[O00;
�R = f(s; a; sn) = ((s0; s00); a; (s0n; s

00

n)) 2 S � A� S j
(a = a0 ^ a00) ^ (s0; a0; s0n) 2 R0

^

(s00; a00; s00n) 2 R00

g.

This definition applies under the restriction that O0

\ O00 = ;. The
alphabet A of the product machine then equals S(I [O). Note the
following:

� an output may not be connected to an other output;
� an input connected to an output is an output;
� an input connected to other inputs, but not to an output,

is an input.

C Composition of timed label transition systems

The synchronous product T = T 0

 T 00 = (S; I;O; R; �), with
T 0 = (S0; I 0;O0;R0; � 0) and T 00 = (S00; I 00;O00;R00; � 00) timed
label transition systems, is defined here algorithmically. For deriving
the reachable states of the product machine, we apply the algorithm
of figure 10.

Because of conciseness considerations, again we use predicate
notation. In the algorithm, theS sets denote sets of states (markings),
as in the TLTS definition. TheQ sets denote sets of states, composed
out of markings and time values: Q0

� S0�N+ andQ00

� S00�N+

for the component systems and Q � (S0 �N+)� (S00 �N+) for
the product. Each time a timed state pair is investigated, a mapping
from that pair to a delay value is added to the �q function, by invoking
the add map function. Note that, in contrast with definition 6:

�T = (Q; I;O; Rq; �q);
�Q � S �N+;
��q : Q! N+;
�Rq � Q�A�Q.

The reason for putting a time value in the state here is that we need
both state marking and time to indicate a (simple) state uniquely
during this calculation. After applying the algorithm, we could do a
renaming, in which each state q 2 S �N+ gets a unique mapping
out of a set Ŝ (see definition 10). Finally we have a delay value
associated with each reachable state in the product machine.

Apart from chains, in systems self-looping wait states occur, where
the system stays idling until it is allowed to proceed. In an extension
of the composition algorithm given, we deal with these as well, based
on the observation that in a sense these wait states can be regarded as
infinite chains with a preemption arc.

IV Preservation of properties
A Equivalence and stuttering equivalence
In the remainder, the following definitions of equivalence and stut-
tering equivalence are used, as taken from [3].

Definition 12 Given two Kripke structures K 0 and K 00 with set of
atomic propositions AP, we define the equivalence relation '�
S0 � S00 as follows, for all (s0; s00) 2 S0 � S00:

s0 ' s00 ()

(L0(s0) = L00(s00)) ^

8s00:[s
0R0s00) 9s000 :[s

00R00s000 ^ s
0

0 ' s000]] ^

8s000 :[s
00R00s000) 9s00:[s

0R0s00 ^ s
0

0 ' s000]]

Two states s0 and s00 are equivalent iff s0 ' s00.

Definition 13 Given two Kripke structures K 0 and K 00 with set of
atomic propositions AP, we define the stuttering equivalence rela-
tion 'S � S0 � S00 as follows, for all (s0; s00) 2 S0 � S00:

s0 'S s00 ()

(L0(s0) = L00(s00)) ^

8s00:[s
0R0s00) 9(n � 0):9s000 ; :::; s

00

n:
[s00 = s000 ^
8i; 0 � i < n:[s00i R

00s00i+1 ^ s
0

'S s00i ^ s
0

0 'S s00n]]] ^

8s000 :[s
00R00s000) 9(n � 0):9s00; :::; s

0

n:
[s0 = s00 ^
8i; 0 � i < n:[s0iR

0s0i+1 ^ s00 'S s0i ^ s
00

0 'S s
0

n]]]

B Strong property preservation by our method
In this paper, a procedure was discussed which first abstracts to TLTSs
with time abstraction function Φ two given LTSs and then composes
them. We claim some results of strong property preservation for our
method, as formalized in theorems 1 and 2.

As the aboveequivalence relations and modelchecking are defined
w.r.t. Kripke structures, we transform an LTSM to a Kripke structure
K = (SK ;RK ; LK), with the set AP of atomic propositions equal
to the set of symbolsS(I [O). Similarly, we transform a TLTST to
a Kripke structure, via the notion of simple states. These conversion
procedures are not further discussed here. Note however, that in the
following lemmas and theorems, if we refer to a LTS or TLTS, we
assume with no further comment that first a conversion to a Kripke
structure was done.

Lemma 1 Φ(M) 'M

Proof: A timed state ŝ = 's(ci) is present in Φ(M) representing
chain ci in M , being a sequence s1; :::; s�(ci). The sequence of sim-
ple states q1; :::; q�(ci) corresponding with ŝ is in fact identical to the
chain ci. It is then easily seen that the structures are identical but for
names of the states. Hence, they are equivalent. 2

Lemma 2 (Φ(M 0)
 Φ(M 00)) ' (M 0

M 00)

Proof: The composition of TLTSs is described by the algorithm
of figure 10. Assume that in the algorithm we are at simple state
q = qt = (q0; q00), with q0 = (s0; t0) implicitly represented by
Φ(M 0) and q00 = (s00; t00) implicitly represented by Φ(M 00). As-
sume that the remaining part of the chain in M 0 is smaller than that
in M 00 (l0 < l00). We can then proceed until a timed state change
occurs, i.e. we arrive in ((s0n; 1); (s

00; t00 + l00)). In the algorithm

we perform this as one transition, which however corresponds with
passing all simple states in between, i.e. as it were the algorithm
operates on the ’stretched’ structure of simple states. The structure
M and this structure of simple states implicitly present in Φ(M) can
then be seen to be equal, which implies equivalence. 2

A consequenceof lemmas 1 and 2 is the following, expressing that
we can apply the abstraction before as well as after composition.

Lemma 3 (Φ(M 0)
 Φ(M 00)) ' Φ(M 0

M 00)

Definition 14 Ψ : T ! Mmaps a given TLTS to an LTS as follows:
Ψ((S; I;O; R; �)) = (S; I;O;R). In other words, Ψ removes the
time labels from a TLTS.

Lemma 4 (T 'M)) (Ψ(T) 'S M)

Proof: From definitions 4 and 13 follows that all states in a chain
are stuttering equivalent. Removing or adding internal states will not
change this. Therefore, removing the time label by Ψ, which can be
interpreted as reducing the chain to a trivial one, preserves stuttering
equivalence. Furthermore, from definitions 12 and 13 follows that
equivalence implies stuttering equivalence. Hence, this lemma. 2

Lemma 5 Ψ(Φ(M 0)
Φ(M 00)) 'S (M 0

M 00)

From [3] we have the following two lemmas.

Lemma 6 Given two Kripke structures with initial states s0 and s00
respectively.
s0 ' s00 , 8f 2 CTL� :(K;s0 j= f , K 0; s00 j= f)

Lemma 7 Given two Kripke structures with initial states s0 and s00
respectively.
s0 'S s

0

0 , 8f 2 CTL�-X :(K;s0 j= f , K 0; s00 j= f)

The following theorem expresses the strong preservation of the
properties of CTL� under our chain abstraction.

Theorem 1 8f 2 CTL� : (Φ(M 0)
 Φ(M 00) j= f) , (M 0

M 00

j= f)

The following theorem expresses the strong preservation of the
properties of CTL�-X under chain abstraction and discarding of
time information after composition.

Theorem 2 8f 2 CTL�-X : (Ψ[Φ(M 0)
 Φ(M 00)] j= f) ,
(M 0

M 00

j= f)

V Examples
A Two-machine communicating DSP example
This case study deals with the problem of verifying the communi-
cation between two signal processing elements. It is a simplified
version of a realistic situation involving two signal processors. We
assume here that such a system, needing 100,000 states is connected
to another DSP using 87,000 machine cycles to complete its frame
computation. These numbers are realistic for this type of applica-
tion. The reason for such large number of cycles is due to a number
of nested for-loops in the algorithm. Figure 5 shows the hardware
configuration.

Data processors P1 and P2 (figure 6) communicate via the two-
place buffer in between (figure 7), making it a three machine problem.
After initialization, P1 operates in steady state mode, processing
frame by frame. At the beginning of such a frame, P1 reads in
180 data items and then computes 3 output items in 100,000 clock
cycles of processing. These are then transferred in a burst following
a condition-less strobe signal via the buffer to P2, which then can
start its processing.

Figure 8 shows the state graphs of the processors as abstracted
using chain abstraction, where nontrivial chains c are shown as timed

Processor
P

write_b

Buffer
init

start

read_a

Processor
P

read_b

init

ε

1 2

init

data_av

write_c

Figure 5: Example circuit

start

read_a

read_a

read_a

computecomputecompute

write_b

write_b

write_b

start

init

init

initialize

initialize

initialize

data_av

init

init

read_b

read_b

read_b
compute

compute

compute

pu

i1

i2

i50

id

pu

id

r1

r2

r180

c1c2
c

100k

w1

w2

w3

r1

r2

r3c1

c2

c87k

write_c

w

data_av

P1 P2

Figure 6: State graphs of processors

read_b

write_b.read_b
+

write_b.read_b

write_b.read_b

write_b.read_b
+

write_b.read_b

write_b.read_b
write_b.
read_b

write_b.
read_b write_b.read_b

write_b.read_b

True

e

f1

f2

ε

init

data_av

data_av

initpu

Figure 7: Two-element buffer state graph

states ŝ annotated with a time label �(ŝ). P1 andP2 have 100,235 and
87,006 states, respectively, practically all residing in chains, while the
buffer has 5 states. The number of product states, including unreach-
able ones, amounts to 4:46:1010. The number of reachable states in
the product machine is 187,237. Applying our time abstraction and
composition algorithm, using abstractions for both chains and self-
looping wait states, leads to a timed representation of 13 timed states,
of which 7 represent single states and 6 represent nontrivial chains.
A necessary correctness condition expressed in CTL�-X is AG :",
expressing that no buffer overflow nor underflow may occur. The
description of the composed machine yielded by our procedure does
not contain any state in which the buffer is in state ", so we know
that our correctness condition is fulfilled without further checking.
Another useful check is checking whether the buffer could be com-
pletely filled (EF (buffer state = f2)), requiring 0.21 s of CPU time
using smv on a DECStation 5000/120. Therefore, we conclude that
our method has been successful in reducing a large problem into an
almost trivial one.

start

read_a

compute

write_b

start

init

initialize

pu

i

id

r

c

w

init

50

180

100,000

3

data_av

init

init

read_b

compute

pu

id

r

c

3

87,000

data_av

w
write_c

P1 P2

Figure 8: Timed state graphs of processors

B Mobile terminal example

To further demonstrate our method, we consider now a part of a
mobile terminal transmitter. Figure 9 shows this three process system.
The first process is an A/D converter that produces data consumed by a

...A/D
convertor

2D
Reed-Solom.
encoder

Vocoder

..
delayed-write queue

...
1B B3

2B

Figure 9: Partial Block diagram of Mobile Terminal Transmitter.

voice coder (Vocoder), a complex DSP designed using the Cathedral-
II silicon compiler. In between, two buffers are needed. The data
producedby the Vocoder is encodedby a 2-D Reed-Solomonencoder.
Here we also find a buffer.

The problem of synthesizing or verifying buffers in this context can
be solved by translating the processes and buffers to the state space
domain using counters, as explained in [9]. However, the vocoder is
a complex signal processing algorithm, requiring over 100,000 clock
cycles per execution frame. This implies that for a complete pass
over the state space of the vocoder itself at least as many iterations
are required, making this method prohibitively expensive. Hence,
composition and model checking without abstraction is infeasible for
this application. However, chains of states are present in the descrip-
tion of the processes that do not act upon the buffers. Therefore we

applied our abstraction technique to obtain an abstract system, upon
which we applied a model check using smv, which checks on all
buffers whether their maximum value is reached and not exceeded.
Applying the chain abstraction enabled us to reduce the size of the
state space to 1663 timed states, while the model check required 35.6
seconds of DECStation 5000/120 CPU time.

VI Conclusions
The chain abstraction, as proposed by this paper, is an approach to
the state explosion problem, which often occurs in verification of
communicating finite state systems. The abstraction is based on rep-
resenting certain sequences of states more efficiently, preserving the
information present in the original system description. Therefore, we
defined timed labeled transition systems (TLTS), a model suitable for
representing systems containing chains efficiently. Furthermore, we
presented a composition procedure for TLTSs. This way, the overall
procedure allows us to first abstract systems before composition. The
procedure we use now also deals effectively with self-looping wait
states.

A user can describe many systems manually using this abstraction,
use the composition algorithm and perform model checking on the
result. Furthermore, we also have an automatic procedure capable of
determining the chains in a system, based on BDD operations.

Case studies show that the abstraction indeed leads to a significant
reduction of both size and depth of the state space and to feasibility
of the model check for an important class of systems. Here, we
mainly focus on systems composed out of subsystems that have large
intervals of autonomous computation during which no interaction
occurs, separated by relatively sparse communication events.

Summarizing, we can state that our abstraction method offers con-
siderable reduction potential, yet is fully compositional and strongly
preserves the formulas in CTL� .

References
[1] R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-

Toi. Minimization of Timed Transition Systems. In Proc. CON-
CUR, LNCS vol. 630, pages 340–354. Springer-Verlag, 1992.

[2] S. Bensalem, A. Bouajjani, S. Graf, C. Loiseaux, and J. Sifakis.
Property Preserving Abstractions for the Verification of Concur-
rent Systems. In Formal Methods in ComputerScience (subm.),
volume 17, 1993.

[3] M.C. Browne, E.M. Clarke, and O. Grumberg. Characteriz-
ing Finite Kripke Structures in Propositional Temporal Logic.
Theoretical Computer Science, pages 115–131, 1988.

[4] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic Model
Checking with Partitioned Transition Relations. In Proc. Int.
Conference on VLSI, August 1991.

[5] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang. Symbolic Model Checking: 1020 States and Beyond.
In Proc. IEEE Symposium on Logic in Computer Science, June
1990.

[6] E.M. Clarke, O. Grumberg, and D.E. Long. Model Checking
and Abstraction. In Proc. ACM Symposium on Principles of
Programming Languages, 1991.

[7] O. Coudert and J.C. Madre. A Unified Framework for the
Formal Verification of Circuits. In Proc. IEEE Int. Conference
on Computer-Aided Design, pages 126–129, 1990.

[8] E.A. Emerson. Temporal and Modal Logic. In J. van Leeuwen,
editor, Handbookof Theoretical Computer Science, pages 996–
1071. Elsevier Science Publishers B.V. (North Holland), 1990.

[9] T. Kolks, Bill Lin, and H. De Man. Sizing and Verification
of Communication Buffers for Communicating Processes. In
Proc. IEEE Int. Conference on Computer-Aided Design, 1993.

[10] R.P. Kurshan. Analysis of Discrete Event Coordination. In
Proc. REX Workshop on Stepwise Refinement of Distributed
Systems, LNCS vol. 430. Springer-Verlag, 1989.

[11] K.L. McMillan. Symbolic Model Checking: An Approach to
the State Explosion Problem. PhD thesis, Carnegie Mellon
University, 1992.

[12] F. Somenzi. Verification of Systems Containing Counters. In
Proc. IEEE Int. Conference on Computer-Aided Design, 1992.

[13] H.J. Touati, H. Savoj, B. Lin, R.K. Brayton, and
A. Sangiovanni-Vincentelli. Implicit State Enumeration of Fi-
nite State Machines using BDD’s. In Proc. IEEE Int. Confer-
ence on Computer-Aided Design, pages 130–133, 1990.

Q = Q0

0 �Q00

0 ; Qnew = Q; R = ;; �q = ;;
do
f

Qn = ;; Rn = ;;
forall q 2 Qnew /* q = (q0; q00) = ((s0; t0); (s00; t00)) */
f

l0 = � 0(s0)� t0 + 1;
l00 = � 00(s00)� t00 + 1;
l = min(l0; l00);
�q = add map(�q; q; l);
forall s0n 2 S0; s00n 2 S00;

(i0; o0) 2 S(I 0 [O0);
(i00; o00) 2 S(I 00 [O00)

f

if l0 < l00

if R0(s0; (i0; o0); s0n) ^ (LO(s
00) = o00)

f

Rn = Rn [f((q
0; q00); ((i0; i00); (o0; o00));

((s0n; 1); (s
00; t00 + l)))g;

Qn = Qn [f((s
0

n; 1); (s
00; t00 + l))g;

g

if l0 > l00

if R00(s00; (i00; o00); s00n) ^ (LO(s
0) = o0)

f

Rn = Rn [f((q
0; q00); ((i0; i00); (o0; o00));

((s0; t0 + l); (s00n; 1)))g;
Qn = Qn [f((s

0; t0 + l); (s00n; 1))g;
g

if l0 = l00

if R0(s0; (i0; o0); s0n) ^R
00(s00; (i00; o00); s00n)

f

Rn = Rn [f((q
0; q00); ((i0; i00); (o0; o00));

((s0n; 1); (s
00

n; 1)))g;
Qn = Qn [f((s

0

n; 1); (s
00

n; 1))g;
g

g

g

R = R [Rn;
Qnew = Qn nQ;
Q = (Q [Qn);

g while Qnew 6= ;;
return (Q; �q;R);

Figure 10: Synchronous composition using chain abstraction

	Main Page
	DAC94
	Front Matter
	Table of Contents
	Author Index

